2.2. SHORT RATE MODELS

2.2.1. Interest Rate Trees
2.2.2. Continuous-time Single-factor models
2.2.3. Continuous-time Multi-Factor models

2.2.4. Modeling the Term Structure: Affine Models
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2.2.1. Interest Rate Trees

* Focus: How to model the term structure by specifying the
behavior of the short-term interest rate?

* Bond and interest rate derivative prices depend on the
behavior of the risk-free short-term interest rate (or
instantaneous short rate).

¢

* The variable to be modeled by trees will be the
instantaneous short rate.
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2.2.1. Interest Rate Trees

* Why do we use trees? - A tree is a discrete-time
representation of the stochastic process.

* Most trees are binomial, event though trinomial trees are
recommended to value interest rate derivatives.

e At the final nodes, the value of the derivative equals its
pay-off.

e At previous nodes, the value of the derivative is
calculated through a rollback procedure, calculating the
expected value of the derivative according to the
probabilities attached to the different scenarios and
discounting this expected value using the interest rate at
that node.
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2.2.1. Interest Rate Trees

Figure 32.4 Example of the use of trinomial interest rate trees. Upper number at each
node 1s rate; lower number is value of instrument.

E 4q ASsumption:
/J 3
/-/ Probabilities of up, middle and
2% _—"5 : 1oa down are 0.25, 0.5 and 0.25,

I
"1 respectively.

' 0% ~ a Derivative value at Node B:
10% A ‘*:/ C > 10%
035 0.23 “\\ P O [025x34+0.5x14025x%x0)e " =1.11

\\-‘
"'--._\__

" _—~D . s% Derivative value at Node C:

T - 0 _
0 *‘“‘m\\ (025 % 1405x0+0.25x 0e " =023

\\‘\-
R‘"\ | - ¢
3 Derivative value at Node A:

(025 % 1.11 4 0.5 x 0.23 +0.25 x 0)e *"™*" = 0.35
The tree is used to value a derivative that provides a payoff at the end of the second
time step of . “ .
P max[100(R — 0.11), 0] Sou.rce.l Hl:I’”, John (2018)’. Options, Fut.ulres and Other
Derivatives”, Pearson Prenctice Hall, 10t Edition
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2.2.1. INTEREST RATE TREES

» Non-standard branching

Figure 32.5 Alternative branching methods in a trinomial tree.

/|

(a) (b) (c)

Source: Hull, John (2018), “Options, Futures and Other Derivatives”, Pearson Prenctice Hall, 10t Edition

= (b) and (c) are useful to represent mean-reverting interest rates when interest
rates are either very low (and are not supposed to move even lower) or very
high (and are not supposed to move even higher), respectively.
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2.2.1. INTEREST RATE TREES

> General binomial model

= Given the current level of short-term rate r, the next-period short rate can take
only two possible values: an upper value r, and a lower value r, with equal
probability 0.5

" |n period 2, the short-term interest rate can take on four possible values: r,
Fur T T

= More generally, in period n, the short-term interest rate can take on 2" values
=> very time-consuming and computationally inefficient

» Recombining trees

= Means that an upward-downward sequence leads to the same result as a
downward-upward sequence (regardless being binomial or trinomial trees)

= For example, r, =1,
= Only (n+1) different values at period n
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INTEREST RATE TREE - Recombining
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INTEREST RATE TREE — analytical

» We may write down the binomial process as:

Al =1, — Iy = 0%

il

Al =T, — 1 = #(GLALL )+ o (1AL ) &

» Specific case — assuming that the drift and the variance are
proportional to the time increment:

Al =T\ — I = At + oV Atg,
» Continuous-time limit (Merton (1973)):
dr, =r., 4 — I, = uot + cdW,
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INTEREST RATE TREE — calibration

> Goal: to make the model consistent with the current term
structure.

» At date O (working in logs):
Alnr, = Inr,, —Inr, = pAt + GEON/E

(From Al = — N = AT+ oV Atgt)

» As the uncertainty source is the path of the interest rate (up or
down), the difference between interest rates in t+Af will be
originated by the random factor (the deterministic factor will be
the same if the interest rate increases or decreases):

= Inr, —Inr = 26V At or r, =1 exp(2a\/Xt)

» If we take as given an estimate for o and the current yield
curve y,, we iteratively find the valuesr, r, r,, r, r, r, etc.,
consistent with the input data.
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EXAMPLE

» Consider a 2-period tree (t=0 and t=1 => At=1)

» The price 1 year from now of a 2-year Treasury bond (at the par
value, i.e. coupon rate = yield) can take 2 values:

- P, - associated with r, (price with the interest rate increasing)

- P, - associated with r,(price with the interest rate decreasing):

Coupon rate, which is equal tothe NPV at t=1 of the future cash-flows of the bond -
/ yield for a bond at par (at t=0). redemption and the last coupon (y,, the 2-period
yield at t=0, that corresponds to the coupon rate,

P — 100 + y2 and P, = 100 + y2 as it is assumed that the bond is at par value), as in
= q =

u 1471 1471 t=1 there is only one remaining period for the
u | bond => the future cash-flows in t=1 (to be paid in
/ t=2) are the redemption and the last coupon.

r. and r, must be seen as the 2 The uncertainty in t=0 abc?ut the bond pnge in t=1
possible future values in t=0 of stems from the uncertainty about the interest
the 1-period interest rate in t=1 rate, which may have increased or decreased.
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EXAMPLE
» Given that
= Inr, —Inr = 20 At or r, =1 exp(ZG\/Zt)

» Taking expectations at time 0, we find an equation that can be
solved for r, and r,, replacing r, by the previous expression
(and being At = 1) and taking into consideration that

> 100 + y 100+ y
P = 2 and P, = 2

Bond price in t=0 is the u 1_|_ r 1_|_ r
expected value of the u |
future cash-flows — the
coupon in t=1 and the _
bond price also in t=1, l 1st year coupon, as in t=0 we
which is the NPV at t=1 of have 2 coupons ahead
the cash-flows to be paid At =1 /
int=2 [ 100+y, / 100+y, )
The bond price in t=0 is -+ D) + y2
also equal to 100, as it is 1 1 + r| eXp( 20‘) 1 +r
assumed that the bond is \100 = — + |
at par. 2 1+, 1+,
The probability at t=0 for \
each bond price in t=1, \ Discounted by y, as these are cashy/
with r, orr, is %. flows that will occur in t=1
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2.2.2. CT SINGLE FACTOR MODELS

» General expression for a single-factor continuous-time
model (from the continuous time limit - Merton (1973))

dr, = p(t,r, )dt+o(t,r, )dw,

» The term W denotes a Brownian motion - process with
independent normally distributed increments: dw, = gt\/a
= dW represents the instantaneous change.
= |tis stochastic (uncertain)

= |t is a stochastic variable with a normal distribution with zero mean
and variance dt
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WHAT IS A GOOoD MODEL?

» A good model is a model that is consistent with reality

» Stylized facts about the dynamics of the term structure:
= Fact 1: (nominal) interest rates are (usually) positive
= Fact 2: interest rates are mean-reverting

= Fact 3: interest rates with different maturities are imperfectly
correlated

= Fact 4: the volatility of interest rates evolves (randomly) in time

» A good model should also be:
= Tractable

= Parsimonious
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Empirical Facts 1,2 and 4
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Empirical Fact 3

IM 3IM 6M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y | 10Y

IM |1

3M 0992 | 1

6M | 0.775 1 0.775 | 1

1Y 035403 0.637 | 1

2Y |0.214]0.165|042 |0.901 |1

3Y |0.278 10.246 | 0.484 | 0.79 | 0.946 | 1

4Y 1026 |0.225|0.444 | 0.754 1 0913 | 0.983 | 1

5Y 10224 10.179 | 0.381 | 0.737 | 0.879 | 0.935 | 0.981 | 1

6Y |0.2160.168 | 0.352 | 0.704 | 0.837 | 0.892 | 0.953 | 0.991 | 1

7Y 10228 | 0.182 ] 035 | 0.661 | 0.792 | 0.859 | 0.924 | 0.969 | 0.991 | 1

8Y |0.241 | 0.199 | 0.351 | 0.614 | 0.745 | 0.826 | 0.892 | 0.936 | 0.968 | 0.992 | 1

9Y |0.238 | 0.198 1 0.339 | 0.58 | 0.712 ] 0.798 | 0.866 | 0.913 | 0.95 | 0.981 | 0.996 | 1

10Y | 0.202 | 0.158 | 0.296 | 0.576 | 0.705 | 0.779 | 0.856 | 0.915 | 0.952 | 0.976 | 0.985 | 0.99 | 1

Daily changes in French swap markets in 1998
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EQUILIBRIUM ONE-FACTOR CT MODELS OF THE SHORT RATE

» Equilibrium vs No-Arbitrage Models

- Equilibrium models don’t automatically fit today’s TSIR, even though
they can provide an approximate fit to many observed TSIRs, if the
parameters are properly chosen.

- Many traders, when valuing derivatives, argue that they can these
models provide unsatisfactory estimates to bond prices, that may
lead to errors of 25% in option pricing.

- Conversely, no-arbitrage models are designed to be exactly
consistent with the current TSIR.
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EQUILIBRIUM ONE-FACTOR CT MODELS OF THE SHORT RATE

» Equilibrium vs No-Arbitrage Models

- Equilibrium models:
(i) the current TSIR is an output
(ii) the drift of the short rate is not usually a function of time

- No-arbitrage models:

(i) the current TSIR is an input

(ii) the drift is, in general, dependent on time, as the shape of the
initial zero curve governs the average path taken by the short rate

in the future — positively sloped zero curve => positive drift for the
short rate.

Equilibrium models can be transformed into no-arbitrage models by
including a function of time in the drift of the short rate.
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EQUILIBRIUM ONE-FACTOR CT MODELS OF THE SHORT RATE

» The short-term rate is the single factor => endogenous models:
dr = m(r)dt + s(r) dz

1. Rendleman and Bartter dr = prdt + ordz

Rendleman, R. and B. Bartter (1980). "The Pricing of Options on Debt Securities". Journal of
Financial and Quantitative Analysis. 15: 11-24).

Pros:
- More tractable model, as it follows a GMB.

Cons:
- Assumes that interest rates follow a stochastic process similar to stocks, while they usually

exhibit a mean-reversion behavior.
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EQUILIBRIUM ONE-FACTOR CT MODELS OF THE SHORT RATE

2. Vasicek (1977) m(r)=alb—r); s(r)y=0

Vasicek O., 1977, "An Equilibrium Characterization of the Term Structure." Journal
of Financial Economics, 5, 177-188.

Pros:
- More tractable model, due to constant volatility.
- Interest rates are mean-reverting (to b), at a reversion rate (pace) a.

Cons:
- Gaussian distributions for interest rates are not compatible with market implied
distributions.

- Interest rate volatility is often variable, namely during periods of higher uncertainty, when
the estimation of interest rates becomes more complex but also more useful.
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EQUILIBRIUM ONE-FACTOR CT MODELS OF THE SHORT RATE

3. Cox, Ingersoll and Ross (CIR)

Stochastic volatility model =>
dr=a(b —r)dt + U\/;d:’ higher volatility with higher
interest rates.

Cox, Ingersoll, and Ross. 1985, "A Theory of the Term Structure of Interest
Rates", Econometrica, Vol 53, March.

Pros:
- Model closer to reality, as interest rates have stochastic volatilities (higher volatilities with
higher interest rates).

Cons:
- Model becomes less tractable, as it requires the single factor to be positive.
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NO-ARBITRAGE SHORT RATE CT MODELS

1. Ho-Lee (1986)

Ho, T.S.Y., and S.-B. Lee, ““Term Structure Movements and Pricing Interest Rate Contingent
Claims.” Journal of Finance, 41 (December 1986): 1011-29.

dr=0t)dt + o d:z

d(t) defines the average direction that r moves at time t:

Hull-White One-Factor Model (1990)
Hull, J. C., and A. White, “Pricing Interest Rate Derivative Securities,” The Review of Financial
Studies, 3, 4 (1990): 573-92.

Extended version of Vasicek, to provide an exact fit to the initial
TSIR: dr = |6(t) — arldt +odz Or (Ir:a[ﬁ—r] dt +odz

a

Corresponds to Ho-Lee model, with mean reversion at rate a.
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NO-ARBITRAGE SHORT RATE CT MODELS

3. Black-Derman-Toy (1990)

Black, F., E. Derman, and W. Toy, “A One-Factor Model of Interest Rates and Its Application
to Treasury Bond Prices,” Financial Analysts Journal, January/February 1990: 33-39.

dinr =[6(t) — a(t) Inr])dt 4+ o(t)d:z

o' (1)

with a(t) = ) and o'(r) is the derivative of owith respect to t.

- It is similar to Hull-White One-Factor Model, but in logs and with
mean reversion rate a being time-dependent.

- It doesn’t allow negative interest rates.

Constant volatility => ¢'(1)= 0 => a(t)=0 => BDT model: dInr=~6(t)dt + o dz

Log-normal version of Ho-Lee model «—
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NO-ARBITRAGE SHORT RATE CT MODELS

4. Black-Karasinski (1991)

Black, F., and P. Karasinski, ““Bond and Option Pricing When Short Rates Are Lognormal.™
Financial Analysts Journal, July/August (1991): 52-59.

Extended version of BDT (1990) model, where the reversion rate
and volatility are determined independently of each other:

dlnr = |[6(t) — a(t) Inr|dt + o(t)dz

The model is the same as BDT (1990), but with no relation between

a(t) and oft).
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2.2.3. CT MuLti FACTOR MODELS

1. Fong and Vasicek (1991) model - short rate and its
volatility (v) as two state variables

H. G. Fong and O. A. Vasicek: Fixed-income volatility management. Journal of Port-
folio Management, 41-56, 1991.

dr = o7 — r)dt +Jvdz,

dv =y(v —v)dt +Evdz,
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2.2.3. CT MuLTti FACTOR MODELS
2. Longstaff and Schwartz (1992) model

Longstaff, F.A. and E.S. Schwartz, “Interest Rate Volatlity and the Term Structure: A Two
Factor General Equilibrium Model,” Journal of Finance, 47, 4 (September 1992): 1259-82.

= Longstaff and Schwartz (1992) use the same two state variables
(the short rate and its volatility) , but with a different specification.

= The starting point is a two-factor model, where the drift is
governed by the two factors or state variables, while the variance is
a function of only one of them:

d
IR _ WX+ 8Y)di + oVF dz,

Q
= With this specification, it is ensured that the drift and the variance
are not perfectly correlated.
= The dynamics of the state variables are as follows:
dX = (a — bX) dt + VX dZ,
dY = (d —eY) dt + f/Y dZ,.
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2.2.3. CT MuLti FACTOR MODELS

2. Longstaff and Schwartz (1992) model

= With the rescaling of the state variables to x = X /¢ and y = Y /£?,
the dynamics of state variables are as follows:

Bé — at E— 8

dr=(a¢‘y+ﬁn— - a r—B_a

+ \/_‘8:7 , + B YA g
a( B — a) B(B— a)
afB(6— &) BE — ad
5 a r-— ﬁ—av)dt

.,.aﬁ\/ﬂr__vdz +5‘/ i
a( B - «) B(B—a)

where y = a/c?, § = b, n=d/f?, ¢ = e, r is the instantaneous riskless rate,

V]dt

dV = (az'y + B —

where @ = p.c2 and B = (@ - g72);:-2
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2.2.3. CT MuLti FACTOR MODELS

2. Longstaff and Schwartz (1992) model

= Relevant features:
(i) All parameters are positive;
(ii) ris non-negative, since both state variables follow square root processes;
(iii) rhas a long-run stationary distribution with mean and variance:
B a’y  B™n

oy
E[r]=—8—+? Va.1"[r]=282-|-2£2

(iv) Volatility also has a stationary distribution with mean

a’y B aly B
EV] = =5+ = VarlV]= 503 + 5o

(v) rdepends on volatility, but volatility also depends on r;
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2.2.3. CT MuLti FACTOR MODELS

MosST POPULAR MODELS

2. Longstaff and Schwartz
(1992) model

= (Closed-form expressions for
riskless discount bond prices
with zmaturity (7=0=>F=1)
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whera

and

F(r V,r) = A*(r)B*(r)exp(wr + C(7)r + D(1)V),

2¢
(8 + d)exp(pr) — 1) + 24
24
(v+ f)exp(wr) — 1) + 2¢°
ad(exp(yr) — 1)B(7) — By{exp(dr) — 1)A(7)
o (B~ a)
d(exp(d7) — 1) A(7) — d(exp(yr) — 1)B(7)
du( B — a) ’

A(r) =

B{r) =

C(r) =

D7) =

v=£&+ A,
d=V2a+ 8%,
v VBT,

k= y(d+ @)+ v+ ).




2.2.3. CT MuLti FACTOR MODELS

2. Longstaff and Schwartz (1992) model

=  YTM of riskless discount bonds with zmaturity:

Y = —(kr+2yInA(7) + 29 In B(r) + Cizyr + D(2)V) /7

!

= For a given 7 maturity, the yield is a linear function of rand V.
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2.2.3. CT MuLti FACTOR MODELS

2. Longstaff and Schwartz (1992) model

= |t can be shown that:

T—>0=>Yt->r
r—>00 => Yrtends to a constant ¥(¢ — 3) + By — »)

!

= The current values of r and V become less relevant for very distant cash-flows

!

= The current term structure is irrelevant for the determination of very long
interest rates.

Jorge Barros Luis| Interest Rate and Credit Risk Models




2.2.3 — CT MuLti FACTOR MODELS

2. Longstaff and Schwartz (1992) model

= This model offers a much larger variety of shapes than single factor models,
with one inflexion point for the slope and the convexity.

= |nstantaneous expected return for a discount bond:

., (exp(yr) — )Bir)

-
Wh-ay V)

= Subtracting r from the previous result, one obtains the risk premium.

= For a given 7 maturity, the term premium is a linear function of r and V,
depending on A (market price of risk):

= A <0=>term premium > 0.
= A =0=>term premium = 0 => Expectations theory holds.

=  For small 7, the term premium is an increasing function of r.
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3. Balduzzi et al. (1996) models

Balduzzi, P., S. R. Das, S. Foresi, and R. Sundaran, 1996, “A Simple Approach to Three-
Factor Affine Term Structure Models.” The Journal of Fixed Income, 6, 14-31.

= Balduzzi et al. (1996) suggest the use of a three-factor model by
adding the mean of the short-term rate (6) to a 2-factor model.

dr = (r, 8, )dt + 0,(r, V, t)dz dr = (8 - r)dt + \/Vdz
dB = p (6, t)de + 0y(8, t)dw do = (B - 0)dt + ndw
dV = u(V, tdt + 6, (V, t)dy dV = a(b - V)dt + ¢\.’qdy
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