Advanced Econometrics

GARCH Models

Topics:
@ Volatility: historical, RiskMetrics
@ The ARCH and GARCH models
@ Estimation of GARCH models
@ Testing of GARCH models
@ Asymmetry and the news impact curve
o GARCH-in-mean
@ Non-Gaussian Likelihoods for GARCH models.
@ Specification Testing in GARCH models
@ Volatility forecasting



Volatility: Introduction

Half of the Sveriges Riksbank Prize in Economic Sciences in Memory
of Alfred Nobel 2003 was awarded to Robert F. Engle III “for methods
of analyzing economic time series with time-varying volatility (ARCH)”



Volatility: Introduction

The volatility of an investment is a measure of its risk. Usually
defined as the variance of the returns on the investment.
Volatility is an important ingredient in:

@ portfolio selection;
@ risk management;
@ option pricing.
Empirical Evidence: Daily financial returns display volatility

clustering: periods of high volatility alternate with more tranquil
periods.

@ This forms the basis for the Autoregressive-Conditional
Heteroskedasticity model (Robert Engle) and the Generalized
Autoregressive-Conditional Heteroskedasticity model (Tim
Bollerslev).



Volatility: Introduction

Daily log-returns on IBM stock price and Dow Jones index, March
1990 — March 2005
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Historical Volatility

@ A first simple estimator is historical volatility, i.e., the sample
variance of the most recent m observations (often m = 250, one

year).
@ Denote R; the daily log-return, that is if P; is the investment in
period t : Ry = Alog(Py).

e Historical volatility is defined as

5 1771 1
TLHIST = ZRt 1-j°

(Typically its sample average is very close to zero). This is an
estimate of the volatility over day ¢, made at the end of day t — 1.)

@ Main disadvantages:

o either noisy (small m), or reacts slowly to new information (large
m);

e “ghosting” feature: large shock leads to higher volatility for exactly
m periods, then drops out.
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RiskMetrics

Problems with historical volatility are addressed by replacing equally
weighted moving average by an exponentially weighted moving average
(EWMA), also used in JPMorgan’s RiskMetrics system:

o
2 2
UrEWMA = (1-2) 2 )\]Rt_1_]'
j=0
= Aciipwma T (L-ARE;,  0<A<L
This means that observations further in the past get a smaller weight.

Remarks:

@ In practice we do not have R;_«, but the second equation can be
started up by an initial estimate / guess U%’EWM A

@ For daily data, RiskMetrics recommends A = 0.94.



Volatility: historical, RiskMetrics

Historical (MA) and EWMA volatilities (A = 0.8,0.94,0.99) of DJ

index
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The ARCH(1) model

The AR(1) model Y; = ¢ + ¢Y;_1 + & (assuming that ¢; is a
martingale difference sequence) can be formulated as

Ei 1(Yt) = c+ ¢Y;_1 where E;_1(.) = E(.|F;_1) where F;_1 is the
information until and including period t — 1. The first-order

autoregressive-conditional heteroskedasticity (ARCH(1)) model for a
return R; is an AR(1) for RtZ:

Er 1(Rf) = w+aR? 4,
assuming that E;_1(R;) = 0. This model can be written as
of = wvarq(Re)

= E_1(R})
= w + DCR:tzil.

where var;_1(.) = var(.|F;_1). In practice we need to allow for
Ei—1(Rt) = p; # 0. Then Ry = p, + uy, and the model is AR(1) for utzz

07 =var,_1(Ry) = E_1(u?) = w + au? .



Properties of ARCH(1)

It is possible to show that u; is stationary if and only if 0 < & < 1. The

variance is
w

2
o =var(us) =
( t) 1—a

Defining 7, = u% — 0'%, the ARCH(1) model is an AR(1) model for u% :

up = W+ aup_g + g,

with E;_1(17,) = 0, hence E(7,) = 0 and cov(#,,1,_;) = 0 forl > 1.
Assuming that var(1,) is finite u? is stationary.



The ARCH(q) model

When trying to estimate ARCH models one might find that more lags
are needed, leading to ARCH(q):

0 = w o g+ Ui

Note: Variances must be positive, a sufficient condition is w > 0,
;> 0,i= 1,...,q.
@ A necessary and sufficient condition for stationarity of u; is that
Y1 wi<llandw >0,a;>0,i=1,...,q.]
e Corresponds to an AR(g) model for u? :

ut2 =w+ uqutz_l + ..+ aqu%,q + 14

with 7, = u? — 0, E;_1(,) = 0, hence E(17,) = 0 and
cov(,,1,_;) = 0 for I > 1 and assuming that var(1,) is finite.

o Note that the roots of A(z) =1 — a1z — apz> — ... — 27 must be
outside the unit circle for u? to be stationary.

o Ifw>0,4;>0,i=1,...,q thisis equivalent to Z?:l a; < 1.

@ We can identify the model by checking the ACF and PACF of u?



The GARCH(1,1) model

o A simpler structure than ARCH(g) is an ARMA(1,1) for R? or u?,
which leads to the generalized ARCH model of orders (1,1)
(GARCH(1,1)):

0%:w+auf_1+ﬁat2_1, w>0,a>0p>0.

@ For § < 1 this is equivalent to an ARCH(co) model
w o i
0—% = ﬂ —+ Z ‘[3]0(1/[%717]‘.
j=0

@ Advantage: We have less parameters to estimate.
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The GARCH(1,1) model

@ The GARCH(1,1) model is stationary if and only if « + § < 1 and
w >0, >0,5>0. Thus

2 w
e B
e It corresponds to an ARMA(1,1) model for u? :

uf = w+ (o + B)uy 1 + 1, — P4

with 7, = u? — 02.E;_1(7;) = 0, hence E(,) = 0 and
cov(1,,17,_;) = 0 for | > 1. We assume that var(1,) is finite.

@ The ACF and PACEF of uf in case of stationary GARCH(1,1) are
both exponentially decaying, no cut-off point;



GARCH(q,s) and IGARCH

Further generalisation GARCH (g;s)
0F=w+ ZZ:] wu? , + Z]s':l ,Bj(ff_]-, w>0,a>0,p >0

Remarks:

e Corresponds to ARMA(p, s) for u? with p = max {g,s}

e Stationary if and only if Y, & + Y 1p;<1land
w > 0,0 > O,,Bj > 0].

e The acf and pacf of u? in case of stationary GARCH(q,s) are both
exponentially decaying, no cut-off point;

e w>0,a,>0, ﬁ]- > 0 sufficient (not necessary) for (7% > 0.

@ Model with unit root (1 + B; = 1 in case of GARCH(1,1)):

Integrated GARCH (IGARCH): infinite variance, no
mean-reversion in volatility.
e IGARCH(1,1) with w = 0 and Ry = u; leads to RiskMetrics /
EWMA.
07 = (1—B)RF 1 +Bro7_y-
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The GARCH model

Some other properties:

@ Leto; = ,/U%.The standardized returns

e = Ri—p _ Ri—Ei1(Ry)
7t var_1(Re)

satisfy E;_1 (&) = 0 and var;_1 (&) = 1. Therefore the model may
be formulated as

Ry = }lt+ut:}lt+ Tt€,
Ut
o = w+auiq+poi .

@ Often it is assumed that & are independent and identically
distributed as N(0,1).
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Kurtosis of GARCH models

For any weakly stationary process x; with constant E(x}) define

kurtosis as
o Eltu — E@))]
X — —2
var(xy)

Measures the fatness of the tails of a probability density function.

o Ifx; ~ N(u,, 02), then k, = 3. Excess Kurtosis Ky = k, — 3.

@ Lmpirical evidence: financial data often displays more kurtosis
than that permitted under the assumption of normality (fat tails.)
@ u; = oe; with E(g) = 0 var(e;) = 1 and assuming that & are
iid.
_ Eoted) _ B,
var(oer)?  E[o?)?
because by Jensen inequality E(h(X)) > h(E(X)) for a random
variable X if h(.) is a convex function.
o Thusife ~ N(0,1) ky, > 3.
@ Evenif e ~ N(0,1), varying oy implies that Ry has non-normal
distribution, with higher kurtosis.
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Estimation of GARCH models

@ GARCH cannot be estimated by ordinary least-squares. These
models are estimated by conditional maximum likelihood.
@ General Gaussian GARCH model

Rt = py(p) + oe(¢p, e
o —

N
Ut

@ Under the assumption that & ~ i.i.d. N(0,1), and ¢ are the
regression/ ARMA parameters and ¢ are the GARCH
parameters.

e Example: AR(1)-GARCH(1,1) so

u =P+ ¢1Ri1, 07 = w +auf | + por_

hence ¢ = (¢, ¢;)" and ¢ = (w, &, B)’
e o7 depends on ¢ through u? | = (Ri_1 — p;_1(¢))>
o Conditional density R¢|F;_1 ~ N(p,,07)

_ 2
F(Ri|Fiy) = 1<Rtw<¢>>> ,

2102 (¢, ) oF <_2 (¢, )
D 16/ 37



Estimation of GARCH models

If we assume that 1, (¢) and 0?(¢, ) depend on at most m lags of
Rt, uy and (7%
Conditional joint density

FRrs oy Rupga |F) = ([T sy f(RilFe1))

@ The conditional log-likelihood:

L) = Ll b
t(y) = logf(RelFi-1),
v o= (@)
Starting values for (th andu,t=1,..,m
u = 0,

1
op = mZZ:mH(Rt—%(GD))Z

@ Maximization of L£*(-y|Fy,) can be done by numerical
optimization algorithms.
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Asymptotic Results

@ Under general conditions (stationarity, existence of moments)
N D _
VT(¥emr — 10) = N(0,45 1)

where Ay = E[— a?fy‘l—gzﬁ’)] if the assumption of gaussianity holds
(where 1) are the true values of the parameters.

e If we are not sure that R;|F;_; are normally distributed and you
use it anyway then we may still use the same estimation
technique.

o This is called quasi-maximum likelihood estimator (QML).

@ QML is consistent under correct specification of both the
conditional mean and the conditional variance.

@ In this case

X« D
ﬁ('YCML —7) — N(O,V),
V = A;'BiA,!

where By = E[%ﬁ:o)%y))]‘
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Asymptotic Results

@ Standard errors of 4y, can be obtained from the sandwich
estimator for the asymptotic variance of 6:

~

V=A7"BA; Ly

where
. 1 T 20 (Yemr)
Ay = *thmﬂ[—w}f
. aft “YCML) 9l (Yemr)
By = Et m+1 20’ ]

This in turn can be used to construct t-tests.

@ The standard errors computed via this robust method are known
(in this context) as Bollerslev-Wooldridge standard errors.

B E S R



Estimation of GARCH models

Example:

Depandant Variable: ¥

Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 12031980 11/03/2005

Included observations: 3915 after adjustments
Convergence achieved after 15 terations
Bollerslev-Wooldrige robust standard errors & covariance
GARCH = C(2) + C{3YRESID{-1)*2 + C{4)*GARCH(-1)

Coefficient Std. Error z-Statistic Prob.

C 0.053344 0012855 4149691 00000

Variance Equation

C 0.008021 0002352 3.353844 0.0008
RESID{-1)*2 0058614 0010235 5. 727463 0.0000
GARCH(-1) 0.534423 0009352 4048822 00000
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Estimation of GARCH models

@ Fitted values for the variances
4

0
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‘ —— Conditional standard deviation ‘
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Asymmetry and the news impact curve

o The news impact curve (NIC) is the effect of u; on o "1, keeping o?
and the past fixed.

e For GARCH(1,1), this is the parabola
NIC(ut|0? = 0?) = A+ au?, with A = w + Bo?. This has a
minimum at u; = 0, and is symmetric around that minimum.

@ Often this is unrealistic: a large negative shock (stock market
crash) is expected to increase volatility much more than a large
positive shock.



Asymmetry and the news impact curve

This is known as leverage effect:

@ Example:

| wvalue of firm's stock
= | equity value of the firm
= T debt-to-equity ratio (leverage)
= shareholders perceive
future cashflows more risky.

@ Two popular proposals to deal with this issue
e Nelson’s exponential GARCH (EGARCH);

o Glosten, Jagannathan and Runkle’s GJR-GARCH (also known as
threshold GARCH, TGARCH.)



EGARCH

The EGARCH(1,1) model is
logo} = (1—B)w +ver1+a(le1| — Ele1]) + Blogor_y,

with & = u;/0 as usual. If ¢ ~ i.i.d. N(0,1) then E |&;| = +/2/ 7.
Properties:
@ NIC is asymmetric if and only if v # 0; leverage effect if v < 0;
e 07 is positive for all parameter values;
@ ve_1 + a(|e—1| — E |g—1]) is an i.i.d. mean-zero shock to
log-volatility;
e if |B| < 1,1logo? is stationary with mean w;



GJR-GARCH (or TARCH, threshold GARCH)

The GJR-GARCH(1,1) model is

2 2 2 2
0 = w +auy  +yup 4l1 + Boy_q.

where
I . l lf U1 < 0
LTV 0 i wq >0

Distribution of u; is symmetric.
Properties:

@ NIC is asymmetric if and only if v # 0; leverage effect if v > 0;

e o7 is positiveif w > 0,4 > 0,7 >0, > 0;

e u? is stationary if 0 < & + %'y + B < 1, with unconditional
variance 02 = w/ {l — 0 — %7 — ,B}

@ For both EGARCH and TGARCH, distribution of one-period

returns ry = u; is symmetric, but multi-period returns
relk] = r¢ + ... + 1411 have an asymmetric distribution.
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GJR-GARCH (or TARCH, threshold GARCH)

Example: Estimated NIC for S&P 500 index

] —— GARCH
L0 —--EGARCH
\  |=—TGARCH




GJR-GARCH (or TARCH, threshold GARCH)

Output:

Dependent Vanable: ¥

Method: ML - ARCH (Marquardt) - Normal distribution

Sample (adjusted): 127031980 11/03/2005

Included observations: 3815 after adjusiments

Convergence achieved after 17 Rerations

Bollerslev-Wooldrige robust standard ermors & covariance

GARCH = C{2) + C{I)*RESID{-1)"2 + C{4)*"RESID{-1}*2*{RESID{-1}=0) +
Ci5"GARCHI-1)

Coefficient Std. Ermror z-Statistic Prob.

C 0.031402 0.012706 2471433 0.0135

‘ariance Equation

C 0.012283 0.002949 4168243 0.0000
RESID(-1"2 0.009436 0.009670 0.975799 03202
RESID{-1*2*(RESID{-1)=0) 0.091836 0.017677 5185257 0.0000
GARCH(-1) 0.931539 0.009270 1004872 00000




GARCH-in-mean

@ Most models in finance suppose that investors should obtain a
higher return for taking additional risks.

@ We can model this by letting the return depend on the risk,. We
would obtain

Rt = }lt+ 0't€t,€tNN(0,1)
Ut

w = E(R|Fi_1) = p+ 607

07 = w+aupy+poiy.

known as GARCH-M model.

@ If 6 > 0, then T 6 =T Ry thus J can be interpreted as a risk
premium.



Non-Gaussian Likelihoods for GARCH models.

@ The Student’s t(d) distribution is well known from linear
regression as the distribution of t-statistics, where the degrees of
freedom d is given by T — k.

@ The same family of distributions can be defined for any
(non-integer) 4 > 0.

@ Small values of d correspond to fat tails: for d = 1 we obtain the
Cauchy distribution, which has no finite mean or variance.

@ Asd — oo, we approach the N(0, 1) distribution (in fact it is close
to N(0,1) if d = 30).

@ Ford > 2, the variance of a t(d) random variable X is d/(d — 2);

o the distribution of ¢ = X/+/d/(d — 2) is called standardized t(d),
denoted f(d).

@ For d > 4 the excess kurtosis is 6/ (d — 4). The distributions are
symmetric around 0 (hence mean and skewness are 0).
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Non-Gaussian Likelihoods for GARCH models.

Student’s t densities:

0.40¢
[|—1(2)
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035F | —1(30)
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Non-Gaussian Likelihoods for GARCH models.

@ The GARCH model R; = y, + oy¢y, U% =w+ auffl + /50%71, may
be extended to ¢ ~ f(d), where d is an extra parameter that can
be estimated by maximum likelihood.

@ In practice this GARCH-f model often gives a substantially better
fit than the Gaussian model.

@ Potential problem: If ¢ does not have the #(d) distribution the
Quasi-Maximum Likelihood estimator is not consistent if the true
distribution of & is not symmetric about zero even if the the
conditional mean and conditional variances are well specified.

@ Recall that if it is used the incorrect assumption that &; ~ N(0,1)
to construct the likelihood function the Quasi-Maximum
Likelihood estimator is still consistent provided that the
conditional mean and conditional variances are well specified..
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Estimation of GARCH-t :

Dependent Variable: 1

Method: ML - ARCH (Marquardt) - Student's t distribution
Sampla: 2/01/1981 12M12/2005

Included observations: 6507

GARCH = C(2) + C(3"RESID{-1}*2 + C{4)"GARCH(-1)

Coafficient Std. Error zZ-Statistic Prob.

C 0.000484 9.34E-05 5237805 0.0000

“ariance Equation

C 5.BSE-O7 1.38E-07 4 223580 0.0000
RESID{-1)2 0.045023 0004556 9.795428 0.0000
GARCH(-1) 0.849536 0004807 197.5429 0.0000
T-DIST. DOF 5.829108 0375538 15.52196 0.0000

Log likelinood 2167818  Durbin-Watson stat 1.8736M1




Specification Testing

Suppose you estimated an ARMA model and you would like to test if
the model is well specified:
@ Diagnostic tests are based on the residuals ;.

@ If there are no ARCH effects we should find no autocorrelation

in 2.

e Therefore, the model can be tested using Q-statistics for 1. The
latter statistic tests if there are ARCH effects.

@ Suppose that we would like to test that there are no ARCH
effects.

@ We can consider the model
Ei_q1(u?) = 7o+ 71421 + ...+ 7,,U7_,, and if there are no
ARCH effects we musthave Hy : y; = ... = 7,, =0

o Lagrange-Multiplier (LM) test against ARCH, which is obtained
by LM = T-R2 2 x2(m) in the regression

A2 A A o~2 A A2
Uy = Yo+ y1tli_q + .o+ Yyl et
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Specification Testing in GARCH models

Suppose now that you estimated a GARCH(q,s) model.
How do you test if the model is well specified?

@ Diagnostic tests are based on the standardized residuals & = 1;/ .
If y, and o are correctly specified, we should find no
autocorrelation in #.

@ We can apply the Q-statistics and Lagrange-Multiplier test for
serial correlation in ;.
How can we test if the model assumed for the conditional variance is well
specified?
e We would like to test Hy : E;_1(u?) = 0 which is equivalent to
Et—l (8% — 1) = 0 with & = Mt/(Tt.
o It is standard practice to apply the tests for ARCH effects

described above, though they are not valid after the estimation of
the GARCH model.
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Specification Testing in GARCH models

A valid Lagrange-Multiplier (LM) test against ARCH is constructed in
the following way:

@ We can consider the model
Ei_1(e?) = vo + 7167 1 + - .. + Yes_,, and if there are no further

ARCH effects we musthave Hy : v = ... = 7v,, = 0.
e Let ¢ be the parameters of the conditional variance ¢? and define
the vector
1 907
Xt =57
op 9y

where gi? is the derivative of 07 with respect to i estimated
under H,.

o Lagrange-Multiplier (LM) test against ARCH, which is obtained
by LM =T - R? b X?(m) in the regression

B =v+mb 1+ Vbt + Ot ter
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Volatility forecasting

@ GARCH specification of
op(1) = wvar(upa|Fp)
= E(uj41|Fy)
by construction gives one-step ahead forecasts of 17 Iy
@ Multi-step forecasts involves (using tower property) for £ > 1
o2(6) = var(uy|Fp)
= E(u%-‘ré“:h)
= E(E(uj|Fpse-1)Fp)
= E(U%M‘Ph)
For example for the GARCH(1,1) model we have
0h(0) = E(0hulFp)
= E(w+aujy gy + Py |Fr)
= w4 (a+p)op(t—1)
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Volatility forecasting

o lfa+pB< 1, where ¢ =w/(1—a—p)
0h(0) =+ (a+B) " (o3(1) — 0?) —

as { — oo,
o Ifa + B =1 (IGARCH) then 02({) = 02(1) + w({ — 1)



