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2.1. CONTINUOUS TIME FINANCE RECAP

Note: Please see Hull (2018), Chap.14.

e Stochastic process — any variable whose value changes over time in
an uncertain way => different random trajectories for the variable.

e Discrete vs continuous time stochastic processes:
— Discrete — the variable value can change only at certain fixed points in time
— Continuous — changes can take place at any time

e Continuous vs discrete variables:
— Discrete — only certain values are possible
— Continuous — can take any value within a certain range

e Continuous-variable, continuous-time — variables can assume any
value and changes can occur at any time.
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STOCHASTIC PROCESSES

e Continuous-variable, continuous-time stochastic processes are
key to understanding the pricing of options and other derivatives.

e However, in practice, most asset prices do not follow continuous-
variable, continuous-time stochastic processes.

e For instance, stock prices are restricted to discrete values (e.g.
multiples of a cent) and changes can be observed only when the
markets are open.

e Nonetheless, continuous-variable, continuous-time stochastic
processes are useful for many valuation purposes.
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STOCHASTIC PROCESSES

e Markov Stochastic Process — stochastic process where only the
current value of a variable is relevant for predicting the future =>
all past information is irrelevant, as it is already incorporated into
today’s stock price (weak form of market efficiency, while the
strong form states that all relevant information is incorporated in

current prices). '

e The probability distribution at any particular future time is
independent from the path followed by the variable in the past.

e |f the weak form of market efficiency were not true, market
participants could make above-average returns by interpreting the
past behavior of asset prices.

Jorge Barros Luis | Interest Rate and Credit Risk Models



STOCHASTIC PROCESSES

e Assuming a Markov process X(t), the 1-year change ~ MO,1).

\ 4

e 2-year change = M0,1) + MO0,1) = MO0,2), as both distributions are
independent - given that this is a Markov process, the second
distribution does not depend on the first.

\ 4

At (very small period of time) change ~ MO, At)
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WIENER PROCESS

A stochastic process z follows a Wiener process (or the continuous random walk)

if it has the following properties:

Property 1. The change Az during a small period of time At is
Az = ev/Al (14.1)

where € has a standard normal distribution ¢(0, 1).

Property 2. The values of Az for any two different short intervals of time, At, are

independent.
It follows from the first property that Az itself has a normal distribution with
mean of Az =0
standard deviation of Az = VAt

varance of Az = At

The second property implies that z follows a Markov process.

Source: Hull, John (2018), “Options,
Futures and Other Derivatives”,
Pearson Prenctice Hall, 10t Edition

e Therefore , a Wiener process is a Markov process with its change having:

— mean (drift) = 0 => the expected value of any future outcome is equal to the current value
(Martingale): z=25 => 1 year after, z~ N(25,1); 5 years after, z~ N(25,5)

— variance (variance rate) = 1 => uncertainty (standard-deviation) is proportional to the

square root of time.
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WIENER PROCESS

Wiener processes for different
magnitudes of change in time:

When At -> 0, the path becomes much SN
more irregular, as the size of the . | "
movement in the variable in time At is N
proportional to the \/Kt When At is v,
small, \/A7t is much larger than At =>

the changes in z will be much larger | f,w"'\ﬁ,\w‘m

than At, as a: — «/ar AN )

Source: Hull, John (2018), “Options, Futures and Other J\\‘/.
Derivatives”, Pearson Prenctice Hall, 10t Edition ,
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GENERALIZED WIENER PROCESS

e Instead of a drift = 0 and a variance rate =1 as in the Wiener process (dz), we
may have a stochastic process where the drift can assume any value a and
the variance rate can be b? => Generalized Wiener Process.

Ax = a At + bev/At where g and b are constants.

e For very small time changes At: Ax = a At + bev/At

|

mean of ;
standard deviation of Ax = bv/At

» - ]
variance ol Ax = b~ At

Ax ~ N, with

e The average increases in x are proportional to time (if there is no drift, the mean
of x doesn’t change, i.e. Ax =0).
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GENERALIZED WIENER PROCESS

Figure 14.2 Generalized Wiener process with @ = 0.3 and b = 1.5.
4 Value of

variable, x Generalized

Wiener process
dx=adt + bdz

dx = adt

|

Wiener process, dz

Time

Source: Hull, John (2018), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 10t Edition
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ITO PROCESS

e Definition: Generalized Wiener process with average and
standard-deviation as functions of the underlying variable and
time (instead of constant along time):

dx = a(x, t)dt + b(x, t)dz

e For small time intervals, we may assume that the average and
the standard-deviation don’t change (we’re assuming that the
drift and the variance rate don’t change between t and t+At):

4

Ax = a(x, t)At + b(x, t)ev/At

e This is still a Markov process, as a and b only depend on the
current value of x, not on previous values.
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ITO PROCESS

e |t may be tempting to assume that a stock price follows a
generalized Wiener process (constant drift and variance).

e However, this assumption is not valid, having in mind that
investors require or expect a given level of returns (as a %
variation) regardless the price level, i.e. for higher prices,
expected changes will also be higher.

e One can replace the assumption of constant expected drift by the
assumption of constant expected returns (i.e. constant expected
drift divided by the stock price <> variable drift along time).
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ITO PROCESS

e |f S is the stock price at time t => expected drift rate in S (i.e.
a(x,t)) must be uS (being u constant, corresponding to the
expected rate of return on the stock, expressed in decimal form).

e In a short interval of time At, the expected increase in S is 1SAt,
i.e the expected rate of return on the stock, times the stock
price, times the time interval:

AS = ,uSAt Ax = al(x, t)At + b(x, t)e\_/A—t

o [fAt->0=>

dS = xSdt < d?S: wudt

e This corresponds to the price of an asset following a
continuously compounding process (under no uncertainty, being
1 = risk-free rate in a risk-neutral world): S, = Soe“T
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GEOMETRIC BROWNIAN MOTION

e Given that in practice there is uncertainty, a reasonable
assumption is that the variability of the percentage return (o) in a
short period of time Atis the same regardless the stock price.

4

e An investor is as uncertain about his return when the stock price
is high or low.

e Accordingly, the standard deviation of the change in a short
period of time must be proportional to the stock price, as the
standard deviation for the percentage change is constant —
Geometric Brownian Motion:

dS = 1Sdt + 0Sdz <

d?sz,udt+adz
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GEOMETRIC BROWNIAN MOTION
e Example:

Consider a stock that pays no dividends, has a volatility of 30% per annum, and
provides an expected return of 15% per annum with contiiuous compounding. In
this case, u = 0.15 and o = (’).3(l\l'hAe process for stock price 1s

d—j = 0.15dt + 0.30d:z

If S 1s the stock price at a particular time and AS is the increase in the stock price
in the next small interval of time, the discrete approximation to the process is

AS —
—= 0.15A¢1 + 0.30e VAL

where € has a standard normal distribution. Consider a time interval of 1 week.
or 0.0192 year, so that At = 0.0192. Then the approximation gives

AS e L. - e - e

T = 0.15 x0.0192 4+ 0.30 x v0.0192¢

or
AS = 0.00288S5 4+ 0.04165¢

Source: Hull, John (2018), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 10t Edition

Jorge Barros Luis | Interest Rate and Credit Risk Models 114



GEOMETRIC BROWNIAN MOTION

e Monte Carlo simulation:

A path for the stock price over 10 weeks can be simulated by sampling repeatedly for €
from @(0, 1) and substituting into equation (14.10). The expression =RAND() in Excel
produces a random sample between 0 and 1. The inverse cumulative normal distribution
1s NORMSINYV. The nstruction to produce a random sample from a standard normal
distribution in Excel 1s therefore =NORMSINV(RAND()). Table 14.1 shows one path
for a stock price that was sampled in this way. The initial stock price is assumed to be
$100. For the first period, € 1s sampled as 0.52. From equation (14.10), the change during
the first time period 1s

AS _ e : o s anm able 14. imulation of stock price when p = 0.15 an
T . ()15 - 0(”92 + 0'30 X 001926 ! lc;l— :)i%(: duSring ll-t\.!veek ;elt'io;s.p = 015 and

-

Stock price Random sample  Change in stock price
T S at start of period for e during period

AS = 0.00288S + 0.041685¢ 100.00 0.52 2.45
102.45 1.44 6.43

108.88 —0.86 —3.58

105.30 1.46 6.70

112.00 —0.69 —2.89

109.11 ~0.74 —3.04

106.06 0.21 1.23

Source: Hull, John (2018), “Options, Futures and 107.30 —|-1(3 —4.60
Other Derivatives”, Pearson Prenctice Hall, 10th 102.69 0.73 341
. 106.11 1.16 543
Edition 111.54 2.56 12.20
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GEOMETRIC BROWNIAN MOTION

e Correlated processes
d.l'l _Gldt+ b[ d:l and d_\': ‘_azdf+b2d."3

A.l'l —alAt+’)l€lV At 'dl'ld A.\'g —a:At+b3€:V At

If x, and x, have a nonzero correlation p, then the ¢, and ¢, that are used to obtain
movements in a particular period of time should be sampled from a bivariate normal
distribution. Each variable in the bivanate normal distribution has a standard normal
distribution and the correlation between the vanables 1s p. In this situation, we would
refer to the Wiener processes dz; and dz, as having a correlation p.

e, =u and & = pu+ 1 -pv

Source: Hull, John (2018), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 10t Edition
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ITO’S LEMMA

e An option price (G) is a function of the underlying asset’s price
and time.

e Therefore, it is important to understand the behavior of
functions of stochastic variables.

e An important result was discovered by K. I1td in 1951 and is
known as Ita’s Iem ma " See_l\'. lt{} “On Stochastic Differential Equations,” Memoirs of the American Mathematical Society,

4 (1951): 151

e Assuming that a variable x follows an It6 process:

dx = alx,t)dt 4+ b(x, t)dz

where dz 1s a Wiener process and a and b are functions of x and t. The variable x has a
drift rate of @ and a variance rate of b™. It6’s lemma shows that a function G of x and ¢

follows the process
2
i = (2 +aG+ asz dt+ b,
ox dt Bx - 0x
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ITO’S LEMMA

e Thus, G also follows an 1t6 process with a drift rate

0G 3G G e

wita Ttz

and a variance rate of

dx = a(x, t)dt + b(x, 1) dz

e Assuming that the stock price lows a Geometric Brownian
Motion, with constant i and o

e From Ito’s Lemma it follows that

aG aG .G 4 4 aG
dG = ( ',uS+ 41 :a'S') d
a8 a < as? ‘ as

- . 06 3G 96 oG
e ..inline with dG=( atotigs b?‘)dt+abdz
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ITO’S LEMMA

e Therefore, both S and G are affected by the same volatility source —
dz.

e This is in line with the Black-Scholes option pricing formula, as G
(the option price) is determined by the instantaneous volatility of
the returns of the underlying asset price.
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APPLICATION TO FORWARD CONTRACTS

e N g
e Forward: Fj, = §,¢

e Forwardatt: F — Se"7 "

) d(s dG U o dG
e |to’s Lemma => dG = (ﬁuS +8_r+ -é— T U'S') dt +H_S'GSd:

e The stochastic process of F can be defined calculating the derivatives of F
in order to S and t:
aF nT—i1) H:F dF - n(T—t)
—=e" =0, —=-5
as s as- at rSe |
Substituting F for Se™" ™"

dF = [""""uS — rSe"" ")dt + "' oSdz => dF =(u —r)Fdt+ oF dz

e Like S, F follows a GMB, with the same volatility and a trend of u-r
(instead of ).
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PROBABILITY DISTRIBUTION

e From the stochastic process of the rate of returns,

d?S:,udtJrodz

e |ts distribution gets

-ATS§-~¢(uAt o At)

3G 1 *G 1 3G

. = - = —_—= -, —=1 I
e Assuming G=In§ , since 55 -3 = =0, it follows

from the Itd’s lemma that - 2
0‘ .
l \‘dG ( —— )dt+o0dz
2
aG aG .a°G aG
d(}—((;tS’+,(+-£-.(,a. )dt+(09d..
S at | 1382 | s
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PROBABILITY DISTRIBUTION

Since u and o are constant this equatlon 1nd1cates that G = In § follows a generahzed
Wiener process. It has constant drift rate 4 — o /2 and constant variance rate o°. The
change in In § between time 0 and some future time T is therefore normally dlstnbuted
with mean (i — o /2)T and variance ¢°T. This means that

In Sy —In S ~¢[(u—c—7;—-)T, 02T
or ? -
In Sy ~ ¢»[1n So+ (u —3)T, T

e This equation shows that In S; is normally distributed (and S; has a log
normal distribution), with a standard deviation o’ﬁ that is proportional
to the square root of time => the growth rate of the asset price is

normally distributed => the asset price is lognormally distributed.
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PROBABILITY DISTRIBUTION

Figu re 13.1 Légﬁormél distribution.

Source: Hull, John (2009), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 7t Edition
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