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Volatility: Introduction

Half of the Sveriges Riksbank Prize in Economic Sciences in Memory
of Alfred Nobel 2003 was awarded to Robert F. Engle III “for methods
of analyzing economic time series with time-varying volatility (ARCH)”
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Volatility: Introduction

The volatility of an investment is a measure of its risk. Usually
defined as the variance of the returns on the investment.
Volatility is an important ingredient in:

portfolio selection;
risk management;
option pricing.

Empirical Evidence: Daily financial returns display volatility
clustering: periods of high volatility alternate with more tranquil
periods.

This forms the basis for the Autoregressive-Conditional
Heteroskedasticity model (Robert Engle) and the Generalized
Autoregressive-Conditional Heteroskedasticity model (Tim
Bollerslev).
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Volatility: Introduction

Daily log-returns on IBM stock price and Dow Jones index, March
1990 – March 2005
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Historical Volatility

A first simple estimator is historical volatility, i.e., the sample
variance of the most recent m observations (often m = 250, one
year).
Denote Rt the daily log-return, that is if Pt is the investment in
period t : Rt = ∆ log(Pt).
Historical volatility is defined as

σ2
t,HIST =

1
m

m�1

∑
j=0

R2
t�1�j.

(Typically its sample average is very close to zero). This is an
estimate of the volatility over day t, made at the end of day t� 1.)
Main disadvantages:

either noisy (small m), or reacts slowly to new information (large
m);
“ghosting” feature: large shock leads to higher volatility for exactly
m periods, then drops out.
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RiskMetrics

Problems with historical volatility are addressed by replacing equally
weighted moving average by an exponentially weighted moving average
(EWMA), also used in JPMorgan’s RiskMetrics system:

σ2
t,EWMA = (1� λ)

∞

∑
j=0

λjR2
t�1�j

= λσ2
t�1,EWMA + (1� λ)R2

t�1, 0 < λ < 1.

This means that observations further in the past get a smaller weight.
Remarks:

In practice we do not have Rt�∞, but the second equation can be
started up by an initial estimate / guess σ2

0,EWMA.
For daily data, RiskMetrics recommends λ = 0.94.
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Volatility: historical, RiskMetrics

Historical (MA) and EWMA volatilities (λ = 0.8, 0.94, 0.99) of DJ
index
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The ARCH(1) model
The AR(1) model Yt = c+ φYt�1 + εt (assuming that εt is a
martingale difference sequence) can be formulated as
Et�1(Yt) = c+ φYt�1 where Et�1(.) = E(.jFt�1) where Ft�1 is the
information until and including period t� 1. The first-order
autoregressive-conditional heteroskedasticity (ARCH(1)) model for a
return Rt is an AR(1) for R2

t :

Et�1(R2
t ) = ω+ αR2

t�1,

assuming that Et�1(Rt) = 0. This model can be written as

σ2
t = vart�1(Rt)

= Et�1(R2
t )

= ω+ αR2
t�1.

where vart�1(.) = var(.jFt�1). In practice we need to allow for
Et�1(Rt) = µt 6= 0. Then Rt = µt + ut, and the model is AR(1) for u2

t :

σ2
t = vart�1(Rt) = Et�1(u2

t ) = ω+ αu2
t�1.
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Properties of ARCH(1)

It is possible to show that ut is stationary if and only if 0 � α < 1. The
variance is

σ2 = var(ut) =
ω

1� α

Defining ηt = u2
t � σ2

t , the ARCH(1) model is an AR(1) model for u2
t :

u2
t = ω+ αu2

t�1 + ηt,

with Et�1(ηt) = 0, hence E(ηt) = 0 and cov(ηt, ηt�l) = 0 for l � 1.
Assuming that var(ηt) is finite u2

t is stationary.
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The ARCH(q) model
When trying to estimate ARCH models one might find that more lags
are needed, leading to ARCH(q):

σ2
t = ω+ α1u2

t�1 + . . .+ αqu2
t�q.

Note: Variances must be positive, a sufficient condition is ω > 0,
αi � 0, i = 1, . . . , q.

A necessary and sufficient condition for stationarity of ut is that
∑

q
i=1 αi < 1 [and ω > 0, αi � 0, i = 1, . . . , q.].

Corresponds to an AR(q) model for u2
t :

u2
t = ω+ α1u2

t�1 + ...+ αqu2
t�q + ηt,

with ηt = u2
t � σ, Et�1(ηt) = 0, hence E(ηt) = 0 and

cov(ηt, ηt�l) = 0 for l � 1 and assuming that var(ηt) is finite.
Note that the roots of A(z) = 1� α1z� α2z2 � ...� αqzq must be
outside the unit circle for u2

t to be stationary.
If ω > 0, αi � 0, i = 1, . . . , q this is equivalent to ∑

q
i=1 αi < 1.

We can identify the model by checking the ACF and PACF of u2
t
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The GARCH(1,1) model

A simpler structure than ARCH(q) is an ARMA(1,1) for R2
t or u2

t ,
which leads to the generalized ARCH model of orders (1,1)
(GARCH(1,1)):

σ2
t = ω+ αu2

t�1 + βσ2
t�1, ω > 0, α � 0, β � 0.

For β < 1 this is equivalent to an ARCH(∞) model

σ2
t =

ω

1� β
+

∞

∑
j=0

βjαu2
t�1�j.

Advantage: We have less parameters to estimate.
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The GARCH(1,1) model

The GARCH(1,1) model is stationary if and only if α+ β < 1 and
ω > 0, α � 0, β � 0. Thus

σ2 =
ω

1� α� β
.

It corresponds to an ARMA(1,1) model for u2
t :

u2
t = ω+ (α+ β)u2

t�1 + ηt � βη2
t�1

with ηt = u2
t � σ2

t .Et�1(ηt) = 0, hence E(ηt) = 0 and
cov(ηt, ηt�l) = 0 for l � 1. We assume that var(ηt) is finite.

The ACF and PACF of u2
t in case of stationary GARCH(1,1) are

both exponentially decaying, no cut-off point;
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GARCH(q,s) and IGARCH
Further generalisation GARCH (q,s)

σ2
t = ω+∑q

`=1 αlu2
t�` +∑s

j=1 βjσ
2
t�j, ω > 0, αl � 0, βj � 0

Remarks:

Corresponds to ARMA(p, s) for u2
t with p = max fq, sg

Stationary if and only if ∑
q
l=1 αl +∑s

j=1 βj < 1 [and
ω > 0, αl � 0, βj � 0].

The acf and pacf of u2
t in case of stationary GARCH(q,s) are both

exponentially decaying, no cut-off point;
ω > 0, αl � 0, βj � 0 sufficient (not necessary) for σ2

t > 0.

Model with unit root (α1 + β1 = 1 in case of GARCH(1,1)):
Integrated GARCH (IGARCH): infinite variance, no
mean-reversion in volatility.
IGARCH(1,1) with ω = 0 and Rt = ut leads to RiskMetrics /
EWMA.

σ2
t = (1� β1)R

2
t�1 + β1σ2

t�1.
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The GARCH model

Some other properties:

Let σt =
q

σ2
t .The standardized returns

εt =
Rt � µt

σt
=

Rt � Et�1(Rt)p
vart�1(Rt)

satisfy Et�1(εt) = 0 and vart�1(εt) = 1. Therefore the model may
be formulated as

Rt = µt + ut = µt + σtεt|{z}
ut

,

σ2
t = ω+ αu2

t�1 + βσ2
t�1.

Often it is assumed that εt are independent and identically
distributed as N(0, 1).

14 / 37



Kurtosis of GARCH models
For any weakly stationary process xt with constant E(x4

t ) define
kurtosis as

kx =
E[(xt � E(xt))4]

var(xt)2
.

Measures the fatness of the tails of a probability density function.

If xt � N(µx, σ2
x), then kx = 3. Excess Kurtosis Kx = kx � 3.

Empirical evidence: financial data often displays more kurtosis
than that permitted under the assumption of normality (fat tails.)
ut = σtεt with E(εt) = 0 var(εt) = 1 and assuming that εt are
i.i.d.:

ku =
E[σ4

t εt
4]

var(σtεt)2
=

E[σ4
t ]

E[σ2
t ]

2
kε � kε.

because by Jensen inequality E(h(X)) � h(E(X)) for a random
variable X if h(.) is a convex function.
Thus if εt � N(0, 1) ku � 3.
Even if εt � N(0, 1), varying σt implies that Rt has non-normal
distribution, with higher kurtosis.
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Estimation of GARCH models

GARCH cannot be estimated by ordinary least-squares. These
models are estimated by conditional maximum likelihood.
General Gaussian GARCH model

Rt = µt(φ) + σt(φ, ψ)εt| {z }
ut

Under the assumption that εt � i.i.d. N(0, 1), and φ are the
regression/ARMA parameters and ψ are the GARCH
parameters.
Example: AR(1)-GARCH(1,1) so

µt = φ0 + φ1Rt�1, σ2
t = ω+ αu2

t�1 + βσ2
t�1

hence φ = (φ0, φ1)
0 and ψ = (ω, α, β)0

σ2
t depends on φ through u2

t�1 = (Rt�1 � µt�1(φ))
2.

Conditional density RtjFt�1 � N(µt, σ2
t )

f (RtjFt�1) =
1q

2πσ2
t (φ, ψ)

exp

 
�1

2
(Rt � µt(φ))

2

σ2(φ, ψ)

!
,
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Estimation of GARCH models
If we assume that µt(φ) and σ2

t (φ, ψ) depend on at most m lags of
Rt, ut and σ2

t
Conditional joint density

f (RT, ..., Rm+1jFm) = (∏T
t=m+1 f (RtjFt�1))

The conditional log-likelihood:

L�(γjFm) = ∑T
t=m+1 `t(γ)

`t(γ) = log f (RtjFt�1),
γ = (φ0, ψ0)0

Starting values for σ2
t and ut, t = 1, ..., m

ut = 0,

σ2
t =

1
T�m ∑T

t=m+1(Rt � µt(φ))
2

Maximization of L�(γjFm) can be done by numerical
optimization algorithms.
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Asymptotic Results

Under general conditions (stationarity, existence of moments)
p

T(γ̂CML � γ0)
D! N(0, A�1

0 )

where A0 = E[� ∂2`t(γ0)
∂γ∂γ0 ] if the assumption of gaussianity holds

(where γ0) are the true values of the parameters.
If we are not sure that RtjFt�1 are normally distributed and you
use it anyway then we may still use the same estimation
technique.
This is called quasi-maximum likelihood estimator (QML).
QML is consistent under correct specification of both the
conditional mean and the conditional variance.
In this case

p
T(γ̂CML � γ0)

D! N(0,V),
V = A�1

0 B0A�1
0

where B0 = E[ ∂`t(γ0)
∂γ

∂`t(γ0)
∂γ0 ].
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Asymptotic Results

Standard errors of γ̂CML can be obtained from the sandwich
estimator for the asymptotic variance of θ̂:

V̂ = Â�1
0 B̂0Â�1

0
p! V

where

Â0 =
1
T ∑T

t=m+1[�
∂2`t(γ̂CML)

∂θ∂θ0
],

B̂0 =
1
T ∑T

t=m+1[
∂`t(γ̂CML)

∂θ

∂`t(γ̂CML)

∂θ0
]

This in turn can be used to construct t-tests.
The standard errors computed via this robust method are known
(in this context) as Bollerslev-Wooldridge standard errors.
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Estimation of GARCH models
Example:
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Estimation of GARCH models

Fitted values for the variances
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Asymmetry and the news impact curve

The news impact curve (NIC) is the effect of ut on σ2
t+1, keeping σ2

t
and the past fixed.
For GARCH(1,1), this is the parabola
NIC(utjσ2

t = σ2) = A+ αu2
t , with A = ω+ βσ2. This has a

minimum at ut = 0, and is symmetric around that minimum.
Often this is unrealistic: a large negative shock (stock market
crash) is expected to increase volatility much more than a large
positive shock.
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Asymmetry and the news impact curve

This is known as leverage effect:

Example:

# value of firm’s stock
) # equity value of the firm
) " debt-to-equity ratio (leverage)
) shareholders perceive

future cashflows more risky.

Two popular proposals to deal with this issue
Nelson’s exponential GARCH (EGARCH);
Glosten, Jagannathan and Runkle’s GJR-GARCH (also known as
threshold GARCH, TGARCH.)
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EGARCH

The EGARCH(1,1) model is

log σ2
t = (1� β)ω+ γεt�1 + α(jεt�1j � E jεt�1j) + β log σ2

t�1,

with εt = ut/σt as usual. If εt � i.i.d. N(0, 1) then E jεtj =
p

2/π.
Properties:

NIC is asymmetric if and only if γ 6= 0; leverage effect if γ < 0;
σ2

t is positive for all parameter values;
γεt�1 + α(jεt�1j � E jεt�1j) is an i.i.d. mean-zero shock to
log-volatility;
if jβj < 1, log σ2

t is stationary with mean ω;
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GJR-GARCH (or TARCH, threshold GARCH)

The GJR-GARCH(1,1) model is

σ2
t = ω+ αu2

t�1 + γu2
t�1It�1 + βσ2

t�1.

where

It�1 =

�
1 if ut�1 < 0
0 if ut�1 � 0 .

Distribution of ut is symmetric.
Properties:

NIC is asymmetric if and only if γ 6= 0; leverage effect if γ > 0;
σ2

t is positive if ω > 0, α � 0, γ � 0, β � 0;

u2
t is stationary if 0 � α+ 1

2 γ+ β < 1, with unconditional

variance σ2 = ω/
h
1� α� 1

2 γ� β
i
.

For both EGARCH and TGARCH, distribution of one-period
returns rt = ut is symmetric, but multi-period returns
rt[k] = rt + ...+ rt�k+1 have an asymmetric distribution.
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GJR-GARCH (or TARCH, threshold GARCH)

Example: Estimated NIC for S&P 500 index
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GJR-GARCH (or TARCH, threshold GARCH)

Output:
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GARCH-in-mean

Most models in finance suppose that investors should obtain a
higher return for taking additional risks.
We can model this by letting the return depend on the risk,. We
would obtain

Rt = µt + σtεt|{z}
ut

, εt � N(0, 1)

µt = E(RtjFt�1) = µ+ δσ2
t

σ2
t = ω+ αu2

t�1 + βσ2
t�1.

known as GARCH-M model.
If δ > 0, then " δ )" Rt thus δ can be interpreted as a risk
premium.
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Non-Gaussian Likelihoods for GARCH models.

The Student’s t(d) distribution is well known from linear
regression as the distribution of t-statistics, where the degrees of
freedom d is given by T� k.
The same family of distributions can be defined for any
(non-integer) d > 0.
Small values of d correspond to fat tails: for d = 1 we obtain the
Cauchy distribution, which has no finite mean or variance.
As d ! ∞, we approach the N(0, 1) distribution (in fact it is close
to N(0, 1) if d = 30).
For d > 2, the variance of a t(d) random variable X is d/(d� 2);

the distribution of ε = X/
p

d/(d� 2) is called standardized t(d),
denoted t̃(d).
For d > 4 the excess kurtosis is 6/(d� 4). The distributions are
symmetric around 0 (hence mean and skewness are 0).
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Non-Gaussian Likelihoods for GARCH models.

Student’s t densities:
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Non-Gaussian Likelihoods for GARCH models.

The GARCH model Rt = µt + σtεt, σ2
t = ω+ αu2

t�1 + βσ2
t�1, may

be extended to εt � t̃(d), where d is an extra parameter that can
be estimated by maximum likelihood.
In practice this GARCH-t model often gives a substantially better
fit than the Gaussian model.
Potential problem: If εt does not have the t̃(d) distribution the
Quasi-Maximum Likelihood estimator is not consistent if the true
distribution of εt is not symmetric about zero even if the the
conditional mean and conditional variances are well specified.
Recall that if it is used the incorrect assumption that εt � N(0, 1)
to construct the likelihood function the Quasi-Maximum
Likelihood estimator is still consistent provided that the
conditional mean and conditional variances are well specified..
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Estimation of GARCH-t :
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Specification Testing

Suppose you estimated an ARMA model and you would like to test if
the model is well specified:

Diagnostic tests are based on the residuals ût.
If there are no ARCH effects we should find no autocorrelation
in û2

t .
Therefore, the model can be tested using Q-statistics for û2

t . The
latter statistic tests if there are ARCH effects.
Suppose that we would like to test that there are no ARCH
effects.
We can consider the model
Et�1(u2

t ) = γ0 + γ1u2
t�1 + . . .+ γmu2

t�m and if there are no
ARCH effects we must have H0 : γ1 = ... = γm = 0
Lagrange-Multiplier (LM) test against ARCH, which is obtained

by LM = T � R2 D! χ2(m) in the regression

û2
t = γ̂0 + γ̂1û2

t�1 + . . .+ γ̂mû2
t�m + et.
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Specification Testing in GARCH models

Suppose now that you estimated a GARCH(q,s) model.
How do you test if the model is well specified?

Diagnostic tests are based on the standardized residuals ε̂t = ût/σ̂t.
If µt and σt are correctly specified, we should find no
autocorrelation in ε̂t.
We can apply the Q-statistics and Lagrange-Multiplier test for
serial correlation in ε̂t.

How can we test if the model assumed for the conditional variance is well
specified?

We would like to test H0 : Et�1(u2
t ) = σ2

t which is equivalent to
Et�1(ε

2
t � 1) = 0 with εt = ut/σt.

It is standard practice to apply the tests for ARCH effects
described above, though they are not valid after the estimation of
the GARCH model.
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Specification Testing in GARCH models

A valid Lagrange-Multiplier (LM) test against ARCH is constructed in
the following way:

We can consider the model
Et�1(ε

2
t ) = γ0 + γ1ε2

t�1 + . . .+ γmε2
t�m and if there are no further

ARCH effects we must have H0 : γ1 = ... = γm = 0.
Let ψ be the parameters of the conditional variance σ2

t and define
the vector

xt =
1
σ̂2

t

∂σ̂2
t

∂ψ
0 ,

where ∂σ̂2
t

∂ψ
0 is the derivative of σ2

t with respect to ψ estimated

under H0.
Lagrange-Multiplier (LM) test against ARCH, which is obtained

by LM = T � R2 D! χ2(m) in the regression

ε̂2
t = γ0 + γ1 ε̂2

t�1 + . . .+ γm ε̂2
t�m + δ0xt + et.
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Volatility forecasting

GARCH specification of

σ2
h(1) = var(uh+1jFh)

= E(u2
h+1jFh)

by construction gives one-step ahead forecasts of u2
h+1.

Multi-step forecasts involves (using tower property) for ` � 1

σ2
h(`) = var(uh+`jFh)

= E(u2
h+`jFh)

= E(E(u2
h+`jFh+`�1)jFh)

= E(σ2
h+`jFh)

For example for the GARCH(1,1) model we have

σ2
h(`) = E(σ2

h+`jFh)

= E(ω+ αu2
h+`�1 + βσ2

h+`�1jFh)

= ω+ (α+ β)σ2
h(`� 1)
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Volatility forecasting

If α+ β < 1, where σ2 = ω/(1� α� β)

σ2
h(`) = σ2 + (α+ β)`�1(σ2

h(1)� σ2)! σ2

as `! ∞.
If α+ β = 1 (IGARCH) then σ2

h(`) = σ2
h(1) +ω(`� 1)
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