Models in Finance - Class 12 Master in Actuarial Science

João Guerra

ISEG

- European calls: At time t, consider portfolio A: one European call + cash Ke^{-r(T-t)}.
- At time T, value of A is equal to S_T K + K = S_T if S_T > K. If S_T < K then the payoff from portfolio A is 0 + K > S_T.
- Therefore the portfolio payoff $\geq S_T \implies c_t + Ke^{-r(T-t)} \geq S_t$.
- Lower bound for the price of European call:

$$c_t \ge S_t - K e^{-r(T-t)}.$$
 (1)

Bounds for option prices - Lower bounds

- European puts: At time *t*, consider portfolio B: one European put + Share *S*_t.
- At time T, value of B is equal to $0 + S_T = S_T > K$ if $S_T > K$. If $S_T < K$ then the payoff from portfolio B is $K S_T + S_T = K$.
- Therefore the portfolio payoff $\geq K \Longrightarrow p_t + S_t \geq K e^{-r(T-t)}$.
- Lower bound for the price of European put:

$$p_t \ge K e^{-r(T-t)} - S_t.$$
⁽²⁾

• Exercise: What is the lower bound for a 3-month European put option on a share X if the share price is 95 EUR, the exercise price is 100 EUR and the (continuously compounded) risk-free rate is 12% p.a. American calls: It is never optimal to exercise an american call on a non-dividend paying share early (surprising result?) and therefore, the previous relation holds for american calls:

$$C_t \ge S_t - K e^{-r(T-t)}.$$
(3)

• Why? if we exercise early, the payoff is $S_t - K$, but if we do not exercise, the value of the American call must be at least that of the European call, i.e. $C_t \ge S_t - Ke^{-r(T-t)} > S_t - K$. So, we would receive more by selling the option than by exercising it.

Bounds for option prices - Lower bounds

• The lower bound for an American put is

$$P_t \ge K - S_t. \tag{4}$$

• For an American put, the early exercise can be optimal.

Upper bounds

• European call: the payoff max $\{S_T - K, 0\} < S_T$. Therefore

$$c_t \leq S_t$$
. (5)

• European put: the maximum payoff at maturity is K (if $S_T = 0$). Therefore

$$p_t \le K e^{-r(T-t)}.$$
 (6)

• American call:

$$C_t \le S_t. \tag{7}$$

 Possibility of early exercise of an American put => complex case (there is no explicit formula for the price of an American put). However, we have:

$$P_t \le K. \tag{8}$$

- Two "natural" portfolios at time t:
- A: one call + cash $Ke^{-r(T-t)}$
- B: one put + one share S_t
- Note: as always in this chapter, we consider only non-dividend paying shares.

• Portfolio A: payoff at *T*:

$$\begin{cases} S_{T} - K + K = S_{T} & \text{if } S_{T} > K \text{ (call option exercised)} \\ 0 + K = K & \text{if } S_{T} \le K \text{ (call expires wothless)} \end{cases}$$
(9)

• Portfolio B: payoff at T:

$$\begin{cases} 0 + S_T = S_T & \text{if } S_T > K \text{ (put expires worthless)} \\ K - S_T + S_T = K & \text{if } S_T \le K \text{ (put option exercised)} \end{cases}$$
(10)

• At expiry T, both portfolios have a payoff max{ K, S_T }.

Put-call parity

Now, since the portfolios have the same value at *T*, and the options cannot be exercised before, the portfolios have the same value at any time *t* < *T*, i.e.

$$c_t + K e^{-r(T-t)} = p_t + S_t.$$
 (11)

- This relationship eq. (11) is known as the put-call parity.
- If the result was not true then this would ⇒ arbitrage opportunity: the failure of put-call parity would allow an investor to trade on calls, cash, puts and shares with a net cost of zero at time 0 and certain profit at time *T*.
- Consequence of put-call parity: having found the value of a European call we can use (11) to find the value of the correponding put (or vice-versa).

- Unlike the forward pricing formula, put-call parity does not tell us what c_t and p_t are individually: only the relationship between the two. To calculate values for c_t and p_t we require a model.
- In this chapter, the pricing of derivatives is based upon the principle of no arbitrage.
- No model has been assumed for stock prices. All we have assumed is that we will make use of buy-and-hold investment strategies.
- Any model we propose for pricing derivatives must, therefore, satisfy both put-call parity and the forward-pricing formula. If a model fails one of these simple tests then it is not arbitrage free.

• If we consider dividend-paying shares, then the put-call parity relationship is:

$$c_t + Ke^{-r(T-t)} = p_t + S_t e^{-q(T-t)},$$
 (12)

where q is the continuously compounded dividend rate (we are assuming that all dividends are reinvested immediately in the same share).