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Traditional Perspective

 The traditional perspective in software 
development had adopted is algorithm 
perspective.

 In this view, the main software building block 
are  procedures or functions
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Object oriented Approach

The main structural components of all systems 
are:

 Objects

 Class Objects
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Main Concepts

 Classes, 

 Objects, and 

 Instances
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Object

• Objects represent an entity and the basic 
building block.

• Object is something that takes up space in the 
real or conceptual world with which sombody 
may do things ( Booch et al . 1999)

• The objects have :

 Name (or ID )

 state

 Operations (or behavior )
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Object

• Name (ID ) - The entire object must have a 
name that will differentiate from other objects in 
a context (eg my calculator )

• State - An object has state, which involves the 
object's properties together with the values of 
these properties (eg connected calculator)

• Operations (behavior ) - can do something with 
the object or the object can do something with 
another object (eg calculator does sums )
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Class

 A class is the description of a set of objects 
that share the same attributes, operations, 
relationships and semantics. (Eg calculators ).

 Class is the blue print of an object.
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Instance

• An object is an instance of a class.

• It is a concrete manifestation of an abstraction . 
(Eg " my calculator" is an instance of the class 
"calculating machines " ) .
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Main caracteristics of the approach

• The object oriented approach has as main 
characteristics:

 encapsulation 

 abstraction 

 inheritance

 polymorphism
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Abstraction

• Abstraction is a principle which consists of ignoring the 
aspects of a subject that is not relevant for the present 
purpose, in order to concentrate on in those aspects that 
are really relevant .
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Abstraction

• Abstraction is the concise representation of a more 
complex object, focusing on the essential characteristics 
of the object .

• Good abstraction:

• Appropriate ( If there 
is a real need can be 
satisfied )

• appropriate level
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Encapsulation

 Encapsulation is the mechanism of hiding the 
implementation of the object, so that other 
system components do not have access to 
what is happening inside the object.
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Encapsulation

 This concept is associated with modularity , 
consisting in decomposing a system in a 
cohesive set of connected modules.

 Encapsulation is the mechanism of binding the 
data together and hiding them from outside 
world.

 Objects interact by message.
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Inheritance

 Inheritance is a mechanism that allows an 
object to incorporate all or part of the 
definitions of another object as part of itself (eg 
" doctor " and " optometrist ").

 Inheritance is the mechanism of making new 
classes from existing one.
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Polymorphism

• The word polymorphism means having many 
forms. In programming, polymorphism means 
same function name (but different signatures) 
being uses for different types.
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Class Diagrams

 Diagrams that allow analysist 

 to specify the static structure of a 
system 

 according to the object-oriented 
approach .

 Used to describe the class model
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Class Diagrams

 Elements of a class diagram :

 Classes

 Relations between classes

 Associations 

 Compositions 

 Aggregations

 Generalizations
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Classe

ID Class ( Class Name )

 Refers to specific objects, but the must 
abstract

 Nouns associated with the textual description 
of a problem

 Choose carefully the names

 using singular

Attributes

Values   that characterize the objects of a class

Types : Real, Integer , Text, Boolean , 
Enumerated , ...

Operations

Behaviors of the class ( service, method)

Campaign

expected cost

code

description

annual Cost

pay()

do Budget()



Carlos J. Costa, 2019

Relationship

• A relationship UML establishes the connection 
between elements 

• A relationship is graphically represented by a 
given type of line. 

• In object-oriented modeling the three most 
important types of relationships are:

 Associations 

 Generalizations 

 Dependencies 
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Dependency

 A relationship of dependence, or simply 
dependence indicates that the change in the 
specification of an element can affect another 
element that uses it , but not necessarily the 
opposite.
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Now let’s go to Python…
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Class

class Person:

pass  # An empty block

p = Person()

print(p)

Result:
<__main__.Person object at 0x0000021D9EED60F0>

Person
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Method

• define class with method

# class Person:

def speak(self):

print('Hello, how are you?’)

• create object and call method

p = Person()

p.speak()

Person

speak()
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init method

• The first method init() is a special method, 

• It is called class constructor or initialization

• Is a method that Python calls when you create 
a new instance of this class.
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init method

class Person:

def __init__(self, name):

self.name = name

def speak(self):

print('Hello, my name is', self.name)

p = Person('Carlos')

p.speak()

Person

speak()

__init__()
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self

• The first argument of every class method, 
including init, is always a reference to the 
current instance of the class. 

• By convention, this argument is always named 
self. 

• In the init method, self refers to the newly 
created object; 

• in other class methods, it refers to the instance 
whose method was called. 
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Class Pet

class Pet(object):

def __init__(self, name, species):

self.name = name

self.species = species

def getName(self):

return self.name

def getSpecies(self):

return self.species

def __str__(self):

return "%s is a %s" % (self.name, self.species)
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Inheritance

class Dog(Pet):

def __init__(self, name, chases_cats):

Pet.__init__(self, name, "Dog")

self.chases_cats = chases_cats

def chasesCats(self):

return self.chases_cats
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Inheritance

class Cat(Pet):

def __init__(self, name, hates_dogs):

Pet.__init__(self, name, "Cat")

self.hates_dogs = hates_dogs

def hatesDogs(self):

return self.hates_dogs
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myPet = Pet("Boby", "Dog")

myDog = Dog("Boby", True)

isinstance(myDog, Pet)

isinstance(myDog, Dog)

isinstance(myPet, Pet)

isinstance(myPet, Dog)



Carlos J. Costa, 2019

Access Modifiers

• Classical object-oriented languages, such as 
C++ and Java, control the access to class 
resources by public, private and protected 
keywords

• The access modifiers in Python are used to 
modify the default scope of variables. 

• There are three types of access modifiers in 
Python: public, private, and protected.
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Private

• Private members of a class are denied access 
from the environment outside the class. 

• They can be handled only from within the class.
class Person:

def __init__(self, name, age):

self.__name=name

self.__age=age

p=Person(“David",23)

p.__name
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Public

• Public members (e.g. methods declared in a 
class) are accessible from outside the class. 

• The object of the same class is required to 
invoke a public method. 

• This arrangement of private instance variables 
and public methods ensures the principle of 
data encapsulation. 
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Public

class Person:

def __init__(self, name, age):

self.name=name

self.age=age

p=Person(“David",23)

p.name
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Protected

• Protected members of a class are accessible 
from within the class and are also available to 
its sub-classes. 

• No other environment is permitted access to it. 

• This enables specific resources of the parent 
class to be inherited by the child class. 
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Protected

class Person:

def __init__(self, name, age):

self._name=name

self._age=age

p=Person(“David",23)

p.name



Carlos J. Costa, 2019

Bibliography

• Bennet, S. McRobb, S & Farmer, R., Object Oriented Systems 
Analysis and Design using UML, MacGarw-Hill, 1999.

• Booch, G., Rumbaugh, J. & Jacobson, I, The Unified Modeling
Language User Guide. Addison Wesley, 1999 (tradução
portuguesa brasileira _____; UML Guia do Usuário; Campus, 
2000).

• Costa, C. Desenvolvimento para Web, ITML Press, 2007

• Nunes, M & O´Neill, H. Fundamental de UML, FCA, 2001

• Silva, A & Videira, C.,  UML, Metodologias e Ferramentas CASE, 
Edições Centro Atlântico, 2001

• Terry, Q. Visual Modeling With Rational Rose 2000 and UML, 
Addison-Wesley. 2000.

• Oxford Dictionary of Computing, Oxford University Press.


