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• Some basic facts.

• Study the asset pricing implications of household portfolio choice.

• Consider the quantitative implications of a second-order approximation 
to asset return equations.

• Reference: Ljungqvist & Sargent, Recursive Macroeconomic Theory, 2nd 
edition, chapter 13

Overview:



Some facts:

• Stock returns:

• Average real return on SP500 is 8% per year.

• Stock returns are very volatile: σ() = 17% per year.

• Stock returns show very little serial correlation ( = 008 quarterly data, -0.04 annual data).

• Bond returns:

• The average risk free rate is 1% per year (US T-bill - Inflation)

• The risk free rate is not very volatile: σ() = 2% per year but is persistent ( = 06 in annual data).

• These imply that the equity premium is large – 7% per year on an annual
basis.

















Return Predictability:

Many authors consider the following regression:

+1 = α + β+ +1

where  is a variable that helps in predicting the future return





Return Predictability:

The following regression has been studied:

+ = α + β/ + +

where + is the realized cumulative return over  periods, and 
/  the dividend price ratio









• Past returns do not forecast future returns and the dividend price ratio 
does not forecast future dividends

• The risk premium is time varying.
• The conditional expected excess return,            , varies a lot.  
• The standard deviation of the conditional expected excess return is

5.5%

Comments:
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• Returns appear to be predictable: High current price relative to 
dividends predicts low future returns

• Prices are high today not because you expect high future dividends, but 
because you expect low future returns

• High prices tend to happen in booms when people are willing to take risks, and 
low prices in recessions when people are not willing to take risks

• Other variables also have predictive power: consumption-to-wealth
ratio, term premium, short-term nominal interest rate

Comments:



Cross sectional evidence:

• Smaller firms have higher returns on average (size premium)

• Firms with low Tobins’ Q ( i.e. high book to market value) have higher 
returns on average (value premium)

• “Value” stocks have market values that are small relative to the accountant’s 
book value. Examples: Airlines, Steel Mills or Railroads companies.

• “Growth” stocks are the opposite of value and have had low average returns. 
Examples: Google, Apple, Amazon.

• Firms with high recent returns tend to have high returns in near future 
(momentum anomaly)



Lucas representative agent economy

Preferences:
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 : price of stock ,  : endowment,  : price of zero coupon bond

that matures at +  0 = 1,  and  : holdings of  bonds and 

shares at the start of 



The  and  are endogenous choice variables

The  ,  and  are exogenous stochastic processes

The optimal portfolio choice (also known as first order conditions or Euler

equations) is:
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These equations can be written as:
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Define the rates of return:
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Assume there is a risk free bond with rate of return 
+1
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Risk neutrality:

Constant 0()

Euler equations imply:

+1 = 

+1



General framework:

In general the price of any asset is the expected product between the payoff

of the asset tomorrow, +1 and the pricing kernel (or stochastis discount

factor), +1

 =  (+1+1)

In the case of the Lucas model (or consumption based model)
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and for stocks +1 = +1 + +1



Implications:

With risk neutrality the price of stock is:
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For risk-free one-period bond that pays one unit of consumption tomorrow:

 = +1

where

+1 = 1

Nominal claims:
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Consumption based asset pricing:

Equating the Euler equations gives:
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Risk Premium:

From Euler equation for risk-free asset
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Implications:

• If the risky return covaries positively with tomorrow’s consumption,
+1, then the LHS is positive and the asset return bears a positive

premium over the risk free rate.

• If the risky return covaries negatively with tomorrow’s consumption
then the LHS is negative and the asset return bears a negative premium

over the risk free rate.

• Intuition: assets whose returns have a negative covariance with con-
sumption provide a hedge against consumption risk. Households are

willing to accept a lower expected return since these assets provide

insurance against low future consumption.



Equity premium puzzle:

Assume CRRA:
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An approximation to the Euler equations

Let +1 = (+1) − (); +1 = (+1), the Euler equation

becomes:
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If  is normal distributed then exp() is lognormal, and

 exp() = exp
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The Euler equations become
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Take logs and equate these equations:
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Quantitative implications:

The equity premium is

(+1)− (
+1) = ( )

In US data,  = 0167;  = 0036; ( ) = 04 so

If  = 1 we have (+1)− (
+1) = 024%

If  = 10 we have (+1)− (
+1) = 24%

If  = 25 we have (+1)− (
+1) = 6%



How high is  = 25 ?

Example 1. What would be the interest rate that would make a household

that earns 50 000 euros per year to postpone the annual vacation that

costs 3 000 euros?
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Example 2. The Consumption Equivalent,  of a lottery that gives

50 000 euros with 50% probability or 100 000 euros with 50% probability

()1−

1− 
=
1

2

(50 000)1−

1− 
+
1

2

(100 000)1−

1− 

 = 0  = 75 000
 = 1  = 70 711
 = 2  = 66 246
 = 5  = 58 566
 = 10  = 53 991
 = 20  = 51 858
 = 30  = 51 209



The risk free rate:
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taking logs
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Quantitative implications:

The risk free rate is:



+1 = − ln + +1 −

2

2
 (+1)

Suppose  = 0999; +1 = 0015;  = 0036 then we need  = 06 to

obtain +1 = 1%

If  = 10 we have +1 = 22%

If  = 25 we have +1 = 78%

This is opposite to equity-premium puzzle — we need very low  to match

risk-free rate.



Comments:

1. If consumption growth is iid and homoskedastic, then the risk free rate

is constant.

2. Risk free rate is high if the agents are more impatient i.e. have a high

relative preference for consumption in the present (low ) In this case

agents want to save less, implying a higher interest rate. This is consistent

with the equation, since − ln is decreasing in 

3. Risk free rate is high when expected consumption growth is high (in-

tertemporal marginal rate of substitution (IMRS)). That is, in order to

induce agents to save and consume a lot in the future, the interest rate

must be high.



4. Risk free rate is low when conditional consumption volatility is high (pre-

cautionary savings or risk aversion). When consumption is more volatile

people want to save more driving down the interest rate

5. An higher  makes +1 more sensitive to consumption volatility



To explain these facts, the macro-finance literature explored a wide range

of alternative preferences and market structures.

(i) A large differential in the cost of trading between the stock and bond

markets; (ii) more general preferences that allow for the separation be-

tween risk aversion and IMRS; (iii) incomplete markets, (iv) borrowing

constraints, (v) market segmentation (heterogeneity of agents).

(ii) The strategies in the literature boil down to generalize the discount

factor to

+1 =
0 (+1)
0 ()

+1

where the new variable +1 does most of the work.
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