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Ordered data

@ In some problems, the variate of interest assumes more than two
discrete outcomes, but these are inherently ordered.

e Examples that have appeared in the literature include the
following: Bond ratings; Results of taste tests; Surveys on the
degree of satisfaction with some service; The level of insurance
coverage taken by a consumer: none, part, or full; Employment:
unemployed, part time, or full time
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Ordered data

@ Zavoina and McElvey (1975) modelled ordered data using the
following latent variable framework:

0 Yi <o
1 V0<YZ:§H1
2 py <Y<y

J=1 oy <Y7 <y,
J Mo <Y;

where the threshold parameters are such that
0=pg <py <---<py_qand Y is alatent variable.

@ If the distribution of u; is specified, the unknown parameters g and
Mo, -, Hj_q Can be estimated by maximum likelihood.
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Ordered data

@ Notice that

po(Xi, By) = P(Yi=0[X;) =P (XiBy +u; < 0|X;)
= P (Lll' < —X/ﬁO|X)

X, By = PY;i=1X;) = P(O<X/:30+”13V1|X)
= P (uz Hq X/.B0|Xz> - (”1 < —X;,BO|X1)

piXiBy) = P (Xi=jIX) =P (s < XiBy+ui < lX;)
= P (< = XiBolXi) = P (s < 1y — XBoIX)

p(Xi, By) = PYi=]X;)="P (V}-l < ”i+xz{ﬁ0|xi)
= 1-P (ui <y X§/30|Xl-)




Ordered data

@ Therefore, the log-likelihood function is simply

@ As in all discrete choice models, the variance of u; is not identified.

@ The ordered-probit and ordered-logit are the most used special cases
of this model.
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Ordered data

@ For the ordered-probit
P (ui S X;.B0|Xi) =o (P‘j - X;ﬁo)
@ For the ordered-logit
oxp (1= Xiy)
1+exp (yj - X;ﬁo)

@ Interpreting coefficients requires some care. For instance in the
ordered probit model we have

P (“i S X;ﬁo|xi) =

d Xi, , J X;, ,
pO(axkﬁO) —Bocd(—XiBy). P](anﬁO) = Bok®(1;_1 — XiBo)
a / Xi’ ! / .

P](axkﬁo) = PBolo(pi_1 —XiBo) —o(u; = XiB)l.j =1,...] =1

e For 1 < j <], the sign of dp;(X;, B)dxy is ambiguous. It depends
on [p;_y — XiBy| versus |p; — XB| (remember, ¢(-) is symmetric
about zero).




Ordered data

@ The OP and OL models allow us to obtain sign of the partial effects
on P(Y > j|X;): for a continuous variable x;,. For the OP model

oP(Y; > jIX;)
axh

= ﬁh‘P(Vj —XiB),

If B, > 0, an increase in xj, increases the probability that Y; is
greater than any value ;.

@ Of course the we can interpret the sign of the parameters in the
latent variable model.

Author: Paulo M.D.C. Parente 7/ 37



Ordered data

@ A closely related model can be used for grouped data.
@ Example: Income reported in non-overlapping intervals

@ In this case, the threshold parameters are the limits of the
intervals.

@ The main difference is that, for | > 0, the variance of u; is
identified because the thresholds give information on the scale of
uj.
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The Poisson Regression Model

@ In many relevant applications, the variate of interest is the count
of the number of occurrences of some event in a given period of time
(rare events).

@ Examples include: number of accidents, number of patents,
number of takeovers, number of purchases, number of doctor
visits, number of jobs and number of trips.

@ These data have some very specific characteristics:

o Discreteness;
e non-negative;
o Many zeros and a long right-hand tail.

@ In this context, standard linear models are not appealing because:

o The conditional expectation is necessarily non-negative;

o The data is intrinsically heteroskedastic;

o Do not allow the computation of the probability of events of
interest.
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The Poisson Regression Model

@ The basic model for count data is the Poisson regression, defined
by
exp (—A(Xi, By)) A(Xi, By
j!

P (Y =jX;) = , j=012,...

E(Y;|X;) = Var(Y;|X;) = A(X;, By)

@ Notice, however, that
Var(Y;) = Ex [A(X;, By)] + Vary [A(X;, By)] = Ex [M(X;, By)] = E(Y7).

where in general, the following specification is adopted:
A(Xi, By) = exp (XiBy)-
@ Therefore,
JE(YX;)
—x — &P (XiBo) By
oX;

@ ML estimation of B, is straightforward.
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The Poisson Regression Model

@ The log-likelihood function, likelihood equations and the
Hessian are given by

logL(p) = Y., [~exp (XiB) + (XiB) Y; —log (Y1)
dlogL B ; ~
aﬁ() = Y, [Yi—exp(XiB)| X =0
2
agc;;g;ﬁ/(;a) = =Y ep(XiBXX;

@ Notice that the Hessian is negative definite for all X and 8, which
facilitates the estimation and ensures the uniqueness of the
maximum, if it exists.

@ The MLE has the usual properties. In particular

Vi By — Bo) LN (O,E (eXP(Xgﬁo)XiXQ)il)

@ Asusual, inference can be performed using the LR, W and LM
tests.




Overdispersion

@ The Poisson model imposes (conditional) equidispersion, which is
very restrictive.

@ There are many possible causes for overdispersion:

o Measurement error;
o Misspecification of the conditional mean;
o Neglected heterogeneity (random parameter variation).

@ Applied economists tend to focus on the neglected heterogeneity
issue, assuming

E(YilX; &) = exp(XiBy+¢i)

1, Var (exp (&) |X;) = 0?

E (exp (&) [Xi)




Overdispersion

@ In this particular case
E(YiX;) = B(A(X;, By) IXi) = Ee [exp(XiBy + &) |Xi] = exp(XiBy)

@ Therefore, this sort of neglected heterogeneity does not change
the form of the conditional expectation of Y;.

@ Gourieroux, Monfort and Trognon (1984) proved the following
powerful result: I E(Y;|X;) = exp(X]By) is correctly specified and
the Likelihood function is constructed using a probability
distribution which does not necessarily correspond to the true
distribution of the data, but belongs to the family of linear
exponencial distributions, then the Quasi-Maximum Likelihood
estimator is consistent for B,




Overdispersion

@ The family of linear exponencial distributions includes the
Poisson Distribution, the Normal Distribution (with fixed variance).
the binomial (with fixed number of trials), the gamma distribution
(with fixed shape parameter)

@ In this particular context the Quasi-Maximum Likelilood estimator

is sometimes called Pseudo-Maximum Likelihood Estimator by
some authors.

@ Inference is done using the results presented previously for the
Quasi-Maximum Likelihood estimator. In particular since the
Poisson pseudo-MLE is consistent in presence of this sort of
misspecification, valid inference can be based on

Vi (B—By) SN (0,47BA)

A = E[ep(XiB)XX]]  B=E (s exp(X/))* XX]




Overdispersion

Note that

Var(Yi|X;) = Ee [exp(XiBy +&)] + Vare [exp(XiBy +&)]
exp(XiBy) + o” exp(2Xfy).

e The presence of overdispersion can be tested by testing
H() 0' =0.

@ This can be done using the following LM (IM) test statistic (Cox,
1983, and Chesher, 1984)

(g o)

L N(0,1)
=1 \/221 1 €Xp ngﬁ)




Overdispersion

@ Alternatively, we can regress

{(Yi - exp(Xf/AZ))2 - Yl} exp(—X!B) on exp(Xgﬁ) (orona

constant or other functions of exp(X}p)) and test the significance
of the regressor (Cameron & Trivedi, 1986).

o All these tests can also detect underdispersion.
@ Overdispersion tests are overplayed in the literature:

@ in practice, the null is almost always rejected;
@ if this is the only source of misspecification, the Poisson
pseudo-MLE is still consistent.

@ Other specification tests are available, like the RESET test that
checks the moment condition

E[(Yi - exp(XBy)) (XiBy)°] =0

@ In practice, the test can be performed by checking the
N2
significance of the additional regressor (X; ,B) .




Heterogeneity and the Negative Binomial Regression

Model

@ The assumption that Y; has a Poisson distribution conditional of
X; and ¢; with mean A; = exp(X] B, + ¢;), leads to the compound
Poisson regression model

exp|—exp(XiBy + )] exp(X[By + &)/

P = jX,&) = i
+o0 ,
) exp[— exp (X, + €)] exp(X!B, + &)
P, = jX)= / pl=exp(Xify i P(XiPo 8(&;)de;

where g(¢;) is the density function of ¢; and we assumed that X;
and ¢; are independent.

@ This model can be made operational in different ways:

@ Pseudo maximum likelihood estimation (discussed previously);
@ Parametric estimation for specified g(e;);
@ Semiparametric estimation of By and g(g;).
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Heterogeneity and the Negative Binomial Regression

Model

e If g(¢;) is specified, the MLE can be obtained, but the estimator
may not be robust to departures from the additional distributional
assumptions.

e Assuming thatexp (¢;) ~ I (¢72,02), P(Y; = j|X;) is given by
the negative-binomial (Cameron and Trivedi (1986).denote it as
NegBin II) model:

T(j+02) [1+0 2exp(—X!By)] B
T(c2)T(+1) (1 + 02 exp(X;ﬁO))r2 .

@ The Poisson model is obtained as a limiting case when ¢? — 0,
but Hy : 02 = 0 cannot be tested with a standard LR or W test.

e If the model (1) is misspecified but E(Y;|X;) = exp(X}g,) is
correct and ¢~ 2 is fixed, the negative-binomial Psedo-MLE
estimator is consistent for 8, This follows from the results of
Gourieroux, Monfort and Trognon (1984) and the fact that the
negative-binomial distribution with o2 fixed is a member of the
family of linear exponencial distributions

P(Yi =jX;) =

)




Heterogeneity and the Negative Binomial Regression

Model

@ The score test for Hy : 0> = 0 is the overdispersion test studied
before.

@ Other parametric alternatives to the Poisson regression are
available.

@ A semiparametric alternative is to assume that ¢ has a discrete
distribution with Q support points &, ..., &g and corresponding
probabilities 714, ..., 7o, leading to

P(Yi = j|Xi) _ i eXP[_ exp(Xf,B + 0]67)] eXp(X;ﬂO + aq)
q= !

j
Tty




Heterogeneity and the Negative Binomial Regression

Model

@ For a given Q, estimation of B, a1, ...,ag and 71y, ..., 7Tg_1 can
be performed by ML.

@ This model can be interpreted as semiparametric approximation to
a compound Poisson model with unspecified distribution.

@ This leads to a consistent estimator if Q is allowed to increase at an
appropriate rate;

@ In practice, the value of Q has to be chosen (for example using an
information criterion);

@ Inference is complicated by the fact that the number of
parameters is not fixed;




Hurdle and Zero-Inflated Poisson Models

@ In some cases, the population may be contaminated by
individuals for which Y; = 0.

@ There are two ways to model this type of data. The Zero-Inflated
Poisson Model and the Hurdle Model

@ The Zero-Inflated Poisson Model: The zero outcome can arise from
one of two regimes.In one regime, the outcome is always zero. In
the other, the usual Poisson process is at work

@ Let Z; be a bernoulli random variable such that
0 with P (Zz = 0|X1) = pi
Z;, =
1 WlthP(Zl = 1‘Xl) =1 —pi

where p; can be a function of the regressors.
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Hurdle and Zero-Inflated Poisson Models

@ The observed variable is Y = ZY* where Y* is a Poisson random
variable independent of Z (conditionally on X;).

o Let P (Y} =j|X;) = m; (j; By) is the Poisson probability function.
@ Note that
P(Yi = 0[X;) = P(Z; = 01X;) + P(Z; = 1X;) P(Y; = 0[Xy)
= pi+ (1= pi)7; (0; By)
o Additionally forj > 0:
P = jIXi) =P(Z =1X)P(Y] =jIX;)
(1= pi)7i (j; Bo)

@ Notice that

E(Yi[X;) = JP(Y;i =jIX;) = Y jP(Yi =jIX;)
=0 =

= (1-p)E(Y]|X)




Hurdle and Zero-Inflated Poisson Models

@ Therefore the standard pseudo maximum likelihood result does
not hold here.

@ Then, the log-likelihood function for this zero-inflated (Mullahy,
1986) model can bewritten as

log{[pi + (1 — p;) 7; (0; )] 1=

X [(1=pi) 7 (j; :5)] (¥;>0) }

™=

logL(B) =

I
—
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Hurdle and Zero-Inflated Poisson Model

@ The Hurdle Model (Mullahy, 1986): A different extension of the
basic count data model is obtained by letting the zero and
positive observations be generated by different mechanisms.

@ In his formulation, a binary probability model determines
whether a zero or a nonzero outcome occurs, then, in the latter
case we observe always a positive integer 1,2, 3, ...

@ Consider the Bernoulli random variable

Wi = 1 Wlth,P(lel‘Xl)Zl—ql
e 0 with P (Wl = 0|X1) ={qi

where g; may depend on X;.
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Hurdle and Zero-Inflated Poisson Model

@ The observed variable is Y; = W;Y7, where Y* can only take
values 1,2,3,..., (i.e Pr (Y* = 0|X;) = 0) and W; is conditionally
independent of Y*.

@ In this case

P(Y; = 0[X;) = P(W; = 0[X;) = g;
o Let P (Y} =jIX;) = 7t} (j; By)
e Additionally forj=1,2,...
PY; = jIXi)=PW;=1X)P(Y] =jX;),
(1—q1) 77 (j Bo)

@ In this case we have

E(YiX;) = Y jP(Yi=jXi) =) jP(Yi=jX)
=0 =1

= (1—q)E(Y[X))

@ Again the standard pseudo maximum likelihood result does not
hold here.




Hurdle and Zero-Inflated Poisson Model

@ Then, the likelihood function has the form

n

logL(p) = ;{1 (Yi = 0) (logg;) +1(Y; > 0)log (1 —g;)

+1(Y; > 0)log [r7 (j; B)]}

@ Notice that this function is separable.

o Correlated unobserved heterogeneity can be allowed for and
integrated-out numerically.
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Hurdle and Zero-Inflated Poisson Model

e Usually, 77 (j; By) = P(Y} =j|X;) is specified as a truncated
Poisson of the form
exp (—A) A
1—exp (=A))

7'[? (]rﬁo) = ( j>0,
with A; = exp (X/B).

@ However, in this model there is no real truncation and therefore
an equally validspecification would be

AN
w Gibo) = B o

@ When the truncated Poisson specification is used and g; is
specified as
4i = exp (—exp (Xin)) ,

the null of no hurdle can be tested by testing Hy : B, = .
@ In any case, consistency depends on the distributional
assumptions.




Binomial Regression

e Now suppose Y; is a count variable taking values in {0, 1, ..., m; }
for an integer m; > 0. A random draw consists of (Y;, m;, X;) and,
as usual, the sample size is n.

@ For example, child mortality within families conditional on
number of children ever born m;. Or, m; is number of adult
children in a family and Y; is the number of who attended
college.

@ A natural starting point is to view Y; as the number of
“successes” out of m; independent Bernoulli (zero-one) trials,
with probability of success 0 < p(X;, B,) < 1. Typically,

p(xi, By) = q’(xfﬁo) or p(Xi, By) = A(Xfﬁ0)~

Author: Paulo M.D.C. Parente



Binomial Regression

@ Under the previous assumptions, Y; given (m;, X;) has a
Binomial[m;, p(X;, B,)] distribution:

pv; = s %) = (" )i By (1= pO%, )"

mpy m;!
where (5) = s,y

@ The mean and variance are
E(Y|m;, X;) = mip(X;, By)
Var(Yi|m;, X;) = mp(X;, By)[1 —p(Xi, By)]-

Given standard functional forms for p(X;, B,), it is easy to obtain
partial effects on the mean.




Binomial Regression

@ The Binomial log likelihood is

logL(B) = Y. {¥iloglp(X; B)] + (m; — Y;) log[1 — p(X;, B
i=1
+log{m;!/[Yi!(m; — Yi)!]}

@ MLE estimation is straightforward.

@ Importantly, the Binomial distribution is in the linear exponential
family, so only E(Y;|m;, X;) needs to be correctly specified to
consistently estimate f,.




Models for Panel Data

Define Yi = (Yilr ceey YiT)/ and ji = (jﬂ, - /jiT),r and let

. exp (—Ay) Vi
P(Yy = julXi&) = #
Jit*
Aip = exp(X,B+e)
= exp(X}Bla;,i=1,.,nt=1,.,T

where ¢; is a random variable and «; = exp (¢;) .




Models for Panel Data
The Pooled Poisson regression model

@ We must assume that E(«;|x;;) is a constant (normalized to 1)
@ Based on this assumption we have E(y; |x;) = exp(x],)

@ The Poisson Quasi-logLikelhood is given by (up to additive
constants):

1=
.MH

Il
-

logL(B) = . [Yitx;tﬁ - eXP(th,B)]

Il
-

1
@ The Poisson Quasi-logLikelhood estimator is consistent under
mild assumptions.

@ Inference must be based on a robust (to heteroskedasticity and
dependence) covariance estimator.

@ Inclusion of time dummies in the model is generally
recommended.




Models for Panel Data
A more efficient estimator

@ We require additional assumptions:

@ independence of the elements of Y; = (Y;1,..., Y;r), conditional on ¢;
and Xi = (Xill vy XiT)/;
@ strict-exogeneity of the regressors
E (Yit[Xit, o Xir, €1) = E (Yir| Xip, );
@ the following distributional assumptions:
@ P(Yi = jit|Xit &) is given by the Poisson model;
@ distribution of ¢; is known and independent of X;.




Models for Panel Data
A more efficient estimator

n

o In this case, L (B) = [ [ Li (B) , where
i=1

+oo / / it
L= [ [FTI exp (= exp(p)as) (exp X)) ] $ (o) da

=1 ]it!

o If w; = exp (¢;) is assumed to have a gnmma distribution, the
model has a closed form based on the negative-binomial
distribution.

@ Often, it is assumed that «; has a log-normal distribution (no closed
form).

@ Consistency depends, of course, on the validity of the
distributional assumptions.




Models for Panel Data

The fixed effects estimator

@ There is a consistent fixed-effects estimator for the Poisson model,
that does not require independence between «; and the
regressors.

@ As before, this estimator requires strict-exogeneity and
independence of the elements of Y; = (Y1, ..., Y;r)’, conditional
on ¢ and X;;

@ By the additivity property of the Poisson distribution, we have
that

Zthl Y, ~ Poisson (Zthl )\it) .




Models for Panel Data

The fixed effects estimator

@ It turns out that the distribution of Y; conditional on X;, «; and
YL | Y;; does not depend on ;.

o Indeed, we have (for j; = (ji1, ..., jir)'):

T Ti ‘i T / Jit
P (Yz‘ =Jji [(Xi €, ) Yit) = (Zt_lj t) I1 ( P Xio) )> .
=1

TT—1ji! =1 \ Ty exp(X,,B,
@ Write

xp(Xyby)
Z;:l eXP(Xft,Bo)

pe(Xi, By) =




Models for Panel Data

The fixed effects estimator

@ Estimation is simple due to the the fact that the log-likelihood
function (up to additive constants) is similar to that of the
Conditional Logit model:

n T
log (L Z 2 it log(p:(Xi, B))

=1t

@ Wooldridge (1999) shows that the estimator is consistent even if:

@© Y, is not Poisson.
@ theelementsof Y; = (Yjq,...,Yr) are not independent, conditional
on «; and X1, ..., Xir-

@ Naturally, if these assumptions do not hold, inference must be
based on a robust (to heteroskedasticity and dependence)
covariance matrix.




