Models in Finance - Class 16 Master in Actuarial Science

João Guerra

ISEG

- Model for prices: stochastic process S_t adapted to a filtration $\{\mathcal{F}_t, t \geq 0\}$ (that is, given \mathcal{F}_t we know the value of S_u for all $u \leq t$).
- ullet \mathcal{F}_t is a subset of a larger possible range of past and future events, \mathcal{F}_t .
- Let A be some event contained in \mathcal{F} . Then P(A) is the actual "real world" probability that the event A will occur.
- Suppose also that we have a risk-free cash account which has a value at time t of B_t (we assume that the risk-free rate of interest is constant: that is, $B_t = B_0 e^{rt}$).

Self-financing strategies

- Suppose that at time t we hold the portfolio (φ_t, ψ_t) where φ_t represents the number of units of S_t held at time t and ψ_t is the number of units of the cash bond held at time t.
- Assume that (φ_t, ψ_t) are previsible (φ_t, ψ_t) are known based upon the information up to but not including time t).
- Value of the portfolio at time t: $V(t) = \varphi_t S_t + \psi_t B_t$.
- Consider the instantaneous pure investment gain in the value of this portfolio over the period t up to t+dt (assuming that there is no inflow or outflow of cash during the period [t,t+dt]). This is equal to $\varphi_t dS_t + \psi_t dB_t$.
- ullet The portfolio strategy is self-financing if $dV(t)= arphi_t dS_t + \psi_t dB_t$.

Complete markets

- Let X be any derivative payment (payoff) contingent upon \mathcal{F}_U where U is the time of payment of X (i.e. X is \mathcal{F}_U -measurable and, therefore, depends upon the path of S_t up to time U.
- A replicating strategy is a self-financing strategy (φ_t, ψ_t) , defined for $0 \le t \le U$, such that $V(U) = \varphi_U S_U + \psi_U B_U = X$.
- In other words, for an initial investment of V(0) at time 0, if we follow the self-financing portfolio strategy (φ_t, ψ_t) we will be able to reproduce the
- derivative payment without risk.
- The market is said to be complete if for any such contingent claim X there is a replicating strategy (φ_t, ψ_t) .

- Example of a complete market: the binomial model (we could replicate any derivative payment contingent on the history of the underlying asset price).
- Another example of a complete market is the continuous-time lognormal model for share prices:

$$S_t = S_0 \exp\left(\left(\mu - rac{1}{2}\sigma^2
ight)t + \sigma Z_t
ight)$$
 ,

where Z_t is a standard Brownian motion.

- Two measures P and Q which apply to the same sigma-algebra $\mathcal F$ are said to be equivalent if for any event $E \in \mathcal F: P(E)>0$ if and only if Q(E)>0, where P(E) and Q(E) are the probabilities of E under P and Q respectively.
- For the binomial model, for the equivalence of P and Q the only constraint on the real-world measure P is that at any point in the binomial tree the probability of an up move lies strictly between 0 and 1. The only constraint on Q is the same.

- Suppose that Z_t is a standard Brownian motion under P and let $X_t = \gamma t + \sigma Z_t$ be a Brownian motion with drift under P.
- Is there a measure Q under which X_t is a standard Brownian motion and which is equivalent to P?
- Yes if $\sigma=1$ but no if $\sigma\neq 1$
- In other words: we can change the drift of the Brownian motion but not the volatility.
- Theorem (Cameron-Martin-Girsanov or Girsanov): Suppose that Z_t is a standard Brownian motion under P and that γ_t is a previsible process. Then there exists a measure Q equivalent to P and where $\widetilde{Z}_t = Z_t + \int_0^t \gamma_s ds$ is a standard Brownian motion under Q. Conversely, if Z_t is a standard Brownian motion under P and if Q is equivalent to P then there exists a previsible process γ_t such that $\widetilde{Z}_t = Z_t + \int_0^t \gamma_s ds$ is a standard Brownian motion under Q.

• Assume that under P (geometric Bm): $S_t = S_0 \exp\left(\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma Z_t\right)$. Then $(e^{-rt}S_t)$ is the discounted price):

$$E_P\left[e^{-rt}S_t\right]=e^{(\mu-r)t}$$

and $e^{-rt}S_t$ is not a martingale under P (unless $\mu = r$).

• Take $\gamma_t=\gamma=rac{\mu-r}{\sigma}$ and define $\widetilde{Z}_t=Z_t+\int_0^t\gamma_sds=Z_t+rac{(\mu-r)}{\sigma}t$. Then:

$$egin{aligned} S_t &= S_0 \exp\left(\left(\mu - rac{1}{2}\sigma^2
ight)t + \sigma\widetilde{Z}_t - (\mu - r)t
ight) \ &= S_0 \exp\left(\left(r - rac{1}{2}\sigma^2
ight)t + \sigma\widetilde{Z}_t
ight). \end{aligned}$$

By the Cameron-Martin-Girsanov theorem, exists Q equivalent to P such that \widetilde{Z}_t is a Q-standard Bm.

• And clearly, we have (for u < t):

$$\begin{split} E_Q\left[e^{-rt}S_t|\mathcal{F}_u\right] &= \\ &= e^{-rt}S_uE_Q\left[\exp\left(\left(r-\frac{1}{2}\sigma^2\right)(t-u)+\sigma\left(\widetilde{Z}_t-\widetilde{Z}_u\right)\right)\right] \\ &= e^{-ru}S_uE_Q\left[\exp\left(\left(-\frac{1}{2}\sigma^2\right)(t-u)+\sigma\left(\widetilde{Z}_t-\widetilde{Z}_u\right)\right)\right] \\ &= e^{-ru}S_ue^{\left(-\frac{1}{2}\sigma^2\right)(t-u)+\frac{1}{2}\sigma^2(t-u)} = e^{-ru}S_u \end{split}$$

• Therefore, the discounted price $e^{-rt}S_t$ is a Q-martingale.

- Suppose that X_t is a P-martingale and Y_t is another P-martingale.
- Martingale Representation Theorem (MRT): Exists a unique previsible process ϕ_t such that

$$Y_t = Y_0 + \int_0^t \phi_s dX_s$$
 (or: $dY_t = \phi_t dX_t$)

if and only if there is no other measure equivalent to P under which X_t is a martingale.

5 step method or martingale method

- ullet Establish the equivalent martingale measure Q.
- Propose a fair price for the derivative V_t and its discounted value $F_t = e^{-rt}V_t$.
- **③** Use the MRT to construct a hedging strategy (portfolio) (ϕ_t, ψ_t) .
- **3** Show that the hedging strategy (ϕ_t, ψ_t) replicates the derivative payoff at time n.
- **5** Therefore V_t is the fair price of the derivative at time t.