

Evaluation

Carlos J. Costa

Evauation

 After a data scientist has chosen a target variable and completed the prerequisites of transforming data and building a model, one of the final steps is evaluating the model's performance.

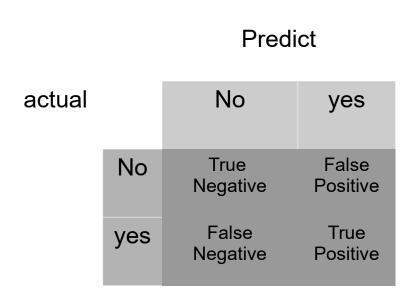
Confusion Matrix

- This matrix describes an output of "yes" vs. "no".
- These two outcomes are the "classes" of each example.

actual		No	yes
	No	90	10
	yes	5	95

Confusion Matrix

- To better interpret the table, it is possible to see it in terms of:
 - true positives (TP): number of positive records rightly predicted as positive
 - true negatives (TN): number of negatives records rightly predicted as negative
 - false positives (FP): number of negative records wrongly predicted as positive
 - false negatives (FN): number of positive records wrongly predicted as negative.



Accuracy

- Overall performance of the model
- Overall, how often is our model correct?

Predict

actual		No	yes
	No	True Negative	False Positive
	yes	False Negative	True Positive

Precision or positive predictive value (PPV)

- How accurate the positive predictions are
 - Precision=TP/(TP+FP)
- Precision helps when the costs of false positives are high.
 - e.g. detect skin cancer

actual

	No	yes
No	True Negative	False Positive
yes	False Negative	True Positive

Recall or true positive rate (TPR)

 Coverage of actual positive sample Recall=TP/(TP+FN)

 Recall helps when the cost of false negatives is high.

- e.g. detect nuclear missil actual

	No	yes
No	True Negative	False Positive
yes	False Negative	True Positive

Specificity or true negative rate (TNR)

Coverage of Actual negative Sample

Predict

actual		No	yes
	No	True Negative	False Positive
	yes	False Negative	True Positive

F1 Score

Hybrid metric useful for unbalanced samples

F1=2((precision x recall)/(precision + recall))

actual

a good F1 score means:

Predict

- low false positives &
- low false negatives
- correctly identifying real threats
- not disturbed by false alarms.

	No	yes
No	True Negative	False Positive
yes	False Negative	True Positive

ROC

- Receiver operating characteristic curve
- Specially useful in presence of binary non balanced datasets.
- ROC Charts present the balance between True Positive rate (recall) and False Positive rate in a graphical way,
- ROC Charts are available through the roc_curve method in the sklearn.metrics

ROC

