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Fractional outcomes:
� ϵ 0,1

Base specification:
� � � 	 
 ��


where the 
 · function must respect the restriction 0 � 
 · � 1
Main models:

Fractional regression model: assumes only � �|�
Beta regression model: assumes also �� �|�
Transformation regression models (assume only � �|� ):

 Linear transformation

 Exponential transformation
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Fractional regression models:

• Very similar to binary regression models

 Main models: Logit, Probit, Cloglog

 Partial effects calculated using the same expressions

 Estimation also based on the Bernoulli function, but only by QML
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Stata

glm Y �� … �� , family(binomial) link(logit) robust
glm Y �� … �� , family(binomial) link(probit) robust
glm Y �� … �� , family(binomial) link(cloglog) robust
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Fractional regression models:

Estimation by QML based on:
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Fractional regression models:
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Partial effects:

∆�F 	 1 ⟹ ∆� � � 	 
FH �-�
 , with H �-�
 given by:
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Partial effects:
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 Probit: H �-�
 	 J �-�
 	 �
456 78 9:;< =

=

 Cloglog: H �-�
 	 1 / 
 �-�
 7>:;?

Models for Fractional Responses

Conditional Mean and Beta Regression Models

7



Esmeralda A. Ramalho

Beta regression model:

• Assumes also � � � 	 
 ��
 , using the same functions for 


 ·
• Additional assumption: �- ~ L7MN, with mean given by 
 ��


and precision parameter J
• Estimation only by ML: more efficient, less robust

• Only available when � ϵ 0,1
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Linear transformation:
�- 	 
 �-�
 . O-
P �- 	 �-�
 . O-

• Alternative specifications:

 Logit: P �- 	 QR S:
�8S:

 Probit: P �- 	 Φ8� �-
 Cloglog: P �- 	 QR /QR 1 / �-

• Advantages:

 Estimation: OLS

 Easy to deal with panel data and endogenous variables

• Limitations:

 P �- is not defined for �- 	 0 and �- 	 1
 Prediction in the original scale requires additional assumptions and

calculations and/or the application of relatively complex methods
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Exponential transformation:
�- 	 
 �-�
 . O- 	 
� 7�T �-�
 . O-

P� �- 	 7�T �-�
 . O-
• Alternative specifications:

 Logit: P� �- 	 S:
�8S:

 Cloglog: P� �- 	 /QR 1 / �-
• Advantages:

 Estimation: same methods as those used for nonnegative responses

 Easy to deal with panel data and endogenous variables

• Limitations:

 Not aplicable to the probit model

 P� �- is not defined for �- 	 1 (but it is for �- 	 0)

 Prediction in the original scale requires additional assumptions and

calculations and/or the application of relatively complex methods
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Multivariate fractional outcomes:

• �-U ϵ 0,1 , V 	 0, … , W / 1
• ∑ �-UY8�U1Z 	 1

Base specification:
� �-U �- 	 
U ��


• The 
U · function must respect the restrictions 0 � 
U · �
1 and ∑ 
UY8�U1Z 	 1

Main models:

• Multivariate fractional regression model

• Dirichlet regression model
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Multivariate fractional regression model:

• Very similar to multinomial choice models

 Main models: Logit Multinomial, Nested Logit, Random Parameters

Logit, …

 Partial effects calculated using the same expressions

• QML estimation based on the multivariate Bernoulli function

Dirichlet regression model:

• Assumes the same specifications for 
U ·
• Additional assumption: �- ~ [\�\]ℎQ7M, with means given by


U ��
 and precision parameter J
• Estimation only by ML: more efficient, less robust

• Only available when �-U ϵ 0,1
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Base specification:
� �-_ �-_ , `- 	 
 `- . �-_� 


Estimators:

• Pooled estimator (requires `- 	 ` for consistency)

• Pooled with individual effects (requires a ⟶ ∞ for 

consistency); see Hausman & Leonard (1997)

• Random effects (assumes `-~d 0, ef4 ); see Papke & 

Wooldridge (2008) 

• Fixed effects (based on linear or exponential transformations); 

see Ramalho & Ramalho (2017) 
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Stata: 

estimator based on quasi mean difference

xtpoisson H(Y) �� … �� , fe
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Control function approach

• Implement the two steps (use a boostrap variance in the 

second step)

Exponential-fractional conditional mean models (fractional
dependente variables)

• Moment condition (Ramalho & Ramalho, 2016)

� jk S
C>l >;? / 1|m 	 0

where

 Logit: P� �- 	 S:
�8S:

 Cloglog: P� �- 	 /QR 1 / �-
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Stata

ivpoisson gmm H1(Y) (��= nop… noY) �4 … �� , multiplicative


