Função Geradora de Momentos Tópicos de Inferência Estatística

José Passos

ISEG-ULisboa

10 de Outubro de 2019

A distribuição de uma v.a. X pode ser caracterizada pela,

- função densidade de probabilidade ou função probabilidade, f(x)
- função distribuição, F(x)
- função de quantis, $Q(p) = \inf_x \{x : F(x) \ge p\}$, com 0
- função hazard, h(x) = f(x)/S(x), com S(x) = 1 F(x)
- ullet função geradora de momentos, $M_X(t)=E(e^{tX})$
- função característica, é a transformada de Fourier da função densidade ou probabilidade, $\Phi_X(t) = E(e^{itX})$.

Definição: função geradora de momentos

Seja X uma v.a. que assume valores em χ com f.d.p. ou f.p. f(x). Então a função geradora de momentos de X, $M_X(t)$, é definida por,

$$\begin{split} M_X(t) &= E\left(e^{tX}\right) \\ &= \left\{ \begin{array}{ll} \int_X e^{tx} f(x) dx & \text{se } X \text{ continua} \\ \\ \sum_x e^{tx} f(x) & \text{se } X \text{ discreta} \end{array} \right. \end{split}$$

Propriedades:

- $M_X(0) = 1$
- $M_X^{(k)}(0) = \mu_k = E(X^k)$
- $M_X(t) = 1 + \mu_1 t + \frac{\mu_2}{2!} t^2 + \ldots + \frac{\mu_k}{k!} t^k + \ldots$
- se X tem f.g.m. $M_X(t)$, a v.a. Y=a+bX tem f.g.m. $M_Y(t)=e^{at}M_X(bt)$
- se X e Y são v.a. independentes com f.g.m. $M_X(t)$ e $M_Y(t)$, respectivamente, a soma X+Y tem f.g.m. $M_{X+Y}(t)=M_X(t)M_Y(t)$
- se X e Y são v.a. com f.g.m. $M_X(t)$ e $M_Y(t)$ e f.d. $F_X(x)$ e $F_Y(y)$, respectivamente, então $M_X(t)=M_Y(t)$ implica $F_X(x)=F_Y(x)$

- se X_1,X_2,\ldots,X_n são independentes com f.g.m. $M_{X_i}(t)$ então a combinação linear $L=a_1X_1+a_2X_2+\ldots+a_nX_n$ tem f.g.m. $M_L(t)=\prod_{i=1}^n M_{X_i}(a_it)$
- se $a_1 = a_2 = \ldots = a_n = 1/n$, $L = \bar{X}$ e
 - $M_{\bar{X}}(t) = \prod_{i=1}^{n} M_{X_i}(t/n)$
 - $M_{\bar{X}}(t) = [M_X(t/n)]^n$ se os X_i são identicamente distribuidos.

Bibliografia

• Casella and Berger (2002), *Statistical Inference*, 2nd Edition, Duxbury (pags. 59-68).