Models in Finance - Class 11 Master in Actuarial Science

João Guerra

ISEG

- Forward contract: agreement to buy or sell an asset at a certain future time for a certain price.
- A forward contract is the most simple form of derivative contract.
- It is also the most simple to price since the forward price can be established without reference to a model for the underlying share price.
- Assume thar we can also invest in a cash account which earns interest at the continuously compounding rate of *r* per annum.
- Forward price K: price that the holder agrees to pay at expiry date T (corresponds to the exercise price of an option).
- When you purchase a forward contract there is no initial premium to pay.

Forward contracts

- Pricing idea: the forward price K is such that the value of the contract at time 0 is zero.
- S_0 : Price of the asset underlying the forward contract today.
- Proposition: The fair or economic forward forward price is

$$K=S_0e^{rT}$$
.

- **Proof** (a): (1) Assume $K = S_0 e^{rT}$. We can borrow the value of S_0 in cash (interest rate is r) and buy 1 share. The net cost at time 0 is zero. The forward contract costs 0.
- At time T we will have a share with value S_T , a debt of $S_0 e^{rT}$ in cash and a contract to sell the share by K.
- Therefore we hand over the one share to the holder of the forward contract and receive $K = S_0 e^{rT}$, we repay the loan $S_0 e^{rT}$.
- There is no chance of losing money or making a profit (risk-free trading strategy).

Forward contracts

- **Proof** (cont.): (2) Suppose that $K > S_0 e^{rT}$. We can enter a forward contract in a short position (sell the underlying at T), borrow S_0 in cash and buy one share. The net cost at time 0 is zero.
- At time T, we will have a share with value S_T , a debt of $S_0 e^{rT}$ and a contract to sell the share by K. Since $K > S_0 e^{rT}$ we have made a positive profit with no risk: arbitrage opportunities. By the principle of no arbitrage, this cannot occur.
- (3) Suppose that $K < S_0 e^{rT}$. We can enter a forward contract in a long position (buy forward contract), invest amount S_0 in cash and sell one share. at price S_0 . The net cost at time 0 is zero.
- At time T, we will have a cash amount of S₀e^{rT} and a contract to buy the share by K. Since K < S₀e^{rT} we have made a positive profit with no risk: arbitrage opportunities. By the principle of no arbitrage, this cannot occur.
- Conclusion: the fair price is $K = S_0 e^{rT}$.

- Note: in the arbitrage situation, why not trade lots of forward contracts and make a fortune?
- In practice a flood of sellers (or buyers) would come in immediately, pushing down (or up) the forward price to be equal to $S_0 e^{rT}$.
- The arbitrage could exist briefly but it would disappear quickly before substantial arbitrage profits could be made.

- **Proof** (b alternative): Consider the 2 portfolios:
- A: one long position in the forward contract (that gives you a share at time T by the price K)
- B: borrow Ke^{-rT} in cash and buy one share by S_0 .
- At time T both portfolios have a value of $S_T K$. By the principle of no arbitrage, these portfolios must have the same value at time 0. Since at time 0 portfolio B value is $S_0 - Ke^{-rT}$, then the value of portfolio A at time 0, which is the forward price, is $S_0 - Ke^{-rT}$ and must be zero (the value of the forward contract at time 0 must be zero) and therefore $K = S_0 e^{rT}$.

• Exercise: Consider a 6-month forward contract on a share with current price of 25.50 Eur. If the forward price is 26.25 Eur, calculate the (continuously compounded) risk-free interest rate.