
Carlos J. Costa, 2019

Object Oriented
Programming

Prof. Carlos J. Costa, PhD

Carlos J. Costa, 2019

Traditional Perspective

 The traditional perspective in software
development had adopted is algorithm
perspective.

 In this view, the main software building block
are procedures or functions

Carlos J. Costa, 2019

Object oriented Approach

The main structural components of all systems
are:

 Objects

 Class Objects

Carlos J. Costa, 2019

Main Concepts

 Classes,

 Objects, and

 Instances

Carlos J. Costa, 2019

Object

• Objects represent an entity and the basic
building block.

• Object is something that takes up space in the
real or conceptual world with which sombody
may do things (Booch et al . 1999)

• The objects have :

 Name (or ID)

 state

 Operations (or behavior)

Carlos J. Costa, 2019

Object

• Name (ID) - The entire object must have a
name that will differentiate from other objects in
a context (eg my calculator)

• State - An object has state, which involves the
object's properties together with the values of
these properties (eg connected calculator)

• Operations (behavior) - can do something with
the object or the object can do something with
another object (eg calculator does sums)

Carlos J. Costa, 2019

Class

 A class is the description of a set of objects
that share the same attributes, operations,
relationships and semantics. (Eg calculators).

 Class is the blue print of an object.

Carlos J. Costa, 2019

Instance

• An object is an instance of a class.

• It is a concrete manifestation of an abstraction .
(Eg " my calculator" is an instance of the class
"calculating machines ") .

Carlos J. Costa, 2019

Main caracteristics of the approach

• The object oriented approach has as main
characteristics:

 encapsulation

 abstraction

 inheritance

 polymorphism

Carlos J. Costa, 2019

Abstraction

• Abstraction is a principle which consists of ignoring the
aspects of a subject that is not relevant for the present
purpose, in order to concentrate on in those aspects that
are really relevant .

Carlos J. Costa, 2019

Abstraction

• Abstraction is the concise representation of a more
complex object, focusing on the essential characteristics
of the object .

• Good abstraction:

• Appropriate (If there
is a real need can be
satisfied)

• appropriate level

Carlos J. Costa, 2019

Encapsulation

 Encapsulation is the mechanism of hiding the
implementation of the object, so that other
system components do not have access to
what is happening inside the object.

Carlos J. Costa, 2019

Encapsulation

 This concept is associated with modularity ,
consisting in decomposing a system in a
cohesive set of connected modules.

 Encapsulation is the mechanism of binding the
data together and hiding them from outside
world.

 Objects interact by message.

Carlos J. Costa, 2019

Inheritance

 Inheritance is a mechanism that allows an
object to incorporate all or part of the
definitions of another object as part of itself (eg
" doctor " and " optometrist ").

 Inheritance is the mechanism of making new
classes from existing one.

Carlos J. Costa, 2019

Polymorphism

• The word polymorphism means having many
forms. In programming, polymorphism means
same function name (but different signatures)
being uses for different types.

Carlos J. Costa, 2019

Class Diagrams

 Diagrams that allow analysist

 to specify the static structure of a
system

 according to the object-oriented
approach .

 Used to describe the class model

Carlos J. Costa, 2019

Class Diagrams

 Elements of a class diagram :

 Classes

 Relations between classes

 Associations

 Compositions

 Aggregations

 Generalizations

Carlos J. Costa, 2019

Classe

ID Class (Class Name)

 Refers to specific objects, but the must
abstract

 Nouns associated with the textual description
of a problem

 Choose carefully the names

 using singular

Attributes

Values that characterize the objects of a class

Types : Real, Integer , Text, Boolean ,
Enumerated , ...

Operations

Behaviors of the class (service, method)

Campaign

expected cost

code

description

annual Cost

pay()

do Budget()

Carlos J. Costa, 2019

Relationship

• A relationship UML establishes the connection
between elements

• A relationship is graphically represented by a
given type of line.

• In object-oriented modeling the three most
important types of relationships are:

 Associations

 Generalizations

 Dependencies

Carlos J. Costa, 2019

Dependency

 A relationship of dependence, or simply
dependence indicates that the change in the
specification of an element can affect another
element that uses it , but not necessarily the
opposite.

Carlos J. Costa, 2019

Carlos J. Costa, 2019

Now let’s go to Python…

Carlos J. Costa, 2019

Class

class Person:

pass # An empty block

p = Person()

print(p)

Result:
<__main__.Person object at 0x0000021D9EED60F0>

Person

Carlos J. Costa, 2019

Method

• define class with method

class Person:

def speak(self):

print('Hello, how are you?’)

• create object and call method

p = Person()

p.speak()

Person

speak()

Carlos J. Costa, 2019

init method

• The first method init() is a special method,

• It is called class constructor or initialization

• Is a method that Python calls when you create
a new instance of this class.

Carlos J. Costa, 2019

init method

class Person:

def __init__(self, name):

self.name = name

def speak(self):

print('Hello, my name is', self.name)

p = Person('Carlos')

p.speak()

Person

speak()

__init__()

Carlos J. Costa, 2019

self

• The first argument of every class method,
including init, is always a reference to the
current instance of the class.

• By convention, this argument is always named
self.

• In the init method, self refers to the newly
created object;

• in other class methods, it refers to the instance
whose method was called.

Carlos J. Costa, 2019

Class Pet

class Pet(object):

def __init__(self, name, species):

self.name = name

self.species = species

def getName(self):

return self.name

def getSpecies(self):

return self.species

def __str__(self):

return "%s is a %s" % (self.name, self.species)

Carlos J. Costa, 2019

Inheritance

class Dog(Pet):

def __init__(self, name, chases_cats):

Pet.__init__(self, name, "Dog")

self.chases_cats = chases_cats

def chasesCats(self):

return self.chases_cats

Carlos J. Costa, 2019

Inheritance

class Cat(Pet):

def __init__(self, name, hates_dogs):

Pet.__init__(self, name, "Cat")

self.hates_dogs = hates_dogs

def hatesDogs(self):

return self.hates_dogs

Carlos J. Costa, 2019

myPet = Pet("Boby", "Dog")

myDog = Dog("Boby", True)

isinstance(myDog, Pet)

isinstance(myDog, Dog)

isinstance(myPet, Pet)

isinstance(myPet, Dog)

Carlos J. Costa, 2019

Access Modifiers

• Classical object-oriented languages, such as
C++ and Java, control the access to class
resources by public, private and protected
keywords

• The access modifiers in Python are used to
modify the default scope of variables.

• There are three types of access modifiers in
Python: public, private, and protected.

Carlos J. Costa, 2019

Private

• Private members of a class are denied access
from the environment outside the class.

• They can be handled only from within the class.
class Person:

def __init__(self, name, age):

self.__name=name

self.__age=age

p=Person(“David",23)

p.__name

Carlos J. Costa, 2019

Public

• Public members (e.g. methods declared in a
class) are accessible from outside the class.

• The object of the same class is required to
invoke a public method.

• This arrangement of private instance variables
and public methods ensures the principle of
data encapsulation.

Carlos J. Costa, 2019

Public

class Person:

def __init__(self, name, age):

self.name=name

self.age=age

p=Person(“David",23)

p.name

Carlos J. Costa, 2019

Protected

• Protected members of a class are accessible
from within the class and are also available to
its sub-classes.

• No other environment is permitted access to it.

• This enables specific resources of the parent
class to be inherited by the child class.

Carlos J. Costa, 2019

Protected

class Person:

def __init__(self, name, age):

self._name=name

self._age=age

p=Person(“David",23)

p.name

Carlos J. Costa, 2019

Bibliography

• Bennet, S. McRobb, S & Farmer, R., Object Oriented Systems
Analysis and Design using UML, MacGarw-Hill, 1999.

• Booch, G., Rumbaugh, J. & Jacobson, I, The Unified Modeling
Language User Guide. Addison Wesley, 1999 (tradução
portuguesa brasileira _____; UML Guia do Usuário; Campus,
2000).

• Costa, C. Desenvolvimento para Web, ITML Press, 2007

• Nunes, M & O´Neill, H. Fundamental de UML, FCA, 2001

• Silva, A & Videira, C., UML, Metodologias e Ferramentas CASE,
Edições Centro Atlântico, 2001

• Terry, Q. Visual Modeling With Rational Rose 2000 and UML,
Addison-Wesley. 2000.

• Oxford Dictionary of Computing, Oxford University Press.

