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Abstract. In many economic settings, the variable of interest is often a fraction
or a proportion, being defined only on the unit interval. The bounded nature of
such variables and, in some cases, the possibility of nontrivial probability mass
accumulating at one or both boundaries raise some interesting estimation and
inference issues. In this paper we (i) provide a comprehensive survey of the
main alternative models and estimation methods suitable to deal with fractional
response variables, (ii) propose a full testing methodology to assess the validity
of the assumptions required by each alternative estimator and (iii) examine the
finite-sample properties of most of the estimators and tests discussed through
an extensive Monte Carlo study. An application concerning corporate capital
structure choices is also provided.
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1. Introduction

In many economic settings, the variable of interest (y) is often a proportion, being
defined and observed only on the standard unit interval, i.e. 0 < y < 1. Examples
include pension plan participation rates, firm market share, proportion of debt in the
financing mix of firms, fraction of land area allocated to agriculture and proportion
of exports in total sales. The bounded nature of such variables and, in some cases,
the possibility of nontrivial probability mass accumulating at one or both boundaries
raise some interesting estimation and inference issues. In particular, the standard
practice of using linear models to examine how a set of explanatory variables
influences a given proportional or fractional response variable is not appropriate
in general, since it does not guarantee that the predicted values of the dependent
variable are restricted to the unit interval. Nevertheless, only in the last decade have
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researchers begun to take seriously the functional form issues raised by fractional
data, proposing the so-called fractional regression models that take into account the
specific characteristics of fractional response variables; see Papke and Wooldridge’s
(1996) seminal paper.

Frequently, in applied work, researchers’ main interest lies in the estimation of
the conditional mean of y, given a set of regressors.' In this case, practitioners
face two main decisions: (i) which functional form to assume for the conditional
expectation of y and (ii) which method to employ in the estimation of the resulting
model. In addition, in the case of boundary observations, practitioners have also to
decide whether one- or two-part models should be used. So far, most authors have
chosen to assume a logistic form for the conditional mean of y, without assessing
whether alternative functional forms are more appropriate, and to use the robust
quasi-maximum likelihood (QML) method suggested by Papke and Wooldridge
(1996), without checking whether a more efficient estimation method could be
used. However, in both cases, there are a number of alternatives that may be
employed and various simple test procedures that may be used to assess their
adequacy. Similarly, the option between a single- and a two-part model is usually
made a priori and, as far as we know, has never been tested.

In this paper we survey the main alternative regression models and estimation
methods that are available for dealing with fractional response variables and propose
a full testing methodology to assess the validity of the assumptions required by
each estimator. We briefly discuss tests for distributional assumptions and examine
in detail tests for conditional mean assumptions, which may also be used for
choosing between one-part and two-part models. In addition to the tests that are
commonly employed in the econometrics literature (RESET tests) or in the statistics
literature of binary models (goodness-of-link tests), we suggest a new class of tests
that are valid for testing the correct specification of any conditional mean model
(including two-part models) and investigate the application of non-nested tests in
this framework. We provide an integrated approach for all conditional mean tests,
implementing all of them as Lagrange multiplier (LM) tests for omitted variables,
which are calculated using simple artificial regressions.

To the best of our knowledge, no simulation study concerning fractional response
variables has ever been undertaken. Therefore, in this paper we also carry out an
extensive Monte Carlo simulation study that evaluates the finite-sample properties
of most of the estimation methods and tests discussed in the paper under many
alternative data-generating processes. To illustrate the usefulness in empirical work
of the various techniques discussed in the paper, we apply some of them to the
analysis of corporate capital structure decisions, where the variable of interest is
usually a leverage (debt to capital assets) ratio, which is defined only on the unit
interval and is often null for many firms.

The paper is organized as follows. Section 2 describes the notational framework
and discusses the main issues raised when the variable of interest is fractional.
Section 3 examines the main alternative regression models and estimation methods
that are commonly used with fractional response variables. Section 4 discusses
some specification tests for those models and methods. The Monte Carlo simulation
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study is described in Section 5. Section 6 is dedicated to the empirical application.
Finally, Section 7 contains some concluding remarks and suggestions for future
research. An appendix summarizing some practical procedures for dealing with
fractional responses is also provided.

2. Framework

Consider a random sample of i = 1,..., N individuals and let y be the fractional
variable of interest, 0 < y < 1, and x a vector of k covariates. Let 6 be the vector
of parameters to be estimated and f(y|x, €) denote the conditional density of y,
which may be known or unknown.

For many years, three main approaches have been followed to model fractional
response variables. The first of them, still used by many empirical researchers, is
simply to ignore the bounded nature of y and assume a linear conditional mean
model for y:

E(ylx) = x0 ey

However, given that y is strictly bounded from above and below, it is in general
unreasonable to assume that the effect of any explanatory variable is constant
throughout its entire range. Moreover, this linear specification cannot guarantee
that the predicted values of y lie between 0 and 1 without severe constraints on the
range of x or ad hoc adjustments to fitted values outside the unit interval.

Aware of these problems, some empirical researchers opted for assuming the
logistic relationship

x60

E(ylx) = uiﬁ @)

which is indeed a natural choice for modelling proportions since it ensures that
0 < E(y|x) < 1. However, instead of estimating equation (2) directly, which would
require some nonlinear technique, most authors prefer to estimate by least squares
the log-odds ratio model defined by

E (10g Y x) = x0 3)

I—y
which basically corresponds to the linearization of the equation that results from
solving y = e*/(1 + ¢%) with respect to x6. This approach has two main

drawbacks. On the one hand, from equation (3) it would not be straightforward
to recover E(y|x) and, thus, to interpret the estimates of 6, which would still be
the main interest of the analysis; see infer alia Papke and Wooldridge (1996) for
details. On the other hand, the transformed dependent variable in equation (3) is
not well defined for the boundary values 0 and 1 of y, requiring ad hoc adjustments
if such values are observed in the sample (such as adding an arbitrarily chosen
small constant to all observations of y).

Finally, when there are many observations at the upper and/or lower limits of the
response variable, it is relatively common to use Tobit models for data censored
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at one and/or zero. Again, there are some problems with this approach. First, only
in the two-limit Tobit model are in fact the predicted values of y restricted to the
unit interval. However, that model can only be applied when we have observations
in both limits, which is often not the case. Second, conceptually, as some authors
argue (e.g. Maddala, 1991), a Tobit model is appropriate to describe censored data
in the interval [0, 1] but its application to data defined only in that interval is
not easy to justify: observations at the boundaries of a fractional variable are a
natural consequence of individual choices and not of any type of censoring. Third,
the Tobit model is very stringent in terms of assumptions, requiring normality and
homoskedasticity of the dependent variable, prior to censoring.

Given the limitations of these models, some alternative approaches that account
for the bounded nature of the variable of interest have recently been proposed.
Some of them can only be used when there are no observations at the boundaries,
while others may also be employed when one or both the limits are observed
with a positive probability. However, all of them have in common the utilization
of functional forms for the conditional mean of y that enforce the conceptual
requirement that E(y|x) is in the unit interval. In the next section we discuss the
main alternative functional forms and regression models suggested in prior research.

3. Regression Models for Fractional Response Variables

Two main approaches for modelling fractional data without boundary observations
have been proposed so far. The first only requires the correct specification of the
(nonlinear) conditional expectation of the fractional response variable. The second
alternative is a fully parametric approach, where a particular conditional distribution
is assumed for the fractional dependent variable. Only the first approach can also
be, in general, applicable to cases where there are a finite number of boundary
observations, although in such cases it is often a better choice to use a two-part
model, where first a discrete choice model is assumed to describe the fact that y
is a boundary observation or not, and then, only for those individuals with y €
(0, 1), a conditional mean or a parametric model is employed. Next, we discuss
these three alternative approaches and discuss in which cases one-part or two-part
models should be used for modelling fractional responses characterized by a large
cluster of data at zero.

3.1 Nonlinear Models for the Conditional Mean

The simplest solution for dealing with fractional response variables only requires
the assumption of a functional form for y that imposes the desired constraints
on the conditional mean of the dependent variable:

E(ylx) = G(x60) “4)

where G(-) is a known nonlinear function satisfying 0 < G(-) < 1. This approach
was first formally proposed by Papke and Wooldridge (1996), who suggested as
possible specifications for G(-) any cumulative distribution function. An obvious
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Table 1. Alternative Nonlinear Conditional Mean Specifications for Fractional
Response Variables.

Model Distribution
designation function G(x0) g(x0) h(w)
Cauchi Cauch L1 0 ! ! 0.5
auchit auchy 3 + p= arctan(x0) p= m tan[7 (u—0.5)]
. . e’ n
Logit Logistic D — GxO)[1 — GxH)] In
1+ ex? 1—u
Probit Standard O(x0) O(x0) O ()
normal
Loglog Extreme e e G(x0) —In[—In(w)]
maximum
Complemen-  Extreme 1 —e " e[l — G(x0)] In[—In(1—pw)]
tary loglog minimum

choice for G(-) is the logistic function (2) which, however, instead of being
first linearized as discussed above, must be directly estimated using nonlinear
techniques.

In Table 1 we present some popular choices for G(-) and corresponding
derivatives with respect to the index x6, g(x0) = 0G(x0)/dx0, and the so-called
link functions, (), which will be defined later on. As is well known, while
the logistic, standard normal and Cauchy specifications for G(-) are symmetric
about the point 0.5 and, consequently, approach 0 and 1 at the same rate, the
loglog and complementary loglog models are not symmetric: the former increases
sharply at small values of G(-) and slowly when G(-) is near 1, while the latter
exhibits the opposite behaviour. The Cauchy distribution presents the heaviest tails,
which implies that this specification is more robust to outliers than the logistic and
standard normal formulations.

The model defined by equation (4) may be consistently estimated by nonlinear
least squares (NLS), as in Hermalin and Wallace’s (1994) empirical application,
or, as suggested by Papke and Wooldridge (1996), by QML. The latter authors
proposed a particular QML method based on the Bernoulli log-likelihood function,
which is given by

LLi(0) = yilog[G(x;0)] + (1 — yi) log[1 — G(x;0)] ®)

As the Bernoulli distribution is a member of the linear exponential family (LEF),
the QML estimator of 6 defined by

N
6= LL;(® 6

argmeax; ©) (©6)

is consistent and asymptotically normal, regardless of the true distribution of y
conditional on x, provided that E(y|x) in equation (4) is indeed correctly specified
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(see Gouriéroux et al. (1984) for details). Moreover (see Papke and Wooldridge,
1996), there are some cases where this QML estimator is efficient in a class
of estimators containing all LEF-based QML and weighted NLS estimators. The
asymptotic distribution of the QML estimator is given by

VNG —60)-5 N, V) 7)

where V.= A"'BA~!, with A = E[—Vyo LL(6)] and B = E[VoLL(0) Vo LL(6)].
Consistent estimators for A and B are given by A = N~! Z,N=1 &2xxi[G:(1 —
GolI™' and B =N"'"YN 2282x/x;[Gi(1 — G172, respectively, where G; =
G(x;0), & = g(x;0) and &; = y; — G;.

For some examples of applications where these methods have been employed,
see Hausman and Leonard (1997), Wagner (2001) and Czarnitzki and Kraft (2004),
who use the QML method based on the logistic specification to estimate regression
models for, respectively, television rating on NBA games, the proportion of exports
in a firm production and the share of turnover with new and improved products.
An earlier application, based on NLS and the cumulative normal function, may be
found in Hermalin and Wallace (1994).

3.2 Parametric Models: The Beta Fractional Regression Model

Even when interest is confined to the parameters of the conditional mean function
(4), in addition to assuming a given functional form for E(y|x), the researcher
may also be willing to specify the conditional distribution f(y|x, ) in order
to obtain more efficient estimators. There are several statistical distributions that
are appropriate for data confined to the unit interval and, hence, may be used in
this context. However, all the most commonly used distributions suffer from two
drawbacks: (i) as they do not belong to the LEF, the resulting estimators may be
non-robust to deviations from the assumed distribution; and (ii) they are defined
only in the open interval (0, 1) and therefore cannot be used when there are limit
observations.

Due to its known flexibility that allows a great variety of asymmetric forms,
the most popular choice for f(y|x, 6) is the beta distribution; see inter alia
Brehm and Gates (1993), Haab and McConnell (1998) and Paolino (2001) for some
applications of the beta fractional regression model.> Although the beta distribution
has been used extensively in statistics for more than a century, the literature on the
beta regression model is scarce and very recent. Indeed, only in the past decade
does the beta regression model seem to have been used for the first time; see
inter alia Brehm and Gates (1993). Their approach was based on the standard beta
density function, which is given by

_Tota)
L'(p)I'(q)

where I'(-) denotes the gamma function, 0 < y < 1 and p > 0 and ¢ > 0 are shape
parameters, both of which were specified by Brehm and Gates (1993) as exponential
functions of the covariates. However, estimating a covariate’s relationship to a shape

fip.q) (1—yy! ®)

Journal of Economic Surveys (2011) Vol. 25, No. 1, pp. 19-68
© 2009 Blackwell Publishing Ltd



EMPIRICAL STRATEGIES FOR FRACTIONAL REGRESSION MODELS 25

parameter is rarely of interest. Therefore, the most recent approaches to the beta
regression model work with a different parametrization of the beta density, the
same that we adopt in this paper.

As found independently by Paolino (2001) and Ferrari and Cribari-Neto (2004),
the interpretation of the parameters of the beta regression model is greatly simplified
if a mean-dispersion parametrization of the beta density is used. Let p = u¢ and
qg = (1 — w)¢. Then, it follows that

. — ') =l _ y)(I-we-1 9
Fsm. @) FaoTI0 — el (I'=y) )
which implies
E(y) = # =u (10)
and
rq _op—p)

Var(y) = (11)

(P+aPp+g+1  o+1
so that p is the mean of the response variable and ¢ can be interpreted as a precision
parameter in the sense that, for fixed u, the larger the value of ¢, the smaller the
variance of y. A similar approach was followed by Haab and McConnell (1998) and
Kieschnick and McCullough (2003), which, however, kept p in the model instead
of introducing the precision parameter.

Based on this approach, two different beta regression models have been proposed.
In the simplest case, we simply assume pw = G(x6) as in the models discussed
in the previous section and treat ¢ (or p) as a nuisance parameter. Alternatively,
considering that a researcher may be interested in analysing whether a variable
contributes to the variance of y beyond its effect upon the mean, Paolino (2001) and
also Smithson and Verkuilen (2006) assume p = G(x0) and ¢ = exp(za), where z
is a set of independent variables, potentially distinct from those included in x, and
o is a vector of parameters. In both cases, consistent and efficient estimators for
the parameters of interest are obtained by maximizing the log-likelihood function
based on equation (9) with respect to 6 and ¢ or «. The asymptotic distribution
of the resulting ML estimators is similar to that given in equation (7) but with V
defined as the information matrix, which corresponds simply to either A~! or B.

3.3 Two-part Models

The parametric model described in the previous section is not defined at
the boundary values of fractional response variables. Moreover, although most
conditional mean models may be used in applications where some portion of the
sample is at the extreme values of 0 and/or 1, this may not be the best option
for modelling cases where the number of corner observations is large. For such
cases, where the observations at one or both boundaries occur with too large a
frequency than seems to be consistent with a simple model, a better approach may
be the employment of two-part models, where the discrete component is modelled
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as a binary or multinomial model and the continuous component as a fractional
regression model.?

In this framework, three distinct situations may arise, depending on whether
the outcomes are restricted to the intervals [0, 1], (0, 1] or [0, 1). In this paper,
for expository purposes, we consider only the last case, but adapting the model
discussed below for the other two cases is straightforward. We chose to focus
our attention on the [0, 1) case because it is probably the most common one in
economics. Indeed, most of the examples cited in the introduction of the paper,
namely firm market share, proportion of debt in the financing mix of firms, fraction
of land area allocated to agriculture and proportion of exports in total sales, may
be modelled using the approach described next.

With two-part models for response variables observed on the interval [0, 1), the
first part consists of a standard binary choice model and governs participation, i.e.
the probability of observing a positive outcome. Define

. 0 fory=0
y= (12)
1 forye(,1)
Then,
Pr(y* = 1|x) = E(y*|x) = F(xBip) (13)

where f1p is a vector of variable coefficients and F(-) is usually one of the
distribution functions described in Table 1. The resulting model may be estimated
by ML using the whole sample.

The second part of the model governs positive choices, i.e. the magnitude of
non-zero outcomes. In this case, a function similar to that defined in equation (4)
is also a valid specification:

Elylx,y € (0, D] = M(xB2p) (14)

As before, M(xB,p) may be estimated by QML or, if a conditional distribution is
assumed for y, by ML. In both cases, estimation is based on the subsample that
comprises only the individuals with positive outcomes. For simplicity, we assume
that the same regressors appear in both parts of the model but this can relaxed and,
in fact, should be if there are obvious exclusion restrictions.

Noting that E(y|x) may be decomposed as

E(ylx) = E(ylx,y = 0) - Pr(y = 0lx) + E[y|x, y € (0, D] - Pr[y € (0, D)|x]

and that the first term on the right-hand side of this expression is identically zero,
the two-part model may be described simply by
E(ylx) = E[ylx, y € (0, D] - Pr[y € (0, D|x]
= M(xB2p) - F(xBip) (15)
where its two components are to be estimated separately. Naturally, misspecification

of either M(xB,p) or F(xB1p) leads to misspecification of the conditional mean
(15). Moreover, comparing equations (4) and (15) shows that one-part and two-part
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decision mechanisms yield different functional forms for the conditional mean.
Hence, using equation (4) overlooking the two-part decision mechanism produces
a serious misspecification problem and leads to results that are of little use: the
parameters 6 appearing in equation (4) are a mixture of the parameters 8;p and
Bop in equation (15) and have no clear interpretation. A similar misspecification
problem arises if the data are described by a one-part model and a two-part model
is used.

From equation (15), we can calculate the effect on y of a unitary change in x;:

PEOR) _ IMCPR) ) + M o) P (16)

0x j 0x j 0x j

Thus, the total change in y can be disaggregated in two parts: (i) the change in
y of those that have positive outcomes, weighted by the probability of having
positive outcomes; and (ii) the change in probability of having positive outcomes,
weighted by the expected value of y for those that have positive outcomes. This
decomposition is similar to that found by McDonald and Moffitt (1980) for the
Tobit model.

As both B1p and B,p are estimated separately, S1p (B2p) Will have the typical
asymptotic distribution of ML (QML or ML) estimators. See Ramalho and Silva
(2009) and Cook et al. (2008) for empirical applications of the two-part fractional
regression model using, respectively, conditional mean and beta models in the
second part.

3.4 One-part versus Two-part Models

As discussed above, there are many examples of fractional data characterized by
a large number of observations at zero. In such cases, practitioners have to decide
whether one- or two-part models should be used. Clearly, this decision depends
crucially on the interpretation placed upon the observed zeros. On the one hand,
the zeros may be interpreted as the result from a utility maximizing or similar
decision, in which case a one-part model is the appropriate model; for an example,
see Wagner (2001), who argues that firms choose the profit-maximizing volume
of exports, which might be zero or a positive quantity, and therefore uses a one-
part model to explain the exports/sales ratio. In other cases, the zeros and the
positive values may be best described by different mechanisms, in which case it
is more reasonable to model separately the participation and the amount decisions
using two-part models. For instance, consider the relationship between smoking and
cigarettes price (Madden, 2008): while it is likely that some individuals decide not
to smoke no matter how cheap cigarettes are, it is expected that for the subsample of
smokers an increase in cigarette prices may lead to a reduction in the consumption
of cigarettes.

In contrast to these examples, in many cases we cannot establish a priori, using
only theoretical economic arguments, whether one- or two-part models should be
used. That is, some of the competing theories may imply the use of one-part models,
while others may favour the use of two-part models. For an example of such a case,
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see the empirical application described in Section 6. Thus, in addition to the role
of theoretical economic reasoning in deciding between one- and two-part models,
it is essential to have available a set of statistical tests that might help discriminate
between those models. However, to the best of our knowledge, the option between
a single- and a two-part fractional regression model has never been tested. In the
next section we propose various specification tests for fractional regression models,
some of which may be used for choosing between one- and two-part models.

4. Specification Testing

The alternative estimators for fractional regression models described in the previous
section are based on different assumptions. Next, we analyse several statistics
for testing some of those assumptions and, thus, the statistical validity of those
models. As all models require the correct specification of the conditional mean of
y, we focus primarily on functional form tests, i.e. tests for assessing assumption
(4) in one-part models and assumptions (13), (14) and (15) in two-part models.
Note that, in spite of the functional form assumed for the conditional mean of
y being the basic assumption of any fractional regression model, very rarely has
it been tested in applied work. At the end of this section, tests for assessing the
distributional assumptions made in the parametric beta regression model are also
briefly discussed.

4.1 Tests for Conditional Mean Assumptions

In this section we propose four alternative classes of tests for assessing conditional
mean assumptions. All the tests are valid for testing the functional form assumed
for both one-part models and the two components of two-part models. Therefore, to
simplify the exposition, below we focus on tests for Hy: E(y|x) = G(x0), but their
adaptation for testing Hy: E(y*|x) = F(xB1p) or Hy: E[y|x, y € (0, )] = M(xB2p)
is straightforward. In addition, we show that one of the tests suggested may also
be adapted for testing the full specification of two-part models, Hy: E(y|x) =
M (xB2p)-F(xB1p).

The four classes of tests discussed below are the following: (i) RESET-type tests,
where polynomials in the fitted x6 values are included in G(-) to detect general
kinds of functional form misspecification; (ii) goodness-of-link tests, which are
based on generalized link functions that incorporate one or more of the links
associated with the competing G(-) functions as particular cases; (iii) goodness-
of-functional-form tests, based on generalized functional forms, which encompass
G(-) as a special case; and (iv) generic non-nested tests, where the alternative
competing specifications for G(-) are tested one against the others and which may
also be used for testing the full specification of two-part models. To the best of
our knowledge, only the RESET test has already been applied in the framework of
fractional regression models.

Below, we provide an integrated approach for all tests, implementing all of them
as LM statistics for omitted variables, which are calculated using simple artificial
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regressions. Therefore, before presenting each test in detail, we first discuss the
general form of those artificial regressions.

4.1.1 Artificial Regressions for LM Test Statistics

All the four classes of conditional mean tests suggested in this paper may be
interpreted as tests for the omission of a J-dimensional vector z in the model
E(ylx, z2) = G(x0 + zy), where y is the vector of parameters associated with z
and G(-) is the postulated functional form. Under the null hypothesis Hy: y = 0, z
is not relevant and G(x#) is an appropriate specification for E(y|x). As we show
below, the only thing that distinguishes each one of the LM tests proposed is the
composition of the vector z. To test for Hy: y = 0, all the LM tests may be evaluated
with NLS, QML or ML estimators and have a X; distribution. According to the
estimator considered, a different artificial regression should be used to compute the
tests.

For the case of ML estimation of the binary component of two-part models,
Davidson and MacKinnon (1984) show that an LM statistic for the omission of z
with good small-sample properties may be simply computed as LM = ESS, where
ESS is the explained sum of squares of the auxiliary regression

it = gx*8 + error 17)

i=uw, g=8b, &= [G(l — G)]_O'S, a circumflex indicates evaluation under Hy
atp = (0, 0) and x* = (x/, Z'). This artificial regression may also be used for testing
the functional form of one-part or the second component of two-part fractional
regression models by computing LM = nR?, where R? is the constant-unadjusted
R? from regression (17), if assumption (16) of Papke and Wooldridge (1996) is
satisfied, i.e. Var(y|x, x) = LG(x0)[1 — G(x0)],A > 0; see also Wooldridge
(1991a). This is the case when these tests are evaluated with ML estimators based
on the beta distribution, under which A = (I 4+ ¢)~!; see equation (11).

Evaluating the tests with ML estimators based on the beta model has the
drawback of requiring a particular heteroskedasticity assumption for the conditional
variance of y. If this assumption fails, the tests may lead to the rejection of Hy
even though E(y|x) is correctly specified. Therefore, in general, it is preferable to
evaluate the tests with QML or NLS estimators and compute heteroskedasticity-
robust LM statistics. In the former case, the tests may be calculated as LM =
ESS = N — SSR, where SSR is the sum of squared residuals from the artificial
regression

1 = @718y + @iFa6y + - - - + 0¥ 65 + error (18)

and 7; are the residuals that result from regressing each element gz;, j=1,...,J,
on the entire vector gx; see Wooldridge (1991a, b) and Papke and Wooldridge
(1996) for details. In the NLS case, a similar computation may be used for the LM
statistic but based on the artificial regression

1 =aré) + itF6y + - - - + 0tF ;65 + error (19)
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which differs from the previous one by setting & = 1; see Wooldridge (2002,
p. 368).

4.1.2 RESET-type Tests

The RESET test was proposed originally by Ramsey (1969) as a general test for
functional form misspecification for the linear regression model but, as shown by
Pagan and Vella (1989), it can be applied to any type of index models. Indeed,
using standard approximation results for polynomials, it can be shown that any
index model of the form E(y|x) = H(x6) can be arbitrarily approximated by
G(x0 + Z/J':I yj(xe)j“) for J large enough. Therefore, testing the hypothesis
E(y|x) = G(x0) is equivalent to testing for y = 0 in the augmented model E(y|x,
2) = G(x0 + zy), where z = [(x0)?, ..., (x0)’*']. The first few terms in the
expansion are the most important and, in practice, only the quadratic and cubic
terms are usually considered.

4.1.3 Goodness-of-link Tests

Testing the functional form G(-) is equivalent to testing the so-called link function.
The link function, from now on denoted by A(-), is a widely used concept in the
generalized linear models (GLM) literature, and may be simply defined as the
function that relates the linear predictor x6 to the conditional expected value p =
E(y|x), i.e. h() = x6; see McCullagh and Nelder (1989) for details. Thus,
to each particular link function h4(u) corresponds a different functional form
G4(x0) and vice versa. The link functions for the cauchit, logit, probit, loglog and
complementary loglog functional forms are given in Table 1.

In the GLM framework, the most common approach to test the adequacy of a
given link function involves the construction of a generalized link function indexed
by some vector of parameters «, which includes the hypothesized link function
as a special case for some specific values of «. Following Pregibon (1980), let
h(w; o) be a generalized link function that embeds both the hypothesized link,
ha(u) = h(u; aa), and the (unknown) true link, ho() = h(u; o). A first-order
Taylor series expansion of A(u; ag) around o4 yields the approximation

h(u; ag) ~ h(w; o) + Veh(u; ap)(ag — ays) (20

Replacing the correct link function i(u; o) by x6 and solving for h(u; os) gives
rise to the following approximation for the postulated link:

ha(p) =x60 +zy (21)
where y = a4 — o and
7= Vyh(;an) (22)

which are usually known in the GLM literature as carrier functions. If the assumed
link function is correct, then ¢y = a9 and y = 0.
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So far, goodness-of-link tests for Hy: y = 0 have been directly based on equation
(21) and used exclusively with binary models estimated by ML. Here, in order
to allow straightforward computation of robust versions based on NLS or QML
estimation, we suggest the implementation of those tests using the LM statistics
outlined above. That is, instead of working directly with equation (21), we test
for the relevance of z in the generalized functional form E(y|x, z) = G4(x0 +
zy) that corresponds to the approximate link function (21).

The GLM literature provides many alternative generalized link functions,
especially for the logit model. In this case, we have available, among others,
the generalizations proposed by Prentice (1976), Pregibon (1980), Aranda-Ordaz
(1981), Whittemore (1983), Stukel (1988) and Czado (1994). In contrast, only a
few generalizations for the other specifications analysed in this paper have been
proposed so far, such as Stukel’s (1988) model that also encompasses the probit,
loglog and complementary loglog links, and Koenker and Yoon’s (2009) augmented
model that nests the cauchit link. In the simulation study of Section 5, we merely
consider tests based on Stukel’s (1988) and Koenker and Yoon’s (2009) generalized
link functions, since the former is the most encompassing one and the latter is
the only one that allows the assessment of cauchit models. The carrier functions
for these tests for the cauchit, logit, probit, loglog and complementary loglog
specifications are, respectively,

z = Vycdf (studenty) ™ (1) g=1
2 =[0.5(x0)*1p=0s —0.5(x0)* I 5-0)]

1 7 5 A
— 1 —0.165x6 __ o)1 :
¢ [0.165 (n —uf ) Hao=0

1 1% 5 N
1 0.165x6 RN} -
0.165 <n1—,f + 30 ) Lo

1 u A A
S 14 0.037x0) — 0 | Iomoy;
¢ {0.037[“1—M(Jr 0 x}(“’)

1 % 5 A
1 0.620x6 9 IX
0.620(“1—,Le X0 ) <0

1 K _0.620x0 A
=1 ——\In——e7"" — x0 | I19>0);
‘ {0.620(“1—Me Y ) fx0z0)

n R R
S 1 — 0.037x6) + x0 | I
0.037 [nl—,u( x0) +x ] (“”}

4.1.4 Goodness-of-functional-form Tests

While each goodness-of-link test is valid for testing the functional form of
particular fractional regression models, the two tests that we propose next may
be applied to test the specification of any model. As the new tests are based on
direct generalizations of G(x6), we call them ‘goodness-of-functional-form tests’,
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although they may also be interpreted as goodness-of-link tests, as shown next.
We first present the two generalized functional forms proposed and discuss briefly
their characteristics, and then derive the corresponding link functions. Following
the approach of the previous section, we obtain the resulting carrier functions z in
equation (22), which in this case can be substantially simplified.

The first generalized functional form proposed extends for other models a
generalization of the type that is usually employed to introduce asymmetry in
the logit model, which consists simply in raising the logit functional form to a
positive constant «. See inter alia Poirier (1980), Smith (1989) and Nagler (1994),
who called the resulting model generalized logistic model, Burrit model and scobit
model, respectively. In this paper we propose applying this extension of the logit
model to any functional form G(-):

E(ylx) = G(x6)* (23)

where o > 0 such that 0 < E(y|x) < 1. As equation (23) describes only some
particular forms of asymmetry, we also propose the alternative specification

EQlx)=1—-[1—-Gx0)]* (24)

where the form of asymmetry is complementary.

Figure 1 contains representations of both equations (23) and (24) for several
values of o for the logit and loglog cases. In equation (23) the curve of the
functional form is shifted to the right and to the left for o« > 1 and 0 < o < 1,
respectively, the impact being more substantial on the left tail. It is clear that the
behaviour of the curves described by equation (24) is complementary to that of
equation (23). As both equations (23) and (24) reduce to G(-) when o = 1, testing
whether G(x0) is the correct specification of E(y|x) corresponds to testing for Hy:
o = 1 in both cases.

Models (23) and (24) give rise to the generalized link functions h(u;oa) =
h(u'/®) and h(u; o) = h[1 — (1 — u)'/*], respectively, for 1 = E(y|x). Using the
procedures described in the previous section, two new goodness-of-link tests for
checking the relevancy of carriers z given in equation (22) may be straightforwardly
derived. In this case, as we are testing for « = 1, those carriers may be greatly
simplified, not involving the calculation of link functions or their derivatives. Define
w* as the argument of h(u; ) such that A(u; @) = h(u*), where u* = u'/¢ and
w* =1—(1—=p)/* for models (23) and (24), respectively. As the carriers (22)
may be written as z = V,+h(u*)|o=1Voau*le=1 and it is straightforward to show
that vu*h(,u*)hx:l = [vx9M|ot=l]7l = gil and VO!/"L*|Ol=1 = VG!/""'O(:Is they can be
simplified to

z=Vatlo=18™' (25)

where Vg, i|g=1 = G ln(G) and Vyit|g=1 = —(1 — G)ln(l — G) for tests based on,
respectively, equations (23) and (24).

Analysing the structure of equation (25), it is clear that among the functional
forms considered in this paper and described in Table 1, the tests based on equa-
tions (23) and (24) cannot be applied to, respectively, loglog and complementary
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Generalized logit model
Based on equation (23)

Based on equation (24)

=)

=G(2)

E(Y[X)
0.4

Figure 1. Generalized Functional Form for E(Y|X).

loglog models when the index includes a constant term. Indeed, in such cases
z=—1, since § = e 0= and g = e*e=¢" equal, respectively, —G In G and
(1-G6)In(1 = G).

When a logit specification is used for G(x6), the carrier functions z used
separately by our two tests coincide with the two carrier functions that define
Prentice’s (1976) goodness-of-link test for logit models, which were derived from
a generalized link function indexed by two additional parameters (11, m;). Actually,
in the logit case, Prentice’s (1976) generalized link function incorporates as special
cases both (23), for m, = 1, and (24), for m; = 1. Therefore, on the one hand,
Prentice’s (1976) approach may be seen as a generalization of ours in the logit case
and, on the other hand, his approach is more limited since, unlike ours (with the
two exceptions already referred to), it cannot be easily applied to other possible
specifications for G(x6).

4.1.5 P Test for Non-nested Hypotheses

As the alternative functional forms available for fractional regression models
are non-nested, the various test procedures for non-nested regression models
proposed in the econometric literature can be used to test alternative competing
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specifications for E(y|x). Here, we focus on the P test statistic proposed by
Davidson and MacKinnon (1981), which is probably the simplest way of comparing
nonlinear regression models; see inter alia Gouriéroux and Monfort (1994) for other
alternatives. As far as we know, the P test has never been applied in a context similar
to ours before; see, however, the recent paper by Santos Silva et al. (2008) for a
related approach.

Suppose that G(x0) and T(xn) are admissible functional forms for E(y|x)
and assume homoskedasticity and NLS estimation. In this framework, as shown
by Davidson and MacKinnon (1981), testing Hy: G(x60) against H;: T(xn), i.e.
checking whether G(x0) is an appropriate specification for E(y|x) after taking into
account the information provided by the alternative model, is equivalent to testing
the null hypothesis Hy: 6, = 0 in the auxiliary regression

(y — G) = gx8; + 8,(T — G) + error (26)

where §, is a scalar parameter and the circumflex means evaluation with the NLS
estimators @ or #, which are obtained by estimating separately the models defined
by G(-) and T(-), respectively. To test Hy: T'(xn) against H;: G(x0), we need to
use another P statistic, which is calculated using a similar auxiliary regression
to equation (26) but with the roles of the two models interchanged. Comparing
equations (17) and (26), we see that testing for Hy: §, = O in the latter equation
corresponds to testing for the relevance of z = (T — G)g~! in G(x0 + zy). With
fractional regression models, which are typically heteroskedastic and usually are
estimated by QML or ML, it is in general preferable to test the relevance of this z
variable as explained in Section 4.1.1.

In contrast to the previous classes of tests, which may only be applied to assess
the correctness of the functional form assumed in one-part models or in the two
separate components of two-part models, the P test may also be applied to test
the full specification of two-part models, E(y|x) = M(xB2p) - F(xB1p), against
both one-part models, E(y|x) = G(x6), and other two-part models, say E(y|x) =
Q(xpop) - S(xp1p), and vice versa. To check whether E(y|x) = G(x0) is appropriate
after taking into account the information provided by the alternative E(y|x) =
M(xByp)- F(xB1p) and vice versa, the artificial regression (26) must be re-
expressed as

(y — G) = gx8, + 8:(M - F — G) + error (27)
and
(y—M-F)=mFx8,+ Mfx8,+ 8(G — M - F) + error (28)

respectively, where f and /m are the partial derivatives of F and M with respect
to, respectively, B1p and Bop. Similarly, to check whether E(y|x) = Q(xp2p) -
S(xp1p) is appropriate after taking into account the information provided by the
alternative E(y|x) = M(xB,p) - F(xB1p) and vice versa, the artificial regressions
of interest are

(y — 0-8= (?S'xSU + Q8x810 4+ 8(M - F — O - 8) + error (29)
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and
(y—M-Fy=mFx8 4+ Mfx8,+8(0-8— M- F)+ error (30)

respectively, where § and § are the partial derivatives of Q and S with respect to,
respectively, pop and pip.

4.2 Tests for Distributional Assumptions

Testing the correct specification of E(y|x) is clearly the most important issue
in fractional regression models. However, once the functional form is selected,
it is also important to examine whether the beta distribution is appropriate for
modelling the fractional response variable in order to obtain efficient ML estimators.
The standard test for misspecification of a parametric likelihood function is the
information matrix test introduced by White (1982), which, however, can be very
burdensome to compute. Moreover, the simplified outer product of gradients (OPG)
version proposed by Chesher (1983) and Lancaster (1984) possesses an asymptotic
distribution that is, in general, a very poor approximation to its finite-sample
distribution. Therefore, many other forms of the information matrix test have been
proposed and most authors advocate the use of bootstrap-based critical values.
The investigation of the performance of alternative information matrix tests in the
framework of the beta fractional regression model would deserve a paper on its own
and hence we do not pursue this line of research here. In the empirical application
carried out later, we use the bootstrapped OPG information matrix test analysed
by Horowitz (1994), which he found to work very well in Tobit and binary probit
models. In our case, in each bootstrap replication we generate values for y by
random sampling from the beta distribution based on the actual values of x and the
ML parameter estimates from the actual sample.

5. Monte Carlo Simulation Study

In this section we investigate the finite-sample performance of most of the
estimators and tests discussed throughout this paper in a Monte Carlo simulation
study. All experiments consider a single covariate X; generated from the normal
distribution with mean zero and variance 1 and are based on 10,000 replications,
which were performed using the R software.

5.1 Performance of Alternative Estimation Methods

In our first set of experiments, we compare the performance of three alternative
estimation methods (NLS, QML and ML) in terms of bias and precision under
the assumptions that both the functional form of the conditional mean and the
distribution of y given x were correctly specified by the analyst. We consider four
different functional forms (cauchit, logit, probit and loglog) for the conditional
mean of the response variable and generate samples of N = {100, 200, 500, 1000}
according to the beta distribution.

In order to mimic a wide class of data sets that may be available for
empirical work, for each functional form assumed for E(y|x) we simulated samples
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characterized by different means, variances and levels of asymmetry; see the
histograms in Ramalho ef al. (2009) for samples of 500,000 observations generated
using the true value of the parameters of interest & = (6y, 0.5) and the shape
parameter ¢. The distribution of the data is approximately symmetric for 6y = 0,
apart from the loglog case, and is clearly asymmetric for the other values considered
for 6. Increasing ¢, the variance of y given x is reduced as well as the weight of
observations with small values of y, which makes the distribution of y range from
U-shaped to an inverted U-shaped curve for 6y = 0. For loglog models, instead
of fixing 6p = —1 as in the other models, we considered 6y = —0.5, so that the
distribution of y given x was more similar to that of the other models.

Table 2 reports the mean and standard deviation across replications of the
alternative estimators of 6, for N = {200, 500}, while Figure 2 displays the root
mean squared error (RMSE) of those estimators for a shape parameter ¢ ranging
from 0.5 to 20 for N = {100, 500}. We find that, in terms of bias, the three
estimators displayed a very similar performance, being in general approximately
unbiased. In all cases, the ML estimator presents the smallest standard deviation and
RMSE, while the QML estimator is clearly more precise than the NLS estimator.
However, Figure 2 suggests that those differences vanish as N and ¢ increase.

Next, we generate the response variable according to the simplex distribution.*
The shape parameter of this distribution was chosen in order to produce a similar
range of distributions to those obtained for the beta case. In particular, the means
and variances are identical to those simulated before. As the generation of simplex-
distributed data is very time-consuming, we considered only the logit case. Table 3,
which displays various summary statistics for each estimator, clearly shows that
the performance of the QML and NLS estimators hardly changes relative to that
documented in Table 2. In contrast, the ML estimator based on the beta distribution
is no longer unbiased. In fact, despite the well-known ability of the beta distribution
to describe a variety of shapes, as this distribution does not belong to the LEF,
the beta ML estimators are not robust to deviations from the assumed distribution.
However, since in most cases its standard deviation is again the lowest, the ML
estimator still displays the smallest RMSE in some cases for N = 200. This
advantage of the ML estimator seems to disappear as N increases, since for N =
500 its bias remains approximately unchanged, while the dispersion of all estimators
gets closer.

5.2 Effects of the Misspecification of the Conditional Mean

To analyse the effects of the misspecification of the conditional mean, we focus on
QML estimators, since they do not require distributional assumptions and performed
better than NLS estimators in the former experiments. Moreover, as the distribution
assumed for the data is irrelevant in QML estimation, we merely generate response
data from the beta distribution. As the QML estimators for 6 are not directly
comparable for the four different forms of E(y|x) under analysis, we measure the
effects of assuming a misspecified functional form by comparing the partial effects
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computed both for the model used for generating the data and for the other three
(misspecified) models.

The partial effects of a covariate x; on the outcome are given by g(x@)éj (see
Table 1), and their mean across replications is represented in Figure 3 for N = 500
and ¢ = 5 for the {0, 0.02, 0.04, ..., 0.98, 1} population quantiles of X;. Clearly,
apart from cases where a logit functional form is used in estimation but data are
generated according to the probit model and vice versa, misspecification of the
functional form may produce very important distortions in the estimation of partial
effects. In particular, note that the deviations between the partial effects estimated
by cauchit and loglog models may be tremendous. Nevertheless, the direction of
the partial effects is always correctly estimated.

In addition to measuring partial effects for individuals with specific character-
istics, as we did in Figure 3, in empirical work it is customary to present also
the average response of all individuals, N~'0; vazl g(x;0), and the response of
the average individual, g()'cé)éj, where x denotes the mean of the covariates. In
Table 4 we report the results obtained for N = 500 and ¢ = 5. The values
underlined denote the partial effect estimated for the true models. In the case of
the response of the average individual, we achieve similar conclusions to those
of Figure 3; i.e. the bias can be very large in some cases. For example, when
6 = (—0.5, 0.5) and the loglog model is used to generate the data, the biases of
the partial effects estimated according to the cauchit, logit and probit model are,
respectively, 41.5%, 11.9% and 7.5%. In contrast, the estimation of average sample
effects seems to be much more robust to misspecification of the functional form,
especially when logit or probit models are employed. Indeed, in these experiments
the bias for these two models is always less than 1%, while the maximum bias for
the loglog and cauchit models is, respectively, 3.5% and 10.0%.

5.3 Tests for the Functional Form When There Are No Boundary Observations

Given the results of the previous section, the selection of the correct functional
form for the conditional mean of y is clearly a very relevant issue in modelling
fractional data. Therefore, next we investigate the finite-sample properties of the
four classes of tests for the conditional mean assumptions discussed before. In
particular, we compute (i) two versions of the RESET test, RESET2 and RESET3,
which are based on the addition of, respectively, two and three powers of x6,
the first being the most widely used in empirical work and the second version
automatically calculated by the package Stata in linear models; (ii) a goodness-
of-link test (GOL), either that of Koenker and Yoon (2009) for cauchit models
or that of Stukel (1988) for logit, probit and loglog models; (iii) the two tests
for the goodness-of-functional-form proposed in this paper based on the general
functional forms (23) and (24), which are designated, respectively, GOFF1 and
GOFF2; and (iv) three non-nested P tests, which differ only in the alternative model
considered for testing each null hypothesis. We use the same design as in previous
sections and, again, focus on QML estimation and beta-distributed response
variables.
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Table 5 contains the results for the size analysis for N = {500, 1000}. Clearly,
irrespective of the version considered, the RESET test displays the poorest finite-
sample properties, its estimated size being different from the nominal size at the
5% level in most of the cases simulated. The performance of the GOL test was
also relatively modest in logit and probit models characterized by an asymmetric
distribution of the response variable, being undersized in 11 out of the 12 cases
analysed. With regard to the P test, its behaviour appears to be somewhat sensitive
to the alternative hypothesis considered: in some cases (e.g. H;: cauchit), it revealed
some tendency to over-reject the null hypothesis; in others, its performance was
very good (e.g. H;: loglog). Finally, both the GOFF tests exhibited estimated sizes
very close to the nominal one in most cases.

In the power analysis we computed the percentage of rejections of the three false
null hypotheses considered for each one of the four alternative models simulated.
Table 6 reports the results obtained for the case where probit is the true model;
for the full set of results, see Ramalho et al. (2009). In general, the power of all
tests increases when the sample size or the level of asymmetry in the distribution
of y(8y # 0) increases or the conditional variance of y decreases (¢ increases).
All tests display very satisfactory power properties in the two sets of cases where
the differences between the functional form assumed in the data generation and
that used in the estimation are substantial: (i) the true conditional mean is of
the loglog form and one of the three symmetric models is assumed and vice
versa (last six columns of Table 6); and (ii) both the true and the hypothesized
models are symmetric about x6 = 0 but the distribution of y is asymmetric (all
columns of Table 6 relative to g = —1). In these two sets of cases, the only
(expected) exceptions to this good behaviour of all tests occur when the data are
generated according to a logit model and a probit model is estimated or, in some
cases, when the variability of y is very large (¢ = 1). Moreover, note that in
these cases the P test is, in general, the most powerful one and that, in spite of
the fact that we are considering uncorrected powers, the GOFF tests (especially
the GOFF1 version) display better power properties than RESET tests in many
experiments.

A very different scenario arises when we consider the remaining cases, i.e. when
both the true and the postulated models are symmetric about x0 = 0 and the
distribution of the response variable is also approximately symmetric (all columns
of Table 6 relative to 6y = O except those concerning the loglog model). In
this case, the power properties of all tests are much more modest than in the
previous experiments. In particular, the GOFF tests have very low power, which
is not surprising since both of them are based on generalizations that introduce
asymmetry in the cauchit, logit and probit models, which is not present in these
experiments. For similar reasons, the power of the P test is now much lower
when the alternative is the asymmetric loglog model instead of another symmetric
specification. In contrast, when two symmetric models are contrasted, the P test is
again the most powerful of all tests in most cases.

Overall, these experiments show that GOFF and P tests are indeed good
alternatives to the more popular RESET and GOL tests to assess conditional
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mean assumptions in fractional regression models: the GOFF tests are the best
in terms of size and often they are among the most powerful tests, while the P
tests, despite over-rejecting the true null hypothesis in some cases, display clearly
the best power properties in most cases. However, when the response variable is
symmetrically distributed, the GOFF tests have the important drawback of failing
too often to reject symmetric but ill-specified models for the conditional mean of y.

5.4 Tests for the Functional Form When There Are Boundary Observations

Finally, we investigate the ability of the functional form tests to detect specification
failures in the conditional mean due to the estimation of one-part models when
the data-generating process is governed by two-part models, and vice versa. In this
context, a large number of combinations of functional forms for G(x0), F(xf81p)
and M (xB,p) could have been considered but, in terms both of the data-generating
process and of the null hypothesis to be tested, we restricted our attention to the
case where a logit functional form is adopted for G(x6) in one-part models and for
both F(xBip) and M(xfB,p) in two-part models. Although this set-up corresponds
to a very simple case, it is probably the most usual approach in applied work; see
for example Cook et al. (2008) and Ramalho and Silva (2009).

In order to generate samples of fractional data with a given proportion of
zero outcomes, we used two distinct data-generating processes. For one-part logit
models, as the ratio of a bounded integer variable and its upper limit L is a fractional
variable, we first generated a binomial-distributed variable y* with parameters
L = 16 and mean G(x6) and then obtained a fractional variable y € [0, 1] by
calculating y = y*/L. For two-part logit models, we first generated a binary
variable y* according to the functional form specified for F(xf8;p) and then, only
for the sampling units for which y* = 1, we used a beta distribution based on
M (xfB,p) and a shape parameter ¢ = 15 for generating the positive, fractional
outcomes. In both cases, we considered N = {500, 1000}.

Let Bip = (Bip,, B1p,) and Bop = (Bap,, Bap,). We set 0y = B1p, = Bop, = 1 and
chose 0y and Bip, in such a way that the proportion of zero outcomes in each
model was 10%, 30% or 50%. The value of the remaining parameter, B,p,, wWas
chosen in order to obtain identical values for the conditional mean and variance
of y in both one-part and two-part logit models. We computed two distinct sets
of tests. On the one hand, we computed the same tests considered in the previous
section, which were applied separately to one-part models and the two components
of two-part models. On the other hand, we used the P test to compare both one-part
models and the full specification of two-part models (and vice versa) and alternative
full specifications of two-part models. For computing this test, we considered nine
alternative full specifications for two-part models, each of which corresponded to
a different combination of the cauchit, logit and loglog functional forms.

Table 7 reports the results obtained for the size analysis. As in the previous
section, the empirical size of the GOFF tests is not significantly different from the
nominal one in most cases, the GOL test is undersized most of the time, and the
RESET statistics are clearly oversized, especially the RESET3 version. With regard
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Table 7. Monte Carlo Estimated Sizes (%) for a Nominal Size of 5% for Tests for the
Functional Form in Presence of Boundary Observations.

N =500 N = 1000

10%* 30%* 50%* 10%* 30%* 50%*

Hy: one-part logit model

RESET2 5.2 54 59 5.2 55 4.8
RESET3 54 7.3 9.4 5.6 6.5 7.1
GOL 45 3.1 53 4.4 2.8 4.5
GOFF1 5.2 5.0 52 54 5.1 4.7
GOFF2 5.2 4.8 4.7 54 4.9 4.1
P tests (H;: one-part model)
H;: cauchit 55 53 6.0 5.3 54 5.1
H;: probit 55 5.1 54 54 5.2 5.0
H;: loglog 5.4 5.0 53 53 5.2 5.0
P tests (H;: two-part model)
H;: cauchit + cauchit 59 5.5 5.8 5.8 6.0° 5.0
H;: cauchit + logit 5.7 4.9 53 5.1 5.0 4.8
H;: cauchit + loglog 54 5.1 54 5.5 5.0 4.7
H;: logit 4 cauchit 5.8 6.0 6.1 55 6.0 5.5
H;: logit + logit 55 4.9 53 5.5 4.9 4.9
H;: logit + loglog 54 5.1 52 55 5.0 4.9
H;: loglog 4+ cauchit 5.7 5.9 5.8 5.5 5.7 55
H;: loglog + logit 5.4 4.8 53 5.3 5.1 4.7
H;: loglog + loglog 55 5.0 52 55 5.1 4.8
Hy: two-part logit model
First part
RESET2 4.8 5.1 5.0 4.8 4.9 5.2
RESET3 4.8 6.4 6.0 4.8 59 5.8
GOL 4.4 5.1 4.9 3.9 4.9 53
GOFF1 5.2 5.1 4.8 4.9 5.1 5.0
GOFF2 5.2 5.0 4.9 4.8 5.1 5.1
P tests
H;: cauchit 6.3 6.5 6.4 6.2" 6.5 6.1
H;: probit 5.7 6.7 7.7 6.0 6.4 6.5
H;: loglog 5.0 53 4.9 5.1 5.0 5.1
Second part
RESET2 5.2 53 53 6.0 53 5.8
RESET3 5.1 6.5 6.1 59 6.3 7.8
GOL 45 3.1 4.1 5.6 2.8 3.6
GOFF1 4.6 5.2 4.8 5.3 4.7 5.4
GOFF2 4.8 4.9 4.5 5.2 4.7 49
P tests
H;: cauchit 4.8 53 54 5.5 5.1 53
H,: probit 4.7 52 5.0 5.6 5.0 5.6°
H;: loglog 4.6 5.0 4.7 54 4.9 54
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Table 7. Continued.

N = 500 N = 1000

10%* 30%* 50%* 10%* 30%* 50%*

Full specification
P tests (H;: one-part model)

H;: cauchit 4.6 5.0 4.7 5.0 54 5.1
H;: logit 43 52 4.9 5.2 5.1 4.9
H;: probit 45 5.0 4.6 5.0 4.8 4.7
H;: loglog 4.3 4.7 4.7 4.7 4.1 4.5
P tests (H;: two-part model)
H,: cauchit 4+ cauchit 4.6 4.8 4.7 5.1 5.1 5.0
H;: cauchit 4 logit 4.7 4.7 5.1 4.7 4.6 4.8
H;: cauchit + loglog 43 4.9 45 4.9 4.7 4.7
H;: logit + cauchit 4.7 4.9 4.8 5.0 4.9 4.7
H;: logit + loglog 4.2 4.7 4.5 4.5 43 44
H,: loglog + cauchit 4.6 5.1 4.9 5.0 5.0 5.0
H;: loglog + logit 45 5.0 4.9 52 4.9 4.6
H;: loglog + loglog 4.3 4.6 4.7 4.6 4.4 4.6

Note: The values with an asterisk are significantly different from the nominal size at the 5% level
(95% confidence interval limits: 4.58 and 5.43).
#Percentage of the sampled observations with ¥ = 0.

to the P test, on the one hand, it continues to display some tendency to over-reject
the null hypothesis in some cases and, on the other hand, it seems to be much less
reliable when applied to binary models and to be slightly undersized when used to
test alternative full specifications of two-part models.

The finite-sample power properties of the tests are documented in Table 8. Note
that we have restricted this analysis to two simple cases: estimation of a one-part
logit model when the true model is a two-part logit model (first panel of Table 8)
and (ii) the opposite case (second panel). Again, most of the highest percentage of
rejections of the false null hypothesis are obtained by some versions of the P test.
However, the power of this statistic is very low when we test the full specification
of the two-part logit model against either alternative one-part models or other two-
part models. This implies that when using the P statistic for testing two-part models
it will be better, in general, to focus on the separate analysis of the two components
of those models. With regard to the other tests, all of them display very satisfactory
power properties. Note that with boundary observations the distribution of y will
be, in general, asymmetric, and hence the GOFF tests are particularly useful in this
framework.

6. Empirical Application: The Determinants of Corporate Capital Structure
In this section we apply the techniques described so far to the regression analysis of
the capital structure decisions of Portuguese small and medium enterprises (SMEs),
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Table 8. Monte Carlo Estimated Powers (%) for a Nominal Size of 5% for Tests for
the Functional Form in Presence of Boundary Observations.

N =500 N = 1000
10%*  30%* 50%* 10%*  30%* 50%*
Hy: one-part logit model

RESET2 16.5 335 334 26.6 56.3 54.7
RESET3 17.8 36.2 38.4 26.4 56.0 55.9
GOL 12.5 24.5 28.8 21.8 47.8 46.8
GOFF1 14.5 29.1 28.3 24.6 53.1 51.0
GOFF2 11.1 22.6 21.7 19.2 42.8 41.2
P tests (H;: one-part model)

H;: cauchit 18.8 37.3 394 30.8 62.1 62.2

H;: probit 19.4 36.7 35.6 314 61.2 59.9

H;: loglog 16.4 34.5 34.5 27.7 59.1 59.0
P tests (H;: two-part model)

H;: cauchit + cauchit 11.5 18.4 20.1 19.6 36.4 41.5

H;: cauchit + logit 24.2 38.5 32.0 35.6 62.2 55.7

H;: cauchit + loglog 17.1 34.9 323 28.4 59.1 56.8

H;: logit 4 cauchit 14.6 24.2 19.7 25.0 473 40.3

H;: logit + logit 20.0 37.0 34.7 323 61.7 59.0

H;: logit 4 loglog 16.3 335 33.1 27.4 58.3 57.4

H;: loglog + cauchit 13.9 21.5 15.5 24.1 41.6 32.5

H;: loglog + logit 21.2 39.6 39.1 33.6 63.9 62.6

H;: loglog + loglog 16.4 34.5 34.8 27.5 59.1 59.4

Hy: two-part logit model

First part
RESET2 20.4 27.6 19.2 44.9 58.2 43.4
RESET3 18.5 24.7 16.6 40.1 51.0 36.2
GOL 24.8 314 20.6 514 62.2 44.8
GOFF1 32.0 38.9 28.4 55.9 65.8 52.1
GOFF2 34.9 42.4 30.2 63.6 73.4 57.8
P tests

H;: cauchit 50.9 50.2 10.4 84.2 75.1 11.0

H;: probit 50.3 513 11.7 77.9 74.5 11.8

H;: loglog 15.6 28.9 21.8 43.1 61.7 48.0
Second part
RESET2 92.9 99.8 98.4 99.9  100.0 100.0
RESET3 91.1 99.6 96.6 100.0  100.0 100.0
GOL 85.4 99.3 97.7 99.3  100.0 100.0
GOFF1 84.5 98.9 96.7 99.0  100.0 100.0
GOFF2 72.6 97.1 94.2 94.8 99.9 99.8
P tests

H;: cauchit 92.1 98.9 91.3 99.8  100.0 99.7

H;: probit 95.5 99.8 98.6 100.0  100.0 100.0

H;: loglog 91.9 99.8 98.7 99.7  100.0 100.0
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Table 8. Continued.

N = 500 N = 1000

10%* 30%* 50%* 10%* 30%* 50%*

Full specification
P tests (H;: one-part model)

H;: cauchit 6.3 4.9 4.5 4.8 34 2.8
H;: logit 6.0 4.3 3.7 4.3 33 33
H;: probit 4.7 3.8 3.7 3.5 4.6 6.0
H;: loglog 3.8 3.0 4.5 6.0 4.4 3.0
P tests (H;: two-part model)
H;: cauchit + cauchit 3.6 4.1 34 3.3 5.0 3.8
H;: cauchit 4 logit 3.9 5.0 4.0 4.5 5.8 54
H;: cauchit + loglog 4.7 5.3 4.6 5.8 7.5 7.4
H;: logit 4 cauchit 4.2 53 2.9 6.3 10.4 3.9
H;: logit + loglog 3.9 3.9 3.1 6.6 7.2 4.6
H;: loglog + cauchit 5.2 4.5 2.5 5.1 4.8 2.6
H;: loglog + logit 34 2.6 2.8 2.5 5.4 5.5
H;: loglog + loglog 3.7 3.8 2.9 6.8 9.2 6.3

#Percentage of the sampled observations with ¥ = 0.

i.e. their option between debt and equity. First, we discuss the main characteristics
of our data and variables, then we discuss briefly some alternative capital structure
theories, and finally we present the econometric results of our analysis.

6.1 Data and Variables

We consider as a measure of financial leverage the ratio of long-term debt (LTD,
defined as the total company’s debt due for repayment beyond 1 year) to long-term
capital assets (defined as the sum of LTD and equity); see Rajan and Zingales (1995)
for an extensive discussion on this and other alternative measures of leverage and for
a survey of capital structure theories. We use the definition of SMEs adopted by the
European Commission (recommendation 2003/361/EC), including in this category
enterprises that employ fewer than 250 persons and have either an annual turnover
not exceeding 50 million euros or an annual balance sheet total not exceeding
43 million euros.

We use a subset of the data considered by Ramalho and Silva (2009), which
also included information on large firms. Our data set is relative to the year of
1999 and comprises 4421 SMEs, among which 74.8% present a null leverage
ratio. Other studies have also documented that a substantial proportion of firms in
most countries follow a zero-debt policy; see inter alia Petersen and Rajan (1994),
Brounen et al. (2005) and Strebulaev and Yang (2007). The high percentage of firms
that do not use debt at all makes the standard practice of using linear regression
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models to explain capital structure decisions (which is still used in most empirical
studies) clearly inappropriate. Therefore, a few authors (e.g. Rajan and Zingales,
1995; Cassar, 2004) have opted for using a Tobit approach for data censored at
zero. However, as we argue in Section 2, the stringent assumptions associated with
the Tobit model and the impossibility of using a two-limit Tobit model (there are
no ‘zero-equity’ firms) make it clear that the use of fractional regression models is
a better option for modelling leverage ratios.

In all the alternative regression models considered below, we used similar
explanatory variables to those employed by Ramalho and Silva (2009), although
in some cases we opted for different proxies: non-debt tax shields (NDTS),
measured by the ratio between depreciation and earnings before interest, taxes
and depreciation; tangibility (TANGIB), the proportion of tangible assets; size
(SIZE), the natural logarithm of total assets; profitability (PROFITAB), the ratio
between earnings before interest, taxes and depreciation and total assets; growth
(GROWTH), the yearly percentage change in total assets; age (AGE), the number
of years since the foundation of the firm; liquidity (LIQUIDITY), the sum of cash
and marketable securities, divided by current assets; and four industry dummies.

6.2 Alternative One- and Two-part Capital Structure Theories

To date, most capital structure empirical studies have focused on the use of
one-part models to explain leverage ratios, which follows directly from the fact
that most capital structure theories provide a single explanation for all possible
values of leverage ratios. This is the case, for example, of the two most popular
explanations of capital structure decisions, the trade-off and the pecking-order
theories. According to the former, firms choose the proportion of debt in their
capital structure that maximizes their value, which may imply leverage ratios of
any value in the unit interval, including zero. Regarding the latter, the pecking-order
theory argues that firms do not possess an optimal capital structure. Instead, the
firm leverage at each moment merely reflects its external financing requirements,
which may be null or any positive amount. For more details, see the recent survey
by Frank and Goyal (2008).

In contrast to these traditional approaches, Strebulaev and Yang (2007), in a
recent paper suggestively entitled ‘The mystery of zero-leverage firms’, argue
that zero-leverage behaviour is a persistent phenomenon and that standard capital
structure theories are unable to provide a reasonable explanation for it. Another
interesting recent finding about capital structure decisions is that while larger firms
are more likely to have some debt, conditional on having some debt, larger firms
are less levered. In particular, Faulkender and Petersen (2006) found that excluding
zero-debt firms from leverage regressions changes the sign of the coefficient
associated with the variable size from positive to negative, while Kurshev and
Strebulaev (2007) argue that ‘the positive relationship (between firm size and
leverage) is an artifact of the presence of small unlevered firms in the economy.
When we control for unlevered firms, the relationship between firm size and
leverage becomes slightly but statistically significant negative’. Clearly, firm size
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seems to affect in an inverse way the decisions on (i) to issue or not to issue debt
and (ii) (for those firms that do decide to use debt) how much debt to issue.

Kurshev and Strebulaev (2007) put forward a theoretical explanation for these
opposite effects of firm size on leverage. They conjecture that it is the presence
of fixed costs of external financing, and the consequent infrequent refinancing of
firms, that causes these differences between small and large firms, since the former
are much more affected in relative terms. According to these authors (i) small
firms choose higher leverage at the moment of refinancing to compensate for less
frequent rebalancing, which explains why, conditional on having debt, they are
more levered than large firms; (ii) as they wait longer times between refinancings,
small firms, on average, have lower levels of leverage; and (iii) in each moment,
there is a mass of firms opting for no leverage, since small firms may find it optimal
to postpone their debt issuances until their fortunes improve substantially relative
to the costs of issuance. Clearly, a two-part fractional regression model may be the
best option for modelling leverage ratios: first, a binary choice model is used to
explain the probability of a firm raising debt; then, a fractional regression model
is employed to explain the relative amount of debt issued by firms that do use
debt. Indeed, with this type of model the variable size (and others) is allowed to
influence each decision in a different fashion.

Based on these conjectures, Ramalho and Silva (2009) decided to use a two-part
fractional regression model to explain capital structure decisions. Cook et al. (2008)
have also used a similar model, but did not provide any theoretical justification for
their option. In both papers a logistic specification was adopted for the two levels
of the model. Ramalho and Silva (2009) considered uniquely QML estimation and
used only the RESET test to assess the specification of their model, while Cook
et al. (2008) estimated a one-part model by QML and a two-part model by ML
(based on the beta distribution) and did not perform any test, using the Spearman
rank correlation between predicted and actual leverage ratios to choose their final
model.

Since both one- and two-part models provide plausible theoretical explanations
for capital structure decisions, next all the alternative formulations for one-part and
two-part models and specification tests discussed before are applied to the analysis
of the capital structure decisions of Portuguese SMEs.

6.3 Econometric Analysis

We consider five alternative specifications for the G(x0), F(xfB1p) and M(xB2p)
functional forms: cauchit, logit, probit, loglog and complementary loglog. Given
the existence of zero outcomes, only conditional mean models may be used for
G(x0). We consider only QML estimation, since our simulation study revealed
that in no case is its performance inferior to that of NLS estimators. In two-part
models, F(xBp) is estimated in all cases by ML based on the Bernoulli distribution
and M (xB,p) is estimated by both Bernoulli-based QML and beta-based ML. The
specification test strategy proposed in the paper is then employed to select the best
model(s).
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Table 9. Regression Results for One-part Models.
QML
OLS Cauchit Logit Probit Loglog Cloglog
NDTS —-0.001"" —0.101 —0.045 —0.021 —0.015 —0.042
(0.000) (0.073)  (0.029)  (0.014)  (0.010) (0.027)
TANGIB 0.0717" 22747 12197 0.6277° 0470 1.122°"
(0.014) (0.391)  (0.181)  (0.095)  (0.074) (0.167)
SIZE 0.0277"  0.696"" 03697 0.1937"  0.149"" 0.340"""
(0.002) (0.060)  (0.024)  (0.012)  (0.009) (0.022)
PROFITAB  —0.132""" —7.453""" —3.369"" —1.688"" —1.227"" —3.141""
(0.022) (1.298)  (0.457) (0.230)  (0.173) (0.428)
GROWTH 0.000 0.003 0.001 0.000 0.000 0.001
(0.000) (0.002)  (0.001)  (0.001)  (0.000) (0.001)
AGE 0.000 —0.005 —0.005"" —0.003""" —0.002"" —0.004""
(0.000) (0.004)  (0.002)  (0.001)  (0.001) (0.002)
LIQUIDITY —0.051""" —4.848"" —1.331"" —0.620"" —0.422""" —1.286""
(0.011) (0.947)  (0.255)  (0.122)  (0.087) (0.243)
CONSTANT —0.259"" —12.413""" —7.141""" —3.857" —2.806""  —6.814""
(0.025) (1.000)  (0.380)  (0.192)  (0.146) (0.352)
RESET2 test ~ 0.000°"  0.000°" 0.004" 0.186 0.593 0.000"""
RESET3 test  0.000°”"  0.000”" 0.001"" 0.087" 0.434 0.000"""
GOL test - 0.000""  0.001"""  0.048"  0.684 0.187
GOFFI1 test - 0.000""  0.001""  0.092° - 0.000"""
GOFF2 test - 0.000”"  0.001""" 0.110 0.864 -
P test
H;: OLS - 0.000""  0.000”" 0.0237  0.528 0.000"""
H;: cauchit 0.000""" - 0.002"""  0.167 0.747 0.000"""
H;: logit 0.000"  0.000""" - 0.141 0.770 0.000"""
H;: probit ~ 0.000”"  0.000™" 0.001°"" - 0.827 0.000"""
H;:loglog 0.0007"  0.000"" 0.0017" 0.102 - 0.000"""
H;: cloglog 0.0007"  0.000°" 0.001"" 0.111 0.806 -
R? 0.100 0.097 0.116 0.117 0.118 0.115

Notes: OLS, ordinary least squares. Below the coefficients we report standard errors in parentheses;
for the test statistics we report P values; and denote coefficients or test statistics that are
significant at 1%, 5% or 10%, respectively; all regressions include industry dummies.

Tables 9 and 10 report the results obtained for one-part and two-part models,
respectively. For comparison purposes, we report also the results obtained for a
one-part linear regression model. The tests that appear in Table 10 are relative to
the specification of the individual components of two-part models. In addition, for
beta regression models we report the results of the bootstrapped OPG information
matrix statistic described in Section 4.2, which was based on 999 bootstrap
samples.
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The first striking point to emerge from the analysis of these results is that all the
five QML/ML estimators considered for E(y|x), E(y* = 1|x) and E(y|x, y > 0)
produce the same conclusions in terms of the sign and significance of the regression
coefficients in each model, with only one exception (in the one-part cauchit model
the variable AGE is not statistically significant). This result was somewhat expected
since in Figure 3 we had already found that misspecification of the functional form,
although creating serious distortions in the magnitude of partial effects, does not
affect the correct estimation of their direction. Similarly, in the fractional component
of two-part models, using QML or ML is indifferent in terms of the sign and
significance of the regression coefficients but not in terms of their magnitude: in
almost all cases the absolute values of the coefficient estimates yielded by the beta
model are less than those obtained by the corresponding conditional mean model
estimated by QML. Moreover, ML estimators display the least standard errors in
almost all cases. Finally, note that the linear model is the only model that indicates
that the variable NDTS is statistically significant and that (apart from the cauchit
model) the variable AGE is not.

While the choice of a specific functional form for each one of the three
conditional means of y in analysis seems to be important only for calculating the
magnitude of partial effects, the choice between a one-part and a two-part model
is clearly a very important issue. Indeed, in the two-part model some variables are
important only for one of the two sequential leverage decisions made by firms
(TANGIB, GROWTH, AGE and LIQUIDITY), while the variable SIZE displays
opposite effects on the two levels of the model. If our specification tests reveal that
a two-part model is preferable over a single model, then the empirical evidence
provided in this paper will clearly favour the recent theoretical arguments put
forward by both Strebulaev and Yang (2007) and Kurshev and Strebulaev (2007)
over traditional capital structure approaches.

The analysis of the results of the specification tests indicates clearly that only
a few specifications are correct. For one-part models, the hypothesis of correct
specification of the linear regression model is clearly rejected by all tests. Actually,
only the loglog specification for G(x8) is never rejected. Given that leverage ratios
are clearly asymmetrically distributed and that the number of zero outcomes is
very large, a loglog functional form would indeed be our first choice for a one-
part model. With regard to two-part models, in the first level, again, only one
specification seems to be appropriate to describe the probability of a firm using
debt: the logistic functional form. In contrast, for explaining E(y|x, y > 0) all
functional form tests fail to reject any of the five models estimated for both QML
and ML estimators. Similarly, the information matrix test provides no evidence of
the unsuitability of the beta distribution to describe the conditional distribution of
LTD. Therefore, given their superior efficiency properties, we consider only the
ML estimators for two-part models from now on.

Tables 9 and 10 also contain an R>-type measure for each model, which was
computed as the square of the correlation between the predicted and actual values of
LTD and, thus, is comparable across any model and estimation method. The values
found for R? are very similar in most cases but nevertheless they give further

Journal of Economic Surveys (2011) Vol. 25, No. 1, pp. 19-68
© 2009 Blackwell Publishing Ltd



58 RAMALHO ET AL.

evidence that the selected models provide a better fit than or a similar fit to the
competitor models. Indeed, the highest R? in one-part and the first component of
two-part models is displayed by the selected loglog and logit models, respectively.
On the other hand, the R? of the alternative specifications considered for the second
stage of two-part models is virtually identical. Note also that the R” of the linear
regression model is about 18% smaller than that of the one-part loglog model,
in spite of OLS choosing # to maximize the R?> over all linear functions of the
covariates, while the QML/ML methods do not maximize it given the functional
form assumed in each case. Moreover, the linear regression model yields predicted
outcomes below zero for 7.6% of the firms in our sample, which is a clear indicator
of its unsuitability for modelling leverage ratios.

Given that the results of the functional form tests that assess separately
G(x0), F(xB1p) and M(xB,p) suggest that one one-part model and five alternative
two-part models may be suitable to describe our data, in the next stage of our
specification analysis we applied the versions of the P test that allow for the testing
of one-part models against the full specification of two-part models, and vice versa,
and of alternative full specifications for two-part models, one against the others.
We tested only the specifications previously selected by the other tests. In Table 11
we report the P values of the P test for the one-part loglog model against 25
alternative two-part models and for each one the five two-part models previously
selected against five alternative one-part models and 24 alternative two-part
models.

The first panel of Table 11 shows clearly that one-part models are not at all
appropriate for modelling leverage ratios. Indeed, the correct specification of the
one-part loglog model was rejected against most of the alternative two-part models
considered.’> On the other hand, the new set of tests provided no evidence against
some of the five alternative two-part models selected before, which allows us to
conclude that two-part models are, undoubtedly, the best choice for modelling
capital structure decisions. Noting that the two-part models that use a probit or
loglog specification in their second level are never (the latter) or almost never (the
former) rejected, we opted for them as the best two-part models for explaining the
capital structure decisions of Portuguese SMEs.

In Table 12 we present estimates of the partial effects for the two models selected.
We computed partial effects for the first and second part of the model, given by
dPr(y* = 1|x)/dx; = Bip, f(xf1p) and JE[ylx,y € (0, D]/dx; = Bop,m(xp2p),
respectively, and total partial effects, given by equation (16). These three types
of partial effects describe the effect of a unitary change in the covariate x; on the
conditional probability of using LTD, on the proportion of LTD used by the firms
that already use it, and on the proportion of LTD used by all firms, respectively.
In each case, we calculated average sample effects and population partial effects
evaluated at the mean of the covariates (/)_C_L6 which were calculated as, respectively,
ASE = Bip,(1/N) Y1, f(xiP1p) and PPE = Bip, f(%B1p) for d Pr(y* = 1|x)/dx;
and similarly for the other partial effects. As seen in Table 12, the two alternative
models yield very similar total partial effects. Note that the total partial effect of
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Table 11. P Tests Involving the Full Specification of Two-part Models (P Values).

H;: first part/second part
Cauchit
Logit
Probit
Loglog
Cloglog

H;: one-part

H;: first part/second part
Cauchit
Logit
Probit
Loglog
Cloglog

H;: one-part

H;: first part/second part
Cauchit
Logit
Probit
Loglog
Cloglog

H;: one-part

H;: first part/second part
Cauchit
Logit
Probit
Loglog
Cloglog

H;: one-part

H;: first part/second part
Cauchit
Logit
Probit
Loglog
Cloglog

Hy: loglog one-part model

Cauchit Logit Probit Loglog Cloglog
0.362 0.278 0.265 0.205 0.352
0.000°"  0.0007"  0.000°"  0.000"" 0.000"""
0.000""  0.0007"  0.000°"  0.000"" 0.000"""
0.000""  0.0000"  0.0007"  0.000"" 0.000""
0.006""  0.002""  0.001"" 0.000"" 0.005"""
Hoy: logit 4 cauchit two-part model
Cauchit Logit Probit Loglog Cloglog
0.135 0.613 0.017"" 0.075" 0.728
Cauchit Logit Probit Loglog Cloglog
0.007""  0.009"" 0.0107" 0.011" 0.010""
- 0.064" 0.051° 0.033"" 0.128
0.021°" 0.010°"  0.009""  0.007 " 0.001"""
0.037°  0.0247  0.0227  0.017" 0.028"
0.117 0.790 0.962 0.438 0.537
Hy: logit 4 logit two-part model
Cauchit Logit Probit Loglog Cloglog
0.092° 0.329 0.092" 0.063" 0.265
Cauchit Logit Probit Loglog Cloglog
0.013" 0.017"" 0.019"" 0.025"" 0.016""
0.158 - 0.044"" 0.040"" 0.092"
0.397 0.047"" 0.031"" 0.012"" 0.194
0.185 0.073 0.061° 0.0317" 0.143
0.041°" 0.022"" 0.057" 0.731 0.033""
Hpy: logit + probit two-part model
Cauchit Logit Probit Loglog Cloglog
0.301 0.312 0.972 0.398 0.282
Cauchit Logit Probit Loglog Cloglog
0.184 0.206 0.216 0.249 0.192
0.401 0.196 - 0.148 0.177
0.812 0.402 0.320 0.131 0.746
0.582 0.400 0.362 0.231 0.573
0.199 0.095 0.154 0.665 0.101
Hpy: logit + loglog two-part model
Cauchit Logit Probit Loglog Cloglog
0.995 0.608 0.603 0.913 0.621
Cauchit Logit Probit Loglog Cloglog
0.645 0.547 0.535 0.517 0.574
0.612 0.919 0.996 - 0.989
0.449 0.577 0.595 0.560 0.650
0.480 0.565 0.577 0.548 0.620
0.798 0.881 0.818 0.796 0.864
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Table 11. Continued.

Hy: logit 4+ cloglog two-part model

H;: one-part Cauchit Logit Probit Loglog Cloglog
0.044"" 0.351 0.041"" 0.047"" 0.222
H;: first part/second part ~ Cauchit Logit Probit Loglog Cloglog

Cauchit 0.005""  0.0107"  0.012" 0.019"" 0.009"""
Logit 0.220 0.019"" 0.011°" 0.008"" -
Probit 0.136 0.007"""  0.005"  0.003"" 0.023""
Loglog 0.079° 0.019"" 0.014"" 0.007""" 0.041°"
Cloglog 0.007"""  0.754 0.548 0.047"" 0.025""
Note: ", and * denote coefficients or test statistics that are significant at 1, 5 or 10%, respectively.

the variable SIZE is positive, which is in accordance with the positive relationship
between firm size and leverage that is found systematically by empirical studies
based on one-part models.

Finally, in Table 13, for comparison purposes, we report estimates of partial
effects computed from linear and fractional one-part models. Naturally, only total
partial effects can be computed in this case. The linear model clearly underestimates
all partial effects, in particular those of TANGIB, PROFITAB and LIQUIDITY,
where the bias in the estimations of the ASEs is about 26%, 51% and 47%,
respectively. On the other hand, while the ASEs estimated by some one-part models
(logit, probit, cloglog) are not very different from those produced by the selected
two-part models, the differences in the estimation of the PPEs are much more
important, with all one-part models underestimating most partial effects (e.g. for
LIQUIDITY, TANGIB and PROFITAB the bias is above 16.8%, 8.5% and 7.9%
respectively in all cases).

7. Concluding Remarks

This paper focused on models, estimators and specification tests for fractional
response variables. Particular attention was dedicated to issues overlooked so far,
such as the relevance of choosing the most suitable specification for the conditional
mean of the response variable instead of choosing a priori the logit or other specific
model, the failure in the specification of that conditional mean when one-part
decision mechanisms are misspecified as two-part models and vice versa, and the
use of GOL and non-nested tests in this framework. New goodness-of-functional-
form tests were also proposed and simple procedures for computing LM versions
of all tests were discussed.

The extensive Monte Carlo simulation study carried out provided very useful
information on the finite-sample performance of the alternative estimators and tests
analysed in the paper. First, we confirmed that QML is more attractive than NLS
estimation in this framework and that beta-based ML estimators are not robust to
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deviations from the assumed distribution. When the beta assumption is valid, we
find that ML outperforms in a sizeable way QML estimation only when the sample
size is small and/or the variance of y given x is very large. Second, we showed
that for estimating the magnitude of partial effects it is in general very important
to choose the correct specification for the conditional mean of y. Finally, we
found that both the RESET and GOL tests, which are the most popular tests for
assessing the conditional mean assumption made in the related binary regression
models in the econometrics and statistics literature, respectively, are not the best
option for dealing with fractional regression models. Indeed, the GOFF tests are
clearly the best in terms of size and often they are among the most powerful
tests, while the P tests, despite over-rejecting the true null hypothesis in some
cases, display the best power properties in most cases. However, in cases where
the response variable is symmetrically distributed, the GOFF tests exhibit very low
power when applied to other symmetric but ill-specified models for the conditional
mean of y.

All the techniques discussed in the paper were applied to the regression analysis
of the capital structure decisions of Portuguese SMEs. We confirmed recent
conjectures by Strebulaev and Yang (2007) that traditional capital structure theories,
which consider a single model to explain all financial leverage decisions made by
firms, are unable to provide a reasonable explanation for the high percentage of
firms that do not use debt at all. Indeed, the specification tests used in our empirical
application revealed clearly that the capital structure decisions of Portuguese SMEs,
74.8% of which do not use debt, are best represented by two-part fractional
regression models, which is in accordance with the recent papers by Kurshev and
Strebulaev (2007) and Ramalho and Silva (2009), who argue that the mechanisms
that determine whether a firm uses debt at all are different from the mechanisms
that determine the proportion of debt used by firms that do use debt. In particular,
we found that firm size may have opposite effects on the two levels of the model,
while other variables are important only for one of the two sequential financial
leverage decisions made by firms.

Finally, it is important to stress that this paper merely considered estimation
and inference of cross-sectional fractional regression models when the outcome is
univariate. Therefore, issues such as the internalization of heterogeneity through
the use of panel data models (see the recent papers by Wagner (2003) for the logit
case and Papke and Wooldridge (2008) and Wagner (2008) for the probit case) or
the use of models suitable to deal with multivariate fractional outcomes (e.g. the
proportion of income spent in different classes of goods) were not investigated and
are important avenues for future research.
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Notes

1. Other examples include the estimation of quantiles for fractional data, recently
discussed in Machado and Santos Silva (2008).

2. The only alternative to the beta regression model considered so far is based on
the simplex distribution developed by Barndorff-Nielsen and Jorgensen (1991). See
Song and Tan (2000) and Kieschnick and McCullough (2003) for applications of this
distribution in a regression framework.

3. These two-part, hurdle or discrete—continuous mixture models are relatively common
in the econometric literature of count data; see Mullahy (1986) for a seminal paper.

4. The simplex density function is

exp[—0.5(y — w)*/y(1 = y)p*(l — )]

V2rgly(l —y)P

See note 2 for some references on this distribution. Although not reported below,
we also computed an ML estimator based on the simplex distribution. The results
obtained, which lead to similar conclusions to those described in this paper for the
ML estimator based on the beta distribution, are available from the authors upon
request.

5. Although not reported, application of similar versions of the P test to other one-
part models confirmed categorically their unsuitability for describing the Portuguese
SMEs capital structure choices.

6. Except for the industry dummies, we set the dummy relative to the industry
comprising the highest percentage of firms at one and the others at zero.

fsm, ¢)= O<pu<l, ¢>0
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Appendix: Practical Procedures
The aim of this appendix is to provide practitioners with a simple guide for dealing
with fractional responses.
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Al: Model Estimation

The results reported in this paper were obtained using the statistical software R,
which requires some programming experience. However, Stata possesses already
canned commands that allow most of the models discussed in the paper to be
computed in a single command line, as described next.

Stata command line for estimating conditional mean models by QML:

glm y X1 ... Xk, link(ff) family(binomial) robust

where Xj,j = 1,..., k, denote the explanatory variables and ff is the designation
of the functional form chosen for G(-) (probit, logit, loglog or cloglog — without
programming, it is not possible to consider a cauchit specification in Stata). When
used in the second stage of two-part models

glmy X1 ... Xk if y > 0, link(ff) family(binomial) robust
Stata command line for estimating the beta regression model:
betafit y, muvar(X1 ... Xk)

which requires the previous installation of the package betafit.ado. It is also possible
to estimate the variant of the beta regression model considered by Paolino (2001)
and Smithson and Verkuilen (2006) using

betafit y, muvar(X1 ... Xk) phivar(Z1 ... Zm)

where Zj,j = 1,..., m, are the variables that enter in the specification of the
shape parameter.

A2: LM Statistics

All the tests for conditional mean assumptions may be implemented as LM
statistics, which require only the computation of linear regressions and, hence,
may be performed in a straightforward way using Stata or any other statistical
software. Next, we summarize the computation of these statistics.

Binary and beta regression models:

1. Obtain the predicted outcomes G, the derivatives g and the residuals # from
the null model.

2. Construct the weights & = [G(1 — G)]77, the variables i = 2® and § = §®
and the vectors gx and gz, where x denotes the covariates from the null model
and z the omitted variables that characterize the tests discussed in Section 4.1.

3. Regress it on gx and gz.

4. Compute LM = ESS (binary model) or LM = nR? (beta model).

Fractional regression models estimated by QML.:

1. Obtain the predicted outcomes G, the derivatives g and the residuals &z from
the null model.
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2. Construct the weights & = [G(1 — G)]7°7, the variables i = it and § = §&
and the vectors gx and 2z.

3. Regress separately each element of the J-dimensional vector gz on the entire
vector gx and save the residuals from each regression (denote them by 7;, j =
1,....J).

4. Find the products between ii and 7; (for all observations) and form the

J-dimensional vector 7.

Run the regression of 1 on @7 without an intercept.

6. Compute LM = ESS = n — SSR.

b
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