Statistics for Business and Economics $8^{\text {th }}$ Edition

Chapter 14

Analysis of Categorical Data

Chapter Goals

After completing this chapter, you should be able to:

- Use the chi-square goodness-of-fit test to determine whether data fits specified probabilities
- Perform tests for the Poisson and Normal distributions
- Set up a contingency analysis table and perform a chisquare test of association
- Use the sign test for paired or matched samples
- Recognize when and how to use the Wilcoxon signed rank test for paired or matched samples

Chapter Goals

After completing this chapter, you should be able to:

- Use a sign test for a single population median
- Apply a normal approximation for the Wilcoxon signed rank test
- Know when and how to perform a Mann-Whitney U-test
- Explain Spearman rank correlation and perform a test for association
- Use the Runs Test to test for randomness in a time series

Introduction

- Nonparametric Statistics
- Fewer restrictive assumptions about data levels and underlying probability distributions
- Population distributions may be skewed
- The level of data measurement may only be ordinal or nominal

Goodness-of-Fit Tests: Specified Probabilities

- Does sample data conform to a hypothesized distribution?
- Examples:
- Do sample results conform to specified expected probabilities?
- Are technical support calls equal across all days of the week? (i.e., do calls follow a uniform distribution?)
- Do measurements from a production process follow a normal distribution?

Chi-Square Goodness-of-Fit Test

- Are technical support calls equal across all days of the week? (i.e., do calls follow a uniform distribution?)
- Sample data for 10 days per day of week:

	Sum of calls for this day:
	290
Monday	250
Wednesday	238
Thursday	257
Friday	265
Saturday	230
Sunday	192
	$\Sigma=\overline{1722}$

Logic of Goodness-of-Fit Test

- If calls are uniformly distributed, the 1722 calls would be expected to be equally divided across the 7 days:
$\frac{1722}{7}=246$ expectedcalls per day if uniform
- Chi-Square Goodness-of-Fit Test: test to see if the sample results are consistent with the expected results

Observed vs. Expected Frequencies

	Observed O_{i}	Expected E_{i}
Monday	290	246
Tuesday	250	246
Wednesday	238	246
Thursday	257	246
Friday	265	246
Saturday	230	246
Sunday	192	246
TOTAL	1722	1722

Chi-Square Test Statistic

H_{0} : The distribution of calls is uniform over days of the week
H_{1} : The distribution of calls is not uniform

- The test statistic is

$$
\chi^{2}=\sum_{i=1}^{K} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \quad(\text { where d.f. }=K-1)
$$

where:
$\mathrm{K}=$ number of categories
$O_{i}=$ observed frequency for category i
$E_{i}=$ expected frequency for category i

The Rejection Region

H_{0} : The distribution of calls is uniform over days of the week
H_{1} : The distribution of calls is not uniform

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

- Reject H_{0} if $\chi^{2}>\chi_{\alpha}^{2}$

(with $\mathrm{k}-1$ degrees of freedom)

Observed vs. Expected Frequencies

	Observed O_{i}	Expected E_{i}	$\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)$	$\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2}$	$\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2} / \mathrm{E}_{\mathrm{i}}$
Monday	290	246	44	1936	7.870
Tuesday	250	246	4	16	0.065
Wednesday	238	246	-8	64	0.260
Thursday	257	246	11	121	0.492
Friday	265	246	19	361	1.467
Saturday	230	246	-16	256	1.041
Sunday	192	246	-54	2916	11.854
TOTAL	1722	1722			$\chi^{2}=23.049$

Chi-Square Test Statistic

H_{0} : The distribution of calls is uniform over days of the week
H_{1} : The distribution of calls is not uniform

$$
\chi^{2}=\frac{(290-246)^{2}}{246}+\frac{(250-246)^{2}}{246}+\ldots+\frac{(192-246)^{2}}{246}=23.049
$$

K-1 = 6 (7 days of the week) so use 6 degrees of freedom:

$$
\chi^{2} .05=12.5916
$$

Conclusion:

$\chi^{2}=23.05>\chi^{2}{ }_{\alpha}=12.5916$ so reject H_{0} and conclude that the distribution is not uniform

Goodness-of-Fit Tests:

14.2
 Population Parameters Unknown

Idea:

- Test whether data follow a specified distribution (such as binomial, Poisson, or normal) . . .
- . . . without assuming the parameters of the distribution are known
- Use sample data to estimate the unknown population parameters

Goodness-of-Fit Tests: Population Parameters Unknown

- Suppose that a null hypothesis specifies category probabilities that depend on the estimation (from the data) of m unknown population parameters
- The appropriate goodness-of-fit test is the same as in the previously section...

$$
\chi^{2}=\sum_{\mathrm{i}=1}^{\mathrm{K}} \frac{\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2}}{\mathrm{E}_{\mathrm{i}}}
$$

- .. . except that the number of degrees of freedom for the chi-square random variable is

Degrees of Freedom $=(K-m-1)$

- Where K is the number of categories

Test of Normality

- The assumption that data follow a normal distribution is common in statistics
- Evidence of normality was assessed in prior chapters
(for example, with normal probability plots in Chapter 5)
- Here, a chi-square test is developed

Test of Normality

- Two population parameters can be estimated using sample data:

$$
\text { Skewness }=\frac{\sum_{i-1}^{n}\left(x_{i}-\bar{x}\right)^{3}}{n s^{3}}
$$

$$
\text { Kurtosis }=\frac{\sum_{i-1}^{n}\left(x_{i}-\bar{x}\right)^{4}}{n s^{4}}
$$

- For a normal distribution,

$$
\begin{aligned}
& \text { Skewness = } 0 \\
& \text { Kurtosis = } 3
\end{aligned}
$$

Jarque-Bera Test for Normality

- Consider the null hypothesis that the population distribution is normal
- The Jarque-Bera Test for Normality is based on the closeness the sample skewness to 0 and the sample kurtosis to 3
- The test statistic is

$$
\mathrm{JB}=\mathrm{n}\left[\frac{(\text { Skewness })^{2}}{6}+\frac{(\text { Kurtosis }-3)^{2}}{24}\right]
$$

- as the number of sample observations becomes very large, this statistic has a chi-square distribution with 2 degrees of freedom
- The null hypothesis is rejected for large values of the test statistic

Jarque-Bera Test for Normality

- The chi-square approximation is close only for very large sample sizes
- The test statistic is compared to significance points from text Table 14.9

Sample size \mathbf{n}	10% point	5% point	Sample size \mathbf{n}	10% point	5% point
$\mathbf{2 0}$	2.13	3.26	$\mathbf{2 0 0}$	3.48	4.43
$\mathbf{3 0}$	2.49	3.71	$\mathbf{2 5 0}$	3.54	4.61
$\mathbf{4 0}$	2.70	3.99	$\mathbf{3 0 0}$	3.68	4.60
$\mathbf{5 0}$	2.90	4.26	$\mathbf{4 0 0}$	3.76	4.74
$\mathbf{7 5}$	3.09	4.27	$\mathbf{5 0 0}$	3.91	4.82
$\mathbf{1 0 0}$	3.14	4.29	$\mathbf{8 0 0}$	4.32	5.46
$\mathbf{1 2 5}$	3.31	4.34	$\boldsymbol{\infty}$	4.61	5.99
$\mathbf{1 5 0}$	3.43	4.39			

Example: Jarque-Bera Test for Normality

- The average daily temperature has been recorded for 200 randomly selected days, with sample skewness 0.232 and kurtosis 3.319
- Test the null hypothesis that the true distribution is normal

$$
\mathrm{JB}=\left[\frac{(\text { Skewness })^{2}}{6}+\frac{(\text { Kurtosis }-3)^{2}}{24}\right]=200\left[\frac{(0.232)^{2}}{6}+\frac{(3.319-3)^{2}}{24}\right]=2.642
$$

- From Table 14.9 the 10% critical value for $\mathrm{n}=200$ is 3.48, so there is not sufficient evidence to reject that the population is normal

Contingency Tables

Contingency Tables

- Used to classify sample observations according to a pair of attributes
- Also called a cross-classification or crosstabulation table
- Assume r categories for attribute A and c categories for attribute B
- Then there are $(r \times c)$ possible cross-classifications

rxc Contingency Table

	Attribute B				
Attribute A	1	2		c	Totals
	$\begin{gathered} \mathrm{O}_{11} \\ \mathrm{O}_{21} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{O}_{\mathrm{r} 1} \\ \mathrm{C}_{1} \end{gathered}$	O_{12} O_{22} . . $\mathrm{O}_{\mathrm{r} 2}$ C_{2}		$\begin{gathered} \mathrm{O}_{1 \mathrm{c}} \\ \mathrm{O}_{2 \mathrm{c}} \\ \cdot \\ \cdot \\ \cdot \\ \mathrm{O}_{\mathrm{rc}} \\ \mathrm{C}_{\mathrm{c}} \end{gathered}$	R_{1} R_{2} R_{r} n

Test for Association

- Consider n observations tabulated in an $r \times c$ contingency table
- Denote by O_{ij} the number of observations in the cell that is in the $i^{\text {th }}$ row and the $j^{\text {th }}$ column
- The null hypothesis is
H_{0} : No association exists between the two attributes in the population
- The appropriate test is a chi-square test with $(r-1)(c-1)$ degrees of freedom

Test for Association

- Let R_{i} and C_{j} be the row and column totals
- The expected number of observations in cell row i and column j , given that H_{0} is true, is

$$
E_{i j}=\frac{R_{i} C_{j}}{n}
$$

- A test of association at a significance level α is based on the chi-square distribution and the following decision rule

$$
\text { Reject } \mathrm{H}_{0} \text { if } \quad \chi^{2}=\sum_{\mathrm{i}=1}^{\mathrm{r}} \sum_{\mathrm{j}=1}^{\mathrm{c}} \frac{\left(\mathrm{O}_{\mathrm{ij}}-\mathrm{E}_{\mathrm{ij}}\right)^{2}}{\mathrm{E}_{\mathrm{ij}}}>\chi_{(\mathrm{r}-1)(\mathrm{c}-1), \alpha}^{2}
$$

Contingency Table Example

Left-Handed vs. Gender

- Dominant Hand: Left vs. Right
- Gender: Male vs. Female
H_{0} : There is no association between hand preference and gender
H_{1} : Hand preference is not independent of gender

Contingency Table Example

Sample results organized in a contingency table:

sample size $=\mathrm{n}=300$	Gender	Hand Preference		
		Left	Right	
120 Females, 12 were left handed	Female	12	108	120
180 Males, 24 were left handed	Male	24	156	180
		36	264	300

Logic of the Test

H_{0} : There is no association between hand preference and gender
H_{1} : Hand preference is not independent of gender

- If H_{0} is true, then the proportion of left-handed females should be the same as the proportion of left-handed males
- The two proportions above should be the same as the proportion of left-handed people overall

Finding Expected Frequencies

120 Females, 12 were left handed

180 Males, 24 were left handed

If no association, then

Overall:

P(Left Handed)
$=36 / 300=.12$
$P($ Left Handed \mid Female $)=P($ Left Handed \mid Male $)=. .12$
So we would expect 12% of the 120 females and 12% of the 180 males to be left handed...
i.e., we would expect $(120)(.12)=14.4$ females to be left handed $(180)(.12)=21.6$ males to be left handed

Expected Cell Frequencies

(continued)

- Expected cell frequencies:

$$
\mathrm{E}_{\mathrm{ij}}=\frac{\mathrm{R}_{\mathrm{i}} \mathrm{C}_{\mathrm{j}}}{\mathrm{n}}=\frac{\left(\mathrm{i}^{\text {th }} \text { Row total }\right)\left(\mathrm{j}^{\text {th }} \text { Column total }\right)}{\text { Total sample size }}
$$

Example:

$$
E_{11}=\frac{(120)(36)}{300}=14.4
$$

Observed vs. Expected Frequencies

Observed frequencies vs. expected frequencies:

Gender	Hand Preference		
	Left Ebserved $=12$	Observed $=108$ Expected $=14.4$	
Male	Observed $=24$ Expected $=21.6$	Observed $=156$ Expected $=158.4$	180
	36	264	300

The Chi-Square Test Statistic

The Chi-square test statistic is:

$$
\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}
$$

with d.f. $=(r-1)(c-1)$

- where:
$\mathrm{O}_{i j}=$ observed frequency in cell (i, j)
$\mathrm{E}_{i j}=$ expected frequency in cell (i, j)
$r=$ number of rows
$c=$ number of columns

Observed vs. Expected Frequencies

Gender	Hand Preference		
	Left	Right	
Male	Observed $=12$ Expected $=14.4$	Observed $=108$ Expected $=105.6$	120
Expected $=21.6$	Observed $=156$ Expected $=158.4$	180	
	36	264	300

$$
\chi^{2}=\frac{(12-14.4)^{2}}{14.4}+\frac{(108-105.6)^{2}}{105.6}+\frac{(24-21.6)^{2}}{21.6}+\frac{(156-158.4)^{2}}{158.4}=0.7576
$$

Contingency Analysis

$$
\chi^{2}=0.7576 \text { with d.f. }=(r-1)(\mathrm{c}-1)=(1)(1)=1
$$

Here, $\chi^{2}=0.7576$ <3.841, so we do not reject H_{0} and conclude that gender and hand preference are not associated

- A sign test for paired or matched samples:
- Calculate the differences of the paired observations
- Discard the differences equal to 0 , leaving n observations
- Record the sign of the difference as + or -
- For a symmetric distribution, the signs are random and + and - are equally likely

Sign Test

- Define + to be a "success" and let $P=$ the true proportion of +'s in the population
- The sign test is used for the hypothesis test

$$
\mathrm{H}_{0}: P=0.5
$$

- The test-statistic S for the sign test is

$$
S=\text { the number of pairs with a positive difference }
$$

- S has a binomial distribution with $P=0.5$ and $\mathrm{n}=$ the number of nonzero differences

Determining the p -value

- The p-value for a Sign Test is found using the binomial distribution with $\mathrm{n}=$ number of nonzero differences, $\mathrm{S}=$ number of positive differences, and $P=0.5$
- For an upper-tail test, H_{1} : $\mathrm{P}>0.5, \mathrm{p}$-value $=\mathrm{P}(\mathrm{x} \geq \mathrm{S})$
- For a lower-tail test, H_{1} : $\mathrm{P}<0.5$, p-value $=P(x \leq S)$
- For a two-tail test, $\mathrm{H}_{1}: \mathrm{P} \neq 0.5$,

$$
2 \mathrm{P}(\mathrm{x} \geq \mathrm{S})
$$

Sign Test Example

- Ten consumers in a focus group have rated the attractiveness of two package designs for a new product

Consumer	Rating		Difference	Sign of Difference
	Package 1	Package 2	Rating 1 - 2	
1	5	8	-3	-
2	4	8	-4	-
3	4	4	0	$\mathbf{0}$
4	6	5	+1	+
5	3	9	-6	-
6	5	9	-4	-
7	7	6	-1	-
8	5	9	-4	-
9	6	3	+3	$\mathbf{+}$
10	7	9	-2	-

Sign Test Example

- Test the hypothesis that there is no overall package preference using $\alpha=0.10$

$$
\begin{array}{cc}
\mathrm{H}_{0}: \mathrm{P}=0.5 & \begin{array}{l}
\text { The proportion of consumers } \\
\text { package } 1 \text { is the same as the } \\
\text { preferring package } 2
\end{array} \\
\mathrm{H}_{1}: \mathrm{P}<0.5 \quad \text { A majority prefer package } 2
\end{array}
$$

- The test-statistic S for the sign test is

$$
\begin{aligned}
S & =\text { the number of pairs with a positive difference } \\
& =2
\end{aligned}
$$

- S has a binomial distribution with $\mathrm{P}=0.5$ and $\mathrm{n}=9$ (there was one zero difference)

Sign Test Example

- The p-value for this sign test is found using the binomial distribution with $n=9, S=2$, and $P=0.5$:
- For a lower-tail test,

$$
\begin{aligned}
p \text {-value } & =P(x \leq 2 \mid n=9, P=0.5) \\
& =0.090
\end{aligned}
$$

Since $0.090<\alpha=0.10$ we reject the null hypothesis and conclude that consumers prefer package 2

Wilcoxon Signed Rank Test for Paired or Matched Samples

- Uses matched pairs of random observations
- Still based on ranks
- Incorporates information about the magnitude of the differences
- Tests the hypothesis that the distribution of differences is centered at zero
- The population of paired differences is assumed to be symmetric

Wilcoxon Signed Rank Test for Paired or Matched Samples

Conducting the test:

- Discard pairs for which the difference is 0
- Rank the remaining n absolute differences in ascending order (ties are assigned the average of their ranks)
- Find the sums of the positive ranks and the negative ranks
- The smaller of these sums is the Wilcoxon Signed Rank Statistic T:

$$
T=\min \left(T_{+}, T_{-}\right)
$$

Where $\quad \mathrm{T}_{+}=$the sum of the positive ranks
$\mathrm{T}_{\text {. }}=$ the sum of the negative ranks
$\mathrm{n}=$ the number of nonzero differences

- The null hypothesis is rejected if T is less than or equal to the value in Appendix Table 10

Signed Rank Test Example

Consumer	Rating		Difference		
	Package 1	Package 2	Diff (rank)	Rank (+)	Rank (-)
1	5	8	$-3(4.5$ tie)		$\mathbf{4 . 5}$
2	4	8	$-4(7$ tie)		$\mathbf{7}$
3	4	4	$0(-)$		
4	6	5	$+1(1.5$ tie)	1.5	
5	3	9	$-6(9)$		$\mathbf{9}$
6	5	9	$-4(7$ tie)		$\mathbf{7}$
7	7	6	$-1(1.5$ tie)		$\mathbf{1 . 5}$
8	5	9	$-4(7$ tie)		$\mathbf{7}$
9	6	3	$+3(4.5$ tie)	4.5	
10	7	9	$-2(3)$		$\mathbf{3}$

| Ten consumers in a focus group have |
| :--- | :--- |
| rated the attractiveness of two package |
| designs for a new product |

Signed Rank Test Example

Test the hypothesis that the distribution of paired differences is centered at zero, using $\alpha=0.10$

Conducting the test:

- The smaller of T_{+}and $T_{\text {- }}$ is the Wilcoxon Signed Rank Statistic T:

$$
T=\min \left(T_{+}, T_{-}\right)=6
$$

- Use Appendix Table 10 with $\mathrm{n}=9$ to find the critical value:

The null hypothesis is rejected if $\mathrm{T} \leq 4$

- Since $T=6>4$, we do not reject the null hypothesis; we do not have sufficient evidence that rankings are higher for package 2

Normal Approximation to the Sign Test

- If the number n of nonzero sample observations is large, then the sign test is based on the normal approximation to the binomial with mean and standard deviation

$$
\begin{aligned}
& \mu=n p=0.5 n \\
& \sigma=\sqrt{n p(1-p)}=\sqrt{0.25 n}=0.5 \sqrt{n}
\end{aligned}
$$

- The test statistic is

$$
Z=\frac{S^{*}-\mu}{\sigma}=\frac{S^{*}-0.5 n}{0.5 \sqrt{n}}
$$

- Where S^{*} is the test-statistic corrected for continuity:
- For a two-tail test, $S^{*}=S+0.5$, if $S<\mu$ or $S^{*}=S-0.5$, if $S>\mu$
- For upper-tail test, $\mathrm{S}^{*}=\mathrm{S}-0.5$
- For lower-tail test, $\mathrm{S}^{*}=\mathrm{S}+0.5$

Normal Approximation to the Wilcoxon Signed Rank Test

A normal approximation can be used when

- Paired samples are observed
- The sample size is large ($\mathrm{n}>20$)
- The hypothesis test is that the population distribution of differences is centered at zero

Wilcoxon Matched Pairs Test for Large Samples

- The mean and standard deviation for Wilcoxon T :

$$
\begin{gathered}
E(T)=\mu_{T}=\frac{n(n+1)}{4} \\
\operatorname{Var}(T)=\sigma_{T}^{2}=\frac{(n)(n+1)(2 n+1)}{24}
\end{gathered}
$$

where n is the number of paired values

Wilcoxon Matched Pairs Test for Large Samples

- Normal approximation for the Wilcoxon T Statistic:

$$
Z=\frac{T-\mu_{T}}{\sigma_{T}}=\frac{T-\frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2 n+1)}{24}}}
$$

- If the alternative hypothesis is one-sided, reject the null hypothesis if

$$
\frac{\mathrm{T}-\mu_{\mathrm{T}}}{\sigma_{\mathrm{T}}}<-\mathrm{Z}_{\mathrm{a}}
$$

- If the alternative hypothesis is two-sided, reject the null hypothesis if

$$
\frac{\mathrm{T}-\mu_{\mathrm{T}}}{\sigma_{\mathrm{T}}}<-\mathrm{Z}_{\mathrm{a} / 2}
$$

Sign Test for Single Population Median

- The sign test can be used to test that a single population median is equal to a specified value
- For small samples, use the binomial distribution
- For large samples, use the normal approximation

Used to compare two samples from two populations

Assumptions:

- The two samples are independent and random
- The value measured is a continuous variable
- The two distributions are identical except for a possible difference in the central location
- The sample size from each population is at least 10

Mann-Whitney U-Test

- Consider two samples
- Pool the two samples (combine into a singe list) but keep track of which sample each value came from
- rank the values in the combined list in ascending order
- For ties, assign each the average rank of the tied values
- sum the resulting rankings separately for each sample
- If the sum of rankings from one sample differs enough from the sum of rankings from the other sample, we conclude there is a difference in the population medians

Mann-Whitney U Statistic

- Consider n_{1} observations from the first population and n_{2} observations from the second
- Let R_{1} denote the sum of the ranks of the observations from the first population
- The Mann-Whitney U statistic is

$$
\mathrm{U}=\mathrm{n}_{1} \mathrm{n}_{2}+\frac{\mathrm{n}_{1}\left(\mathrm{n}_{1}+1\right)}{2}-\mathrm{R}_{1}
$$

Mann-Whitney U Statistic

- The null hypothesis is that the medians of the two population distributions are the same
- The Mann-Whitney U statistic has mean and variance

$$
\begin{gathered}
E(U)=\mu_{U}=\frac{n_{1} n_{2}}{2} \\
\operatorname{Var}(U)=\sigma_{U}^{2}=\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}
\end{gathered}
$$

- Then for large sample sizes (both at least 10), the distribution of the random variable

$$
\mathrm{Z}=\frac{\mathrm{U}-\mu_{\mathrm{U}}}{\sigma_{U}}
$$

is approximated by the normal distribution

Decision Rules for Mann-Whitney Test

The decision rule for the null hypothesis that the two populations have the same medians:

- For a one-sided upper-tailed alternative hypothesis:

$$
\text { Reject } H_{0} \text { if } Z=\frac{U-\mu_{U}}{\sigma_{U}}<-z_{a}
$$

- For a one-sided lower-tailed hypothesis:

$$
\text { Reject } \mathrm{H}_{0} \text { if } \mathrm{Z}=\frac{\mathrm{U}-\mu_{\mathrm{U}}}{\sigma_{U}}>\mathrm{Z}_{a}
$$

- For a two-sided alternative hypothesis:

$$
\text { Reject } H_{0} \text { if } Z=\frac{U-\mu_{U}}{\sigma_{U}}<-Z_{\alpha / 2} \text { or Reject } H_{0} \text { if } Z=\frac{U-\mu_{U}}{\sigma_{U}}>z_{\alpha / 2}
$$

Mann-Whitney U-Test Example

Claim: Median class size for Math is larger than the median class size for English

A random sample of 10 Math and 10 English classes is selected (samples do not have to be of equal size)

Rank the combined values and then determine rankings by original sample

Mann-Whitney U-Test Example

- Suppose the results are:

Class size (Math, M)	Class size (English, E)
23	30
45	47
34	18
78	34
34	44
66	61
62	54
95	28
81	40
99	96

Mann-Whitney U-Test Example

Ranking for combined samples

tied \begin{tabular}{|c|c|}
\hline Size \& Rank

\hline 18 \& 1

23 \& 2

28 \& 3

30 \& 4

34 \& 6

34 \& 6

34 \& 6

40 \& 8

44 \& 9

45 \& 10

\hline

$|$

\hline Size \& Rank

\hline 47 \& 11

54 \& 12

61 \& 13

62 \& 14

66 \& 15

78 \& 16

81 \& 17

95 \& 18

96 \& 19

99 \& 20

\hline
\end{tabular}

Mann-Whitney U-Test Example

(continued)

- Rank by original sample:

Class size (Math, M)	Rank	Class size (English, E)	Rank
23	2	30	4
45	10	47	11
34	6	18	1
78	16	34	6
34	6	44	9
66	15	61	13
62	14	54	12
95	18	28	3
81	17	40	8
99	20	96	19
	$\Sigma=124$		$\Sigma=86$

Mann-Whitney U-Test Example

Claim: Median class size for Math is larger than the median class size for English
$\mathrm{H}_{0}:$ Median $_{\mathrm{M}} \leq$ Median $_{\mathrm{E}}$
(Math median is not greater than English median)
$\mathrm{H}_{\mathrm{A}}:$ Median $_{\mathrm{M}}>$ Median $_{\mathrm{E}}$
(Math median is larger)

$$
\mathrm{U}=\mathrm{n}_{1} \mathrm{n}_{2}+\frac{\mathrm{n}_{1}\left(\mathrm{n}_{1}+1\right)}{2}-\sum \mathrm{R}_{1}=(10)(10)+\frac{(10)(11)}{2}-124=31
$$

Mann-Whitney U-Test Example

$\mathrm{H}_{0}:$ Median $_{\mathrm{M}} \leq$ Median $_{\mathrm{E}}$ H_{A} : $_{\text {Median }_{\mathrm{M}}>\text { Median }_{\mathrm{E}}}$

$$
Z=\frac{U-\mu_{U}}{\sigma_{U}}=\frac{U-\frac{n_{1} n_{2}}{2}}{\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}}=\frac{31-\frac{(10)(10)}{2}}{\sqrt{\frac{(10)(10)(10+10+1)}{12}}}=-1.436
$$

- The decision rule for this one-sided upper-tailed alternative hypothesis:

$$
\text { Reject } H_{0} \text { if } Z=\frac{U-\mu_{U}}{\sigma_{U}}<-Z_{a}
$$

- For $\alpha=0.05,-z_{\alpha}=-1.645$
- The calculated Z value is not in the rejection region, so we conclude that there is not sufficient evidence of difference in class size medians

Wilcoxon Rank Sum Test

- Similar to Mann-Whitney U test
- Results will be the same for both tests
- May be easier to apply

Wilcoxon Rank Sum Test

- n_{1} observations from the first population
- n_{2} observations from the second population
- Pool the samples and rank the observations in ascending order
- Let T denote the sum of the ranks of the observations from the first population
- (T in the Wilcoxon Rank Sum Test is the same as R_{1} in the Mann-Whitney U Test)

Wilcoxon Rank Sum Test

- The Wilcoxon Rank Sum Statistic, T, has mean

$$
\mathrm{E}(\mathrm{~T})=\mu_{\mathrm{T}}=\frac{\mathrm{n}_{1}\left(\mathrm{n}_{1}+\mathrm{n}_{2}+1\right)}{2}
$$

- And variance

$$
\operatorname{Var}(\mathrm{T})=\sigma_{T}^{2}=\frac{\mathrm{n}_{1} \mathrm{n}_{2}\left(\mathrm{n}_{1}+\mathrm{n}_{2}+1\right)}{12}
$$

- Then, for large samples ($\mathrm{n}_{1} \geq 10$ and $\mathrm{n}_{2} \geq 10$) the distribution of the random variable

$$
\mathrm{Z}=\frac{\mathrm{T}-\mu_{\mathrm{T}}}{\sigma_{\mathrm{T}}}
$$

is approximated by the normal distribution

Wilcoxon Rank Sum Example

- We wish to test
$\mathrm{H}_{0}:$ Median $_{1} \geq$ Median $_{2}$
H_{1} : Median $_{1}$ < Median $_{2}$
- Use $\alpha=0.05$
- Suppose two samples are obtained:
- $\mathrm{n}_{1}=40, \mathrm{n}_{2}=50$
- When rankings are completed, the sum of ranks for sample 1 is $\Sigma R_{1}=1475=T$
- When rankings are completed, the sum of ranks for sample 2 is $\Sigma R_{2}=2620$

Wilcoxon Rank Sum Example

- Using the normal approximation:

$$
Z=\frac{T-\mu_{T}}{\sigma_{T}}=\frac{T-\frac{n_{1}\left(n_{1}+n_{2}+1\right)}{2}}{\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}}=\frac{1475-\frac{(40)(40+50+1)}{2}}{\sqrt{\frac{(40)(50)(40+50+1)}{12}}}=-2.80
$$

Wilcoxon Rank Sum Example

$\mathrm{H}_{0}:$ Median $_{1} \geq$ Median $_{2}$

 H_{1} : Median $_{1}$ < Median $_{2}$

Since $Z=-2.80<-1.645$, we reject H_{0} and conclude that median 1 is less than median 2 at the 0.05 level of significance

Spearman Rank Correlation

- Consider a random sample $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ of n pairs of observations
- Rank x_{i} and y_{i} each in ascending order
- Calculate the sample correlation of these ranks
- The resulting coefficient is called Spearman's Rank Correlation Coefficient
- If there are no tied ranks, an equivalent formula for computing this coefficient is

$$
r_{s}=1-\frac{6 \sum_{i=1}^{n} d_{i}^{2}}{n\left(n^{2}-1\right)}
$$

where the d_{i} are the differences of the ranked pairs

Spearman Rank Correlation

- Consider the null hypothesis H_{0} : no association in the population
- To test against the alternative of positive association, the decision rule is

$$
\text { Reject } \mathrm{H}_{0} \text { if } \mathrm{r}_{\mathrm{s}}>\mathrm{r}_{\mathrm{s}, \alpha}
$$

- To test against the alternative of negative association, the decision rule is

$$
\text { Reject } \mathrm{H}_{0} \text { if } \mathrm{r}_{\mathrm{s}}<-\mathrm{r}_{\mathrm{s}, \alpha}
$$

- To test against the two-sided alternative of some association, the decision rule is

$$
\text { Reject } \mathrm{H}_{0} \text { if } \mathrm{r}_{\mathrm{s}}<-\mathrm{r}_{\mathrm{s}, \alpha / 2} \text { or } \mathrm{r}_{\mathrm{s}}>\mathrm{r}_{\mathrm{s}, \alpha / 2}
$$

A Nonparametric Test for Randomness

The Runs Test: Small Sample Size

- Consider a time series of $\mathrm{n} \leq 20$ observations
- The runs test is used to determine whether a pattern in time-series data is random
- A run is a sequence of one or more occurrences above or below the median
- Denote observations above the median with " + " signs and observations below the median with "-" signs

The Runs Test for Randomness

- Consider n time series observations
- Let R denote the number of runs in the sequence
- The null hypothesis is that the series is random
- Appendix Table 14 gives the smallest significance level for which the null hypothesis can be rejected (against the alternative of positive association between adjacent observations) as a function of R and n

The Runs Test for Randomness

- If the alternative is a two-sided hypothesis on nonrandomness,
- the significance level must be doubled if it is less than 0.5
- if the significance level, $\boldsymbol{\alpha}$, read from the table is greater than 0.5 , the appropriate significance level for the test against the twosided alternative is $2(1-\alpha)$

Counting Runs

Sales

Runs Test Example

$$
\mathrm{n}=18 \text { and there are } \mathrm{R}=6 \text { runs }
$$

- Use Appendix Table 14
- $\mathrm{n}=18$ and $\mathrm{R}=6$
- the null hypothesis can be rejected (against the alternative of positive association between adjacent observations) at the 0.044 level of significance
- Therefore we reject that this time series is random using $\alpha=0.05$

Runs Test: Large Sample Sizes

- Given $\mathrm{n}>20$ observations
- Let R be the number of sequences above or below the median

Consider the null hypothesis H_{0} : The series is random

- If the alternative hypothesis is positive association between adjacent observations, the decision rule is:

$$
\text { Reject } H_{0} \text { if } \quad Z=\frac{R-\frac{n}{2}-1}{\sqrt{\frac{n^{2}-2 n}{4(n-1)}}}<-z_{\alpha}
$$

Runs Test: Large Samples

Consider the null hypothesis

H_{0} : The series is random

If the alternative is a two-sided hypothesis of nonrandomness, the decision rule is:

Reject H_{0} if $\quad Z=\frac{R-\frac{n}{2}-1}{\sqrt{\frac{n^{2}-2 n}{4(n-1)}}}<-z_{\alpha / 2} \quad$ or $\quad Z=\frac{R-\frac{n}{2}-1}{\sqrt{\frac{n^{2}-2 n}{4(n-1)}}}>z_{\alpha / 2}$

Example: Large Sample Runs Test

- A filling process over- or under-fills packages, compared to the median

OOO U OO U O UU OO UU OOOO UU O UUUU OOO UUU OOOO UU OO UUU O U OO UUUUU OOO U O UU OOO U OOOO UUU O UU OOO U OO UU O U OO UUU O UU OOOO UUU OOO

$n=100$ (53 overfilled, 47 underfilled)
$R=45$ runs

Example: Large Sample Runs Test

- A filling process over- or under-fills packages, compared to the median
- $\mathrm{n}=100, \mathrm{R}=45$

$$
Z=\frac{R-\frac{n}{2}-1}{\sqrt{\frac{n^{2}-2 n}{4(n-1)}}}=\frac{45-\frac{100}{2}-1}{\sqrt{\frac{100^{2}-2(100)}{4(100-1)}}}=\frac{-6}{4.975}=-1.206
$$

Example: Large Sample Runs Test

(continued)
H_{0} : Fill amounts are random
H_{1} : Fill amounts are not random
Test using $\alpha=0.05$

Chapter Summary

- Used the chi-square goodness-of-fit test to determine whether sample data match specified probabilities
- Conducted goodness-of-fit tests when a population parameter was unknown
- Tested for normality using the Jarque-Bera test
- Used contingency tables to perform a chi-square test for association
- Compared observed cell frequencies to expected cell frequencies

Chapter Summary

- Used the sign test for paired or matched samples, and the normal approximation for the sign test
- Developed and applied the Wilcoxon signed rank test, and the large sample normal approximation
- Developed and applied the Mann-Whitney U-test for two population medians
- Used the Wilcoxon rank-sum test
- Examined Spearman rank correlation for tests of association
- Used the Runs Test to test for randomness

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Printed in the United States of America.

