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Testing Hypotheses
The salt-and-pepper of inferential statistics is estimation and testing hypotheses. In 
the last chapter, we talked about estimation and making certain inferences about the 
world. In this chapter, we will be talking about how to test the hypotheses on how 
the world works and evaluate the hypotheses using only sample data.

In the last chapter, I promised that this would be a very practical chapter, and I'm a 
man of my word; this chapter goes over a broad range of the most popular methods 
in modern data analysis at a relatively high level. Even so, this chapter might have 
a little more detail than the lazy and impatient would want. At the same time, it 
will have way too little detail than what the extremely curious and mathematically 
inclined want. In fact, some statisticians would have a heart attack at the degree to 
which I skip over the math involved with these subjects—but I won't tell if you don't!

Nevertheless, certain complicated concepts and math are beyond the scope of this 
book. The good news is that once you, dear reader, have the general concepts down, 
it is easy to deepen your knowledge of these techniques and their intricacies—
and I advocate that you do before making any major decisions based on the tests 
introduced in these chapters.

Null Hypothesis Significance Testing
For better or worse, Null Hypothesis Significance Testing (NHST) is the most 
popular hypothesis testing framework in modern use. So, even though there are 
competing approaches that—at least in some cases—are better, you need to know 
this stuff up and down!

Okay—Null Hypothesis Significance Testing—those are a bunch of big words. What 
do they mean?
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NHST is a lot like being a prosecutor in the United States' or Great Britain's justice 
system. In these two countries—and a few others—the person being charged is 
presumed innocent, and the burden of proving the defendant's guilt is placed on 
the prosecutor. The prosecutor then has to argue that the evidence is inconsistent 
with the defendant being innocent. Only after it is shown that the extant evidence 
is unlikely if the person is innocent, does the court rule a guilty verdict. If the extant 
evidence is weak, or is likely to be observed even if the dependent is innocent, 
then the court rules not guilty. That doesn't mean the defendant is innocent (the 
defendant may very well be guilty!)—it means that either the defendant was guilty, 
or there was not sufficient evidence to prove guilt.

With simple NHST, we are testing two competing hypotheses: the null and the 
alternative hypotheses. The default hypothesis is called the null hypothesis—it 
is the hypothesis that our observation occurred from chance alone. In the justice 
system analogy, this is the hypothesis that the defendant is innocent. The alternative 
hypothesis is the opposite (or complementary) hypothesis; this would be like the 
prosecutor's hypothesis.

The null hypothesis terminology was introduced by a statistician named R. A. Fischer 
in regard to the curious case of Muriel Bristol: a woman who claimed that she could 
discern, just by tasting it, whether milk was added before tea in a teacup or whether 
the tea was poured before the milk. She is more commonly known as the lady tasting 
tea.

Her claim was put to the test! The lady tasting tea was given eight cups; four had 
milk added first, and four had tea added first. Her task was to correctly identify the 
four cups that had tea added first. The null hypothesis was that she couldn't tell the 
difference and would choose a random four teacups. The alternative hypothesis is, of 
course, that she had the ability to discern wither the tea or milk was poured first.

It turned out that she correctly identified the four cups. The chances of randomly 
choosing the correct four cups is 70 to 1, or about 1.4%. In other words, the chances 
of that happening under the null hypothesis is 1.4%. Given that it is so very 
unlikely to have occurred under the null hypothesis, we may choose to reject the 
null hypothesis. If the null and alternative hypotheses are mutually exclusive and 
collectively exhaustive, then a rejection of the null hypothesis is tantamount to an 
acceptance of the alternative hypothesis.

We can't say anything for certain, but we can work with probabilities. In this 
example, we wanted to prove or disprove the lady tasting tea's claims. We did not 
try to evaluate the probability that the lady could tell the difference; we assumed 
that she could not and tried to show that it was unlikely that she couldn't, given her 
stellar performance on the assessment.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 111 ]

So, here's the basic idea behind NHST as we know it so far:

1.	 Assume the opposite of what you are testing.
2.	 (Try to) show that the results you receive are unlikely given that assumption.
3.	 Reject the assumption.

We have heretofore been rather hand-wavy about what constitutes sufficient 
unlikelihood to reject the null hypothesis and how we determine the probability in the 
first place. We'll discuss this now.

In order to quantify how likely or unlikely the results we receive are, we need to 
define a test statistic—some measure of the sample. The sampling distribution of the 
test statistic will tell us which test statistics are most likely to occur by chance (under 
the null hypothesis) with repeated trials of the experiment. Once we know what the 
sampling distribution of the test statistic looks like, we can tell what the probability 
of getting a result as extreme as we got is. This is called a p-value. If it is equal to or 
below some pre-specified boundary, called an alpha level (α level), we decide that the 
null hypothesis is a bad hypothesis and embrace the alternative hypothesis. Largely, 
as a matter of tradition, an alpha level of .05 is used most often, though other levels 
are occasionally used as well. So, if the observed result would only occur 5% or less 
of the time (p-value < .05), we consider it a sufficiently unlikely event and reject the 
null hypothesis. If the .05 cut-off sounds rather arbitrary, it's because it is.

So, here's our updated and expanded basic idea behind NHST:

1.	 Formulate a set of two hypotheses: a null hypothesis (often denoted as H0) 
and an alternative hypothesis (often denoted H1)

°° H0: there is no effect
°° H1: there is an effect

2.	 Compute the test statistic.
3.	 Given the sampling distribution of the test statistic under the null hypothesis, 

you can calculate the probability of obtaining a test statistic equal to or more 
extreme than the one you calculated. This is the p-value. Find it.

4.	 If the probability of obtaining a test statistic being equal to or more extreme 
than the one you calculated is sufficiently unlikely (equal to or less than your 
alpha level), then you may reject the null hypothesis.

5.	 If the null and alternative hypotheses are collectively exhaustive, you may 
embrace the alternative hypothesis.
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The illustrative example that's going to make sense out of all of this is none other 
than the gambit of Larry the Untrustworthy Knave that we met in Chapter 4, 
Probability. If you recall, Larry, who can only be trusted some of the time, gave us a 
coin that he alleges is fair. We flip it 30 times and observe 10 heads. Let's hypothesize 
that the coin is unfair; let's formalize our hypotheses:

•	 H0 (null hypothesis): the probability of obtaining heads on this coin is .5
•	 H1 (alternative hypothesis): the probability of obtaining heads on this coin is 

not .5

Let's just use the number of heads in our sample as the test statistic. What is the 
sampling distribution of this test statistic? In other words, if the coin were fair, and 
you repeated the flipping-30-times experiment many times, what is the relative 
frequency of observing particular numbers of heads? We've seen it already! It's 
the binomial distribution. A binomial distribution with parameters n=30 and p=0.5 
describes the number of heads we should expect in 30 flips.

Figure 6.1: The sampling distribution of our coin-flip test statistic (the number of heads)

As you can see, the outcome that is the most likely is getting 15 heads (as you might 
imagine). Can you see what the probability of getting 10 heads is? Fairly unlikely, 
right?
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So, what's the p-value, and is it less than our pre-specified alpha level? Well, we 
have already worked out the probability of observing 10 or fewer heads in Chapter 4, 
Probability, as follows:

  > pbinom(10, size=30, prob=.5)
  [1] 0.04936857

It's less than .05. We can conclude the coin is unfair, right? Well, yes and no. Mostly 
no. Allow me to explain.

One and two-tailed tests
You may reject the null hypothesis if the test statistic falls within a region under the 
curve of the sampling distribution that covers 5% of the area (if the alpha level is .05). 
This is called the critical region. Do you remember, in the last chapter, we constructed 
95% confidence intervals that covered 95% percent of the sampling distribution? 
Well, the 5% critical region is like the opposite of this. Recall that, in order to make a 
symmetric 95% of the area under the curve, we had to start at the .025 quantile and 
end at the .975 quantile, leaving 2.5% percent on the left tail and 2.5% of the right tail 
uncovered.

Similarly, in order for the critical region of a hypothesis test to cover 5% of the most 
extreme areas under the curve, the area must cover everything from the left of the 
.025 quantile and everything to the right of the .975 quantile.

So, in order to determine that the 10 heads out of 30 flips is statistically significant, 
the probability that you would observe 10 or fewer heads has to be less than .025.

There's a function built right into R, called binom.test, which will perform 
the calculations that we have, until now, been doing by hand. In the most basic 
incantation of binom.test, the first argument is the number of successes in a 
Bernoulli trial (the number of heads), and the second argument is the number of 
trials in the sample (the number of coin flips).

  > binom.test(10,30)
  
          Exact binomial test
  
  data:  10 and 30
  number of successes = 10, number of trials = 30, p-value = 0.09874
  alternative hypothesis: true probability of success is not equal to 
0.5
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  95 percent confidence interval:
   0.1728742 0.5281200
  sample estimates:
  probability of success
               0.3333333

If you study the output, you'll see that the p-value does not cross the significance 
threshold.

Now, suppose that Larry said that the coin was not biased towards tails. To see if 
Larry was lying, we only want to test the alternative hypothesis that the probability 
of heads is less than .5. In that case, we would set up our hypotheses like this:

•	 H0: The probability of heads is greater than or equal to .5
•	 H1: The probability of heads is less than .5

This is called a directional hypothesis, because we have a hypothesis that asserts that 
the deviation from chance goes in a particular direction. In this hypothesis suite, we 
are only testing whether the observed probability of heads falls into a critical region 
on only one side of the sampling distribution of the test statistic. The statistical test 
that we would perform in this case is, therefore, called a one-tailed test—the critical 
region only lies on one tail. Since the area of the critical region no longer has to be 
divided between the two tails (like in the two-tailed test we performed earlier), the 
critical region only contains the area to the left of the .05 quantile.

Figure 6.2: The three panels, from left to right, depict the critical regions of the left ("lesser") one-tailed,  
two-tailed, and right ("greater") alternative hypotheses. The dashed horizontal line is meant to show that,  
for the two-tailed tests, the critical region starts below p=.025, because it is being split between two tails.  

For the one-tailed tests, the critical region is below the dashed horizontal line at p=.05.

As you can see from the figure, for the directional alternative hypothesis that heads 
has a probability less than .5, 10 heads is now included in the green critical region.
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We can use the binom.test function to test this directional hypothesis, too. All we 
have to do is specify the optional parameter alternative and set its value to "less" 
(its default is "two.sided" for a two-tailed test).

  > binom.test(10,30, alternative="less")
  
          Exact binomial test
  
  data:  10 and 30
  number of successes = 10, number of trials = 30, p-value = 0.04937
  alternative hypothesis: true probability of success is less than 0.5
  95 percent confidence interval:
   0.0000000 0.4994387
  sample estimates:
  probability of success
               0.3333333

If we wanted to test the directional hypothesis that the probability of heads was 
greater than .5, we would use alternative="greater".

Take note of the fact that the p-value is now less than .05. In fact, it is identical to the 
probability we got from the pbinom function.

When things go wrong
Certainty is a card rarely used in the deck of a data analyst. Since we make 
judgments and inferences based on probabilities, mistakes happen. In particular, 
there are two types of mistakes that are possible in NHST: Type I errors and Type II 
errors.

•	 A Type I error is when a hypothesis test concludes that there is an effect 
(rejects the null hypothesis) when, in reality, no such effect exists

•	 A Type II error occurs when we fail to detect a real effect in the world and 
fail to reject the null hypothesis even if it is false

Check the following table for errors encountered in the coin example:

Coin type Failure to reject null 
hypothesis (conclude no 
detectable effect)

Reject the null hypothesis 
(conclude that there is an 
effect)

Coin is fair Correct positive identification Type I error (false positive)
Coin is unfair Type II error (false negative) Correct identification
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In the criminal justice system, Type I errors are considered especially heinous. Legal 
theorist William Blackstone is famous for his quote: it is better that ten guilty persons 
escape than one innocent suffer. This is why the court instructs jurors (in the United 
States, at least) to only convict the defendant if the jury believes the defendant is 
guilty beyond a reasonable doubt. The consequence is that if the jury favors the 
hypothesis that the defendant is guilty, but only by a little bit, the jury must give the 
defendant the benefit of the doubt and acquit.

This line of reasoning holds for hypothesis testing as well. Science would be  
in a sorry state if we accepted alternative hypotheses on rather flimsy evidence  
willy-nilly; it is better that we err on the side of caution when making claims about 
the world, even if that means that we make fewer discoveries of honest-to-goodness, 
real-world phenomena because our statistical tests failed to reach significance.

This sentiment underlies that decision to use an alpha level like .05. An alpha level 
of .05 means that we will only commit a Type I error (false positive) 5% of the time. 
If the alpha level were higher, we would make fewer Type II errors, but at the cost of 
making more Type I errors, which are more dangerous in most circumstances.

There is a similar metric to the alpha level, and it is called the beta level (β level). The 
beta level is the probability that we would fail to reject the null hypothesis if the 
alternative hypothesis were true. In other words, it is the probability of making a 
Type II error.

The complement of the beta level, 1 minus the beta level, is the probability of 
correctly detecting a true effect if one exists. This is called power. This varies from 
test to test. Computing the power of a test, a technique called power analysis, is a 
topic beyond the scope of this book. For our purposes, it will suffice to say that it 
depends on the type of test being performed, the sample size being used, and on the 
size of the effect that is being tested (the effect size). Greater effects, like the average 
difference in height between women and men, are far easier to detect than small 
effects, like the average difference in the length of earthworms in Carlisle and in 
Birmingham. Statisticians like to aim for a power of at least 80% (a beta level of .2). 
A test that doesn't reach this level of power (because of a small sample size or small 
effect size, and so on) is said to be underpowered.
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A warning about significance
It's perhaps regrettable that we use the term significance in relation to null-hypothesis 
testing. When the term was first used to describe hypothesis tests, the word 
significance was chosen because it signified something. As I wrote this chapter, 
I checked the thesaurus for the word significant, and it indicated that synonyms 
include notable, worthy of attention, and important. This is misleading in that it 
is not equivalent to its intended, vestigial meaning. One thing that really confuses 
people is that they think statistical significance is of great importance in and of itself. 
This is sadly untrue; there are a few ways to achieve statistical significance without 
discovering anything of significance, in the colloquial sense.

As we'll see later in the chapter, one way to achieve non-significant statistical 
significance is by using a very large sample size. Very small differences, that make 
little to no difference in the real world, will nevertheless be considered statistically 
significant if there is a large enough sample size.

For this reason, many people make the distinction between statistical significance 
and practical significance or clinical relevance. Many hold the view that hypothesis 
testing should only be used to answer the question is there an effect? or is there a 
discernable difference?, and that the follow-up questions is it important? or does it make a 
real difference? should be addressed separately. I subscribe to this point of view.

To answer the follow-up questions, many use effect sizes, which, as we know, 
capture the magnitude of an effect in the real world. We will see an example of 
determining the effect size in a test later in this chapter.

A warning about p-values
P-values are, by far, the most talked about metric in NHST. P-values are also 
notorious for lending themselves to misinterpretation. Of the many criticisms of 
NHST (of which there are many, in spite of its ubiquity), the misinterpretation 
of p-values ranks highly. The following are two of the most common 
misinterpretations:
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1.	 A p-value is the probability that the null hypothesis is true. This is not the 
case. Someone misinterpreting the p-value from our first binomial test might 
conclude that the chances of the coin being fair are around 10%. This is false. 
The p-value does not tell us the probability of the hypothesis' truth or falsity. 
In fact, the test assumes that the null hypothesis is correct. It tells us the 
proportion of trials for which we would receive a result as extreme or more 
extreme than the one we did if the null hypothesis was correct. I'm ashamed 
to admit it, but I made this mistake during my first college introductory 
statistics class. In my final project for the class, after weeks of collecting 
data, I found my p-value had not passed the barrier of significance—it was 
something like .07. I asked my professor if, after the fact, I could change my 
alpha level to .1 so my results would be positive. In my request, I appealed 
to the fact that it was still more probable than not that my alternative 
hypothesis was correct—after all, if my p-value was .07, then there was a 93% 
chance that the alternative hypothesis was correct. He smiled and told me to 
read the relevant chapter of our text again. I appreciate him for his patience 
and restraint in not smacking me right in the head for making such a stupid 
mistake. Don't be like me.

2.	 A p-value is a measure of the size of an effect. This is also incorrect, but its 
wrongness is more subtle than the first misconception. In research papers, it 
is common to attach phrases like highly significant and very highly significant 
to p-values that are much smaller than .05 (like .01 and .001). It is common to 
interpret p-values such as these, and statements such as these, as signaling 
a bigger effect than p-values that are only modestly less than .05. This is a 
mistake; this is conflating statistical significance with practical significance. In 
the previous section, we explained that you can achieve significant p-values 
(sometimes very highly significant ones) for an effect that is, for all intents and 
purposes, small and unimportant. We will see a very salient example of this 
later in this chapter.

Testing the mean of one sample
An illustrative and fairly common statistical hypothesis test is the one sample t-test. 
You use it when you have one sample and you want to test whether that sample 
likely came from a population by comparing the mean against the known population 
mean. For this test to work, you have to know the population mean.
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In this example, we'll be using R's built-in precip data set that contains precipitation 
data from 70 US cities.

  > head(precip)
  Mobile    Juneau   Phoenix   Little Rock   Los Angeles   Sacramento
   67.0      54.7      7.0        48.5           14.0        17.2

Don't be fooled by the fact that there are city names in there—this is a regular old 
vector - it's just that the elements are labeled. We can directly take the mean of this 
vector, just like a normal one.

  > is.vector(precip)
  [1] TRUE
  > mean(precip)
  [1] 34.88571

Let's pretend that we, somehow, know the mean precipitation of the rest of the 
world—is the US' precipitation significantly different to the rest of the world's 
precipitation?

Remember, in the last chapter, I said that the sampling distribution of sample means 
for sample sizes under 30 were best approximated by using a t-distribution. Well, 
this test is called a t-test, because in order to decide whether our samples' mean is 
consistent with the population whose mean we are testing against, we need to see 
where our mean falls in relation to the sampling distribution of population means. If 
this is confusing, reread the relevant section from the previous chapter.

In order to use the t-test in general cases—regardless of the scale—instead of 
working with the sampling distribution of sample means, we work with the 
sampling distribution of the t-statistic.

Remember z-scores from Chapter 3, Describing Relationships? The t-statistic is like 
a z-score in that it is a scale-less measure of distance from some mean. In the case 
of the t-statistic, though, we divide by the standard error instead of the standard 
deviation (because the standard deviation of the population is unknown). Since the 
t-statistic is standardized, any population, with any mean, using any scale, will have 
a sampling distribution of the t-statistic that is exactly the same (at the same sample 
size, of course).

The equation to compute the t-statistic is this:

xt s
N

µ−
=
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where x  is the sample mean, µ is the population mean, s is the sample' standard 
deviation, and N is the sample size.

Let's see for ourselves what the sampling distribution of the t-statistic looks like by 
taking 10,000 samples of size 70 (the same size as our precip data set) and plotting 
the results:

  # function to compute t-statistic
  t.statistic <- function(thesample, thepopulation){
    numerator <- mean(thesample) - mean(thepopulation)
    denominator <- sd(thesample) / sqrt(length(thesample))
    t.stat <- numerator / denominator
    return(t.stat)
  }

  # make the pretend population normally distributed
  # with a mean of 38
  population.precipitation <- rnorm(100000, mean=38)
  t.stats <- numeric(10000)
  for(i in 1:10000){
    a.sample <- sample(population.precipitation, 70)
    t.stats[i] <- t.statistic(a.sample, population.precipitation)
  }

  # plot
  library(ggplot2)
  tmpdata <- data.frame(vals=t.stats)
  qplot(vals, data=tmpdata, geom="histogram",
        color=I("white"),
        xlab="sampling distribution of t-statistic",
        ylab="frequency")
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Figure 6.3: The sampling distribution of the t-statistic

Ah, there's that familiar shape again!

Fortunately, the sampling distribution of the t-statistic is well known, so 
we don't have to create our own. In fact, the sampling distribution for many test 
statistics are well known, so we won't be running our own simulations of them 
anymore. Lucky us!

Okay, so how does our sample's t-statistic compare to the t-distribution? Our 
t-statistic, using our function from the last code-snippet, is:

  > t.statistic(precip, population.precipitation)
  [1] -1.901225
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Though, you can work this out for yourself easily.

Figure 6.4: The t-distribution with 69 degrees of freedom. The t-statistic of our sample is shown as the dashed 
line

Hmm, it looks like a pretty unlikely occurrence to me, but is it statistically 
significant? First, let's formally define our hypotheses:

•	 H0 = the average (mean) precipitation in the US is equal to the known 
average precipitation in the rest of the world

•	 H1 = the average (mean) precipitation in the US is different than the known 
average precipitation in the rest of the world

Then, we prespecify an alpha level of .05, as is customary.

Since our hypothesis is non-directional (we only hypothesize that the precipitation in 
the US is different than the world, not less or more), we define our critical region to 
cover 5% of the area on each side of the curve.

  > qt(.025, df=69)
  [1] -1.994945
  > # the critical region is less than -1.995 and more than +1.995

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 123 ]

What does it look like now?

Figure 6.5: The previous figure with the critical region for non-directional hypothesis highlighted

Oh, too bad! It looks like our sample mean falls just out of the critical region. So, we 
fail to reject the null hypothesis.

The cruel truth if we, for some reason, hypothesized that the US precipitation was 
less than the average world precipitation is:

•	 H0 = mean US precipitation >= mean world precipitation
•	 H1 = mean US precipitation < mean world precipitation

We would have achieved significance at alpha = .05.

Figure 6.6: Figure 6.4 with directional critical region highlighted
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Of course, we have no reason to think that US precipitation was less or more than the 
world's average. And to change our hypothesis now would be cheating. You're not a 
cheater, are you?

Now that we know what we're doing, we won't be manually calculating our test 
statistics anymore; we'll just be using the test functions that R provides.

Let's use the function that R provides now. The one sample t-test can be performed 
by the t.test function. In its most basic form, it takes a vector of sample 
observations as its first argument and the population mean as its second argument..

> t.test(precip, mu=38)
  
          One Sample t-test
  
  data:  precip
  t = -1.901, df = 69, p-value = 0.06148
  alternative hypothesis: true mean is not equal to 38
  95 percent confidence interval:
   31.61748 38.15395
  sample estimates:
  mean of x
   34.88571

Among other things, this test tells us that the t-statistic is 1.9 (just like we calculated 
ourselves), the degrees of freedom were 69 (the sample size minus 1), and the 
p-value, which is 0.06148. Like our plot with the two-tailed critical regions showed, 
this p-value is greater than our prespecified alpha level of 0.05. We fail to reject the 
null hypothesis.

Just for kicks, let's run the one-tailed hypothesis test:

  > t.test(precip, mu=38, alternative="less")
  
          One Sample t-test
  
  data:  precip
  t = -1.901, df = 69, p-value = 0.03074
  alternative hypothesis: true mean is less than 38
  95 percent confidence interval:
       -Inf 37.61708
  sample estimates:
  mean of x
   34.88571

Now our p-value is < .05. C'est la vie.
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Note that the R output indicates that the alternative hypothesis which is 
the true mean is less than 38—compare this with the last t-test output.

Assumptions of the one sample t-test
There are two main assumptions of the one sample t-test:

•	 The data are sampled from a normal distribution. This actually has more 
to do with the sampling distribution of sample means being approximately 
normal than the actual population. As we know, the sampling distribution 
of sample means for sufficiently large sample sizes will always be normally 
distributed, even if the population is not. In reality, this assumption can be 
violated somewhat, and the results will be valid, especially for sample sizes 
of over 30. We have nothing to worry about here. Usually, people check this 
assumption by plotting the sample means and making sure it's kind-of normal, 
though there are more formal ways of doing this, which we will see later. If the 
assumption of normality is in question, we may want to use an alternative test, 
like a non-parametric test; we'll see some examples at the end of this chapter.

•	 Independence of samples: Had we tested whether the US precipitation likely 
came from the population of the entire world's precipitation, we would have 
been violating this assumption. Why? Because we know that the US is a 
member of the set (it is indeed 'in the world'), so of course it was drawn from 
that population. This is why we tested whether the US precipitation was on 
par with the rest of the world's precipitation. In other examples of the one 
sample t-tests, this assumption basically requires that the sample be random.

Testing two means
An even more common hypothesis test is the independent samples t-test. You would 
use this to check the equality of two samples' means. Concretely, an example of 
using this test would be if you have an experiment where you are testing to see if 
a new drug lowers blood pressure. You would give one group a placebo and the 
other group the real medication. If the mean improvement in blood pressure was 
significantly greater than the improvement with the placebo, you might infer that the 
blood pressure medication works. Outside of more academic uses, web companies 
use this test all the time to test the effectiveness of, for example, different internet ad 
campaigns; they expose random users to either one of two types of ads and test if 
one is more effective than the other. In web-business parlance, this is called an A-B 
test, but that's just business-ese for controlled experiment.
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The term independent means that the two samples are separate, and that data from 
one sample doesn't affect data in the other. For example, if instead of having two 
different groups in the blood pressure trial, we used the same participants to test 
both the conditions (randomizing the order we administer the placebo and the real 
medication), we would violate independence.

The dataset we will be using for this is the mtcars dataset that we first met in  
Chapter 2, The Shape of Data and saw again in Chapter 3, Describing Relationships. 
Specifically, we are going to test the hypothesis that the mileage is better for  
manual cars than it is for cars with automatic transmission. Let's compare the  
means and produce a boxplot:

  > mean(mtcars$mpg[mtcars$am==0])
  [1] 17.14737
  > mean(mtcars$mpg[mtcars$am==1])
  [1] 24.39231
  > 
  > mtcars.copy <- mtcars
  > # make new column with better labels
  > mtcars.copy$transmission <- ifelse(mtcars$am==0,
                                       "auto", "manual")
  > mtcars.copy$transmission <- factor(mtcars.copy$transmission)
  > qplot(transmission, mpg, data=mtcars.copy,
  +       geom="boxplot", fill=transmission) +
  +   # no legend
  +   guides(fill=FALSE)

Figure 6.7: Boxplot of the miles per gallon ratings for automatic cars and cars with manual transmission
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Hmm, looks different… but let's check that hypothesis formally. Our hypotheses are:

•	 H0 = mean of sample1 - mean of sample2 >= 0
•	 H1 = mean of sample1 - mean of sample2 < 0

To do this, we use the t.test function, too; only this time, we provide two vectors: 
one for each sample. We also specify our directional hypothesis in the same way:

  > automatic.mpgs <- mtcars$mpg[mtcars$am==0]
  > manual.mpgs <- mtcars$mpg[mtcars$am==1]
  > t.test(automatic.mpgs, manual.mpgs, alternative="less")
  
          Welch Two Sample t-test
  
  data:  automatic.mpgs and manual.mpgs
  t = -3.7671, df = 18.332, p-value = 0.0006868
  alternative hypothesis: true difference in means is less than 0
  95 percent confidence interval:
        -Inf -3.913256
  sample estimates:
  mean of x mean of y
   17.14737  24.39231

p < .05. Yipee!

There is an easier way to use the t-test for independent samples that doesn't require 
us to make two vectors.

  > t.test(mpg ~ am, data=mtcars, alternative="less")

This reads, roughly, perform a t-test of the mpg column grouping by the am column in 
the data frame mtcars. Confirm for yourself that these incantations are equivalent.

Don't be fooled!
Remember when I said that statistical significance was not synonymous with 
important and that we can use very large sample sizes to achieve statistical 
significance without any clinical relevance? Check this snippet out:

  > set.seed(16)
  > t.test(rnorm(1000000,mean=10), rnorm(1000000, mean=10))
  
          Welch Two Sample t-test
  
  data:  rnorm(1e+06, mean = 10) and rnorm(1e+06, mean = 10)
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  t = -2.1466, df = 1999998, p-value = 0.03183
  alternative hypothesis: true difference in means is not equal to 0
  95 percent confidence interval:
   -0.0058104638 -0.0002640601
  sample estimates:
  mean of x mean of y
   9.997916 10.000954

Here, two vectors of one million normal deviates each are created with a mean of 10. 
When we use a t-test on these two vectors, it should indicate that the two vectors' 
means are not significantly different, right?

Well, we got a p-value of less that .05—why? If you look carefully at the last line 
of the R output, you might see why; the mean of the first vector is 9.997916, and 
the mean of the second vector is 10.000954. This tiny difference, a meagre .003, is 
enough to tip the scale into significant territory. However, I can think of very few 
applications of statistics where .003 of anything is noteworthy even though it is, 
technically, statistically significant.

The larger point is that the t-test tests for equality of means, and if the means aren't 
exactly the same in the population, the t-test will, with enough power, detect this. 
Not all tiny differences in population means are important, though, so it is important 
to frame the results of a t-test and the p-value in context.

As mentioned earlier in the chapter, a salient strategy for putting the differences in 
context is to use an effect size. The effect size commonly used in association with 
the t-test is Cohen's d. Cohen's d is, conceptually, pretty simple: it is a ratio of the 
variance explained by the "effect" and the variance in the data itself. Concretely, 
Cohen's d is the difference in means divided by the sample standard deviation. A 
high d indicates that there is a big effect (difference in means) relative to the internal 
variability of the data.

I mentioned that to calculate d, you have to divide the difference in means by the 
sample standard deviation—but which one? Although Cohen's d is conceptually 
straightforward (even elegant!), it is also sometimes a pain to calculate by hand, 
because the sample standard deviation from both samples has to be pooled. 
Fortunately, there's an R package that let's us calculate Cohen's d—and other effect 
size metrics, to boot, quite easily. Let's use it on the auto vs. manual transmission 
example:

  > install.packages("effsize")
  > library(effsize)
  > cohen.d(automatic.mpgs, manual.mpgs)
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  Cohen's d
  
  d estimate: -1.477947 (large)
  95 percent confidence interval:
         inf        sup
  -2.3372176 -0.6186766

Cohen's d is -1.478, which is considered a very large effect size. The cohen.d function 
even tells you this by using canned interpretations of effect sizes. If you try this with 
the two million element vectors from above, the cohen.d function will indicate that 
the effect was negligible.

Although these canned interpretations were on target these two times, make sure 
you evaluate your own effect sizes in context.

Assumptions of the independent samples 
t-test
Homogeneity of variance (or homoscedasticity - a scary sounding word), in this 
case, simply means that the variance in the miles per gallon of the automatic cars 
is the same as the variance in miles per gallon of the manual cars. In reality, this 
assumption can be violated as long as you use a Welch's T-test like we did, instead of 
the Student's T-test. You can still use the Student's T-test with the t.test function, 
like by specifying the optional parameter var.equal=TRUE. You can test for this 
formally using var.test or leveneTest from the car package. If you are sure that 
the assumption of homoscedasticity is not violated, you may want to do this because 
it is a more powerful test (fewer Type II errors). Nevertheless, I usually use Welch's 
T-test to be on the safe side. Also, always use Welch's test if the two samples' sizes 
are different.

•	 The sampling distribution of the sample means is approximately normal: 
Again, with a large enough sample size, it always is. We don't have a terribly 
large sample size here, but in reality, this formulation of the t-test works even 
if this assumption is violated a little. We will see alternatives in due time.

•	 Independence: Like I mentioned earlier, since the samples contain completely 
different cars, we're okay on this front. For tests that, for example, use the 
same participants for both conditions, you would use a Dependent Samples 
T-test or Paired Samples T-test , which we will not discuss in this book. If 
you are interested in running one of these tests after some research, use 
t.test(<vector1>, <vector2>, paired=TRUE).
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Testing more than two means
Another really common situation requires testing whether three or more means are 
significantly discrepant. We would find ourselves in this situation if we had three 
experimental conditions in the blood pressure trial: one groups gets a placebo, one 
group gets a low dose of the real medication, and one groups gets a high dose of the 
real medication.

Hmm, for cases like these, why don't we just do a series of t-tests? For example, we 
can test the directional alternative hypotheses:

•	 The low dose of blood pressure medication lowers BP significantly more than 
the placebo

•	 The high dose of blood pressure medication lowers BP significantly more 
than the low dose

Well, it turns out that doing this first is pretty dangerous business, and the logic 
goes like this: if our alpha level is 0.05, then the chances of making a Type I error for 
one test is 0.05; if we perform two tests, then our chances of making a Type I error is 
suddenly .09025 (near 10%). By the time we perform 10 tests at that alpha level, the 
chances of us having making a Type I error is 40%. This is called the multiple testing 
problem or multiple comparisons problem.

To circumvent this problem, in the case of testing three or more means, we use 
a technique called Analysis of Variance, or ANOVA. A significant result from 
an ANOVA leads to the inference that at least one of the means is significantly 
discrepant from one of the other means; it does not lend itself to the inference that all 
the means are significantly different. This is an example of an omnibus test, because it 
is a global test that doesn't tell you exactly where the differences are, just that there 
are differences.

You might be wondering why a test of equality of means has a name called Analysis 
of Variance; it's because it does this by comparing the variance between cases to the 
variance within cases. The general intuition behind an ANOVA is that the higher the 
ratio of variance between the different groups than within the different groups, the 
less likely that the different groups were sampled from the same population. This 
ratio is called an F ratio.

For our demonstration of the simplest species of ANOVA (the one-way ANOVA), 
we are going to be using the WeightLoss dataset from the car package. If you don't 
have the car package, install it.

  > library(car)
  > head(WeightLoss)
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      group wl1 wl2 wl3 se1 se2 se3
  1 Control   4   3   3  14  13  15
  2 Control   4   4   3  13  14  17
  3 Control   4   3   1  17  12  16
  4 Control   3   2   1  11  11  12
  5 Control   5   3   2  16  15  14
  6 Control   6   5   4  17  18  18
  >
  > table(WeightLoss$group)
  
  Control    Diet  DietEx
       12      12      10

The WeightLoss dataset contains pounds lost and self esteem measurements for 
three weeks for three different groups: a control group, one group just on a diet, 
and one group that dieted and exercised. We will be testing the hypothesis that the 
means of the weight loss at week 2 are not all equal:

•	 H0 = the mean weight loss at week 2 between the control, diet group, and 
diet and exercise group are equal

•	 H1 = at least two of the means of weight loss at week 2 between the control, 
diet group, and diet and exercise group are not equal

Before the test, let's check out a box plot of the means:

  > qplot(group, wl2, data=WeightLoss, geom="boxplot", fill=group)

Figure 6.8: Boxplot of weight lost in week 2 of trial for three groups: control, diet, and diet & exercise
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Now for the ANOVA…

  > the.anova <- aov(wl2 ~ group, data=WeightLoss)
  > summary(the.anova)
              Df Sum Sq Mean Sq F value   Pr(>F)
  group        2  45.28  22.641   13.37 6.49e-05 ***
  Residuals   31  52.48   1.693
  ---
  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Oh, snap! The p-value (Pr(>F)) is 6.49e-05, which is .000065 if you haven't read 
scientific notation yet.

As I said before, this just means that at least one of the comparisons between means 
was significant—there are four ways that this could occur:

•	 The means of diet and diet and exercise are different
•	 The means of diet and control are different
•	 The means of control and diet and exercise are different
•	 The means of control, diet, and diet and exercise are all different

In order to investigate further, we perform a post-hoc test. Quite often, the post-hoc 
test that analysts perform is a suite of t-tests comparing each pair of means (pairwise 
t-tests).

But wait, didn't I say that was dangerous business? I did, but it's different now:

•	 We have already performed an honest-to-goodness omnibus test at the alpha 
level of our choosing. Only after we achieve significance do we perform 
pairwise t-tests.

•	 We correct for the problem of multiple comparisons

The easiest multiple comparison correcting procedure to understand is Bonferroni 
correction. In its simplest version, it simply changes the alpha value by dividing it by 
the number of tests being performed. It is considered the most conservative of all the 
multiple comparison correction methods. In fact, many consider it too conservative 
and I'm inclined to agree. Instead, I suggest using a correcting procedure called 
Holm-Bonferroni correction. R uses this by default.

  > pairwise.t.test(WeightLoss$wl2, as.vector(WeightLoss$group))
  
          Pairwise comparisons using t tests with pooled SD
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  data:  WeightLoss$wl2 and as.vector(WeightLoss$group)
  
         Control Diet
  Diet   0.28059 -
  DietEx 7.1e-05 0.00091
  
  P value adjustment method: holm

This output indicates that the difference in means between the Diet and Diet and 
exercise groups is p < .001. Additionally, it indicates that the difference between 
Diet and exercise and Control is p < .0001 (look at the cell where it says 7.1e-05). 
The p-value of the comparison of just diet and the control is .28, so we fail to reject 
the hypothesis that they have the same mean.

Assumptions of ANOVA
The standard one-way ANOVA makes three main assumptions:

•	 The observations are independent
•	 The distribution of the residuals (the distances between the values within the 

groups to their respective means) is approximately normal
•	 Homogeneity of variance: If you suspect that this assumption is violated, you 

can use R's oneway.test instead

Testing independence of proportions
Remember the University of California Berkeley dataset that we first saw when 
discussing the relationship between two categorical variables in Chapter 3, 
Describing Relationships. Recall that UCB was sued because it appeared as though 
the admissions department showed preferential treatment to male applicants. Also 
recall that we used cross-tabulation to compare the proportion of admissions across 
categories.

If admission rates were, say 10%, you would expect about one out of every ten 
applicants to be accepted regardless of gender. If this is the case—that gender has no 
bearing on the proportion of admits—then gender is independent.

Small deviations from this 10% proportion are, of course, to be expected in the real 
world and not necessarily indicative of a sexist admissions machine. However, if a 
test of independence of proportions is significant, that indicates that a deviation as 
extreme as the one we observed is very unlikely to occur if the variable were truly 
independent.
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A test statistic that captures divergence from an idealized, perfectly independent 
cross tabulation is the chi-squared statistic 2χ  statistic), and its sampling distribution 
is known as a chi-square distribution. If our chi-square statistic falls into the critical 
region of the chi-square distribution with the appropriate degrees of freedom, then 
we reject the hypothesis that gender is an independent factor in admissions.

Let's perform one of these chi-square tests on the whole UCB Admissions dataset.

  > # The chi-square test function takes a cross-tabulation
  > # which UCBAdmissions already is. I am converting it from
  > # and back so that you, dear reader, can learn how to do
  > # this with other data that isn't already in cross-tabulation
  > # form
  > ucba <- as.data.frame(UCBAdmissions)
  > head(ucba)
       Admit Gender Dept Freq
  1 Admitted   Male    A  512
  2 Rejected   Male    A  313
  3 Admitted Female    A   89
  4 Rejected Female    A   19
  5 Admitted   Male    B  353
  6 Rejected   Male    B  207
  >
  > # create cross-tabulation
  > cross.tab <- xtabs(Freq ~ Gender+Admit, data=ucba)
  >
  > chisq.test(cross.tab)
  
          Pearson's Chi-squared test with Yates' continuity correction
  
  data:  cross.tab
  X-squared = 91.6096, df = 1, p-value < 2.2e-16

The proportions are almost certainly not independent (p < .0001). Before you 
conclude that the admissions department is sexist, remember Simpson's Paradox? If 
you don't, reread the relevant section in Chapter 3, Describing Relationships.

Since the chi-square independence of proportion test can be (and is often used) to 
compare a whole mess of proportions, it's sometimes referred to an omnibus test, just 
like the ANOVA. It doesn't tell us what proportions are significantly discrepant, only 
that some proportions are.
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What if my assumptions are unfounded?
The t-test and ANOVA are both considered parametric statistical tests. The word 
parametric is used in different contexts to signal different things but, essentially, 
it means that these tests make certain assumptions about the parameters of 
the population distributions from which the samples are drawn. When these 
assumptions are met (with varying degrees of tolerance to violation), the inferences 
are accurate, powerful (in the statistical sense), and are usually quick to calculate. 
When those parametric assumptions are violated, though, parametric tests can often 
lead to inaccurate results.

We've spoken about two main assumptions in this chapter: normality and homogeneity 
of variance. I mentioned that, even though you can test for homogeneity of variance 
with the leveneTest function from the car package, the default t.test in R 
removes this restriction. I also mentioned that you could use the oneway.test 
function in lieu of aov if you don't have to have to adhere to this assumption when 
performing an ANOVA. Due to these affordances, I'll just focus on the assumption of 
normality from now on.

In a t-test, the assumption that the sample is an approximately normal distribution can 
be visually verified, to a certain extent. The naïve way is to simply make a histogram 
of the data. A more proper approach is to use a QQ-plot (quantile-quantile plot). You 
can view a QQ-plot in R by using the qqPlot function from the car package. Let's use 
it to evaluate the normality of the miles per gallon vector in mtcars.

  > library(car)
  > qqPlot(mtcars$mpg)

Figure 6.9: A QQ-plot of the mile per gallon vector in mtcars
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A QQ-plot can actually be used to compare any sample from any theoretical 
distribution, but it is most often associated with the normal distribution. The plot 
depicts the quantiles of the sample and the quantiles of the normal distribution 
against each other. If the sample were perfectly normal, the points would fall on 
the solid red diagonal line—its divergence from this line signals a divergence from 
normality. Even though it is clear that the quantiles for mpg don't precisely comport 
with the quantiles of the normal distribution, its divergence is relatively minor.

The most powerful method for evaluating adherence to the assumption of normality 
is to use a statistical test. We are going to use the Shapiro-Wilk test, because it's my 
favorite, though there are a few others.

  > shapiro.test(mtcars$mpg)

          Shapiro-Wilk normality test

  data:  mtcars$mpg
  W = 0.9476, p-value = 0.1229

This non-significant result indicates that the deviations from normality are not 
statistically significant.

For ANOVAs, the assumption of normality applies to the residuals, not the actual 
values of the data. After performing the ANOVA, we can check the normality of the 
residuals quite easily:

  > # I'm repeating the set-up
  > library(car)
  > the.anova <- aov(wl2 ~ group, data=WeightLoss)
  >
  > shapiro.test(the.anova$residuals)
  
          Shapiro-Wilk normality test
  
  data:  the.anova$residuals
  W = 0.9694, p-value = 0.4444

We're in the clear!

But what if we do violate our parametric assumptions!? In cases like these, many 
analysts will fall back on using non-parametric tests.
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Many statistical tests, including the t-test and ANOVA, have non-parametric 
alternatives. The appeal of these tests is, of course, that they are resistant to violations 
of parametric assumptions—that they are robust. The drawback is that these tests are 
usually less powerful than their parametric counterparts. In other words, they have 
a somewhat diminished capacity for detecting an effect if there truly is one to detect. 
For this reason, if you are going to use NHST, you should use the more powerful 
tests by default, and switch only if you're assumptions are violated.

The non-parametric alternative to the independent t-test is called the Mann-Whitney 
U test, though it is also known as the Wilcoxon rank-sum test. As you might expect by 
now, there is a function to perform this test in R. Let's use it on the auto vs. manual 
transmission example:

  > wilcox.test(automatic.mpgs, manual.mpgs)
  
          Wilcoxon rank sum test with continuity correction
  
  data:  automatic.mpgs and manual.mpgs
  W = 42, p-value = 0.001871
  alternative hypothesis: true location shift is not equal to 0

Simple!

The non-parametric alternative to the one-way ANOVA is called the Kruskal-Wallis 
test. Can you see where I'm going with this?

  > kruskal.test(wl2 ~ group, data=WeightLoss)
  
          Kruskal-Wallis rank sum test
  
  data:  wl2 by group
  Kruskal-Wallis chi-squared = 14.7474, df = 2, p-value = 0.0006275

Super!

Exercises
Here are a few exercises for you to practise and revise the concepts learned in this 
chapter:

•	 Read about data-dredging and p-hacking. Why is it dangerous not to 
formulate a hypothesis, set an alpha level, and set a sample size before 
collecting data and analyzing results?
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•	 Use the command library(help="datasets") to find a list of datasets that 
R has already built in. Pick a few interesting ones, and form a hypothesis 
about each one. Rigorously define your null and alternative hypotheses 
before you start. Test those hypotheses even if it means learning about other 
statistical tests.

•	 How might you quantify the effect size of a one-way ANOVA. Look up  
eta-squared if you get stuck.

•	 In ethics, the doctrine of moral relativism holds that there are no universal 
moral truths, and that moral judgments are dependent upon one's culture 
or period in history. How can moral progress (the abolition of slavery, 
fairer trading practices) be reconciled with a relativistic view of morality? If 
there is no objective moral paradigm, how can criticisms be lodged against 
the current views of morality? Why replace existing moral judgments with 
others if there is no standard to which to compare them to and, therefore, no 
reason to prefer one over the other.

Summary
We covered huge ground in this chapter. By now, you should be up to speed on 
some of the most common statistical tests. More importantly, you should have a 
solid grasp of the theory behind NHST and why it works. This knowledge is far 
more valuable than mechanically memorizing a list of statistical tests and clues for 
when to use each.

You learned that NHST has its origin in testing whether a weird lady's claims about 
tasting tea were true or not. The general procedure for NHST is to define your null 
and alternative hypotheses, define and calculate your test statistic, determine the 
shape and parameters of the sampling distribution of that test statistic, measure the 
probability that you would observe a test statistic as or more extreme than the one 
we observed (this is the p-value), and determine whether to reject or fail to reject 
the null hypothesis based on the whether the p-value was below or above the alpha 
level.

You then learned about one vs. two-tailed tests, Type I and Type II errors, and got 
some warnings about terminology and common NHST misconceptions.
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Then, you learned a litany of statistical tests—we saw that the one sample t-test is 
used in scenarios where we want to determine if a sample's mean is significantly 
discrepant from some known population mean; we saw that independent samples 
t-tests are used to compare the means of two distinct samples against each other; 
we saw that we use one-way ANOVAs for testing multiple means, why it's 
inappropriate to just perform a bunch of t-tests, and some methods of controlling 
Type I error rate inflation. Finally, you learned how the chi-square test is used to 
check the independence of proportions.

We then directly applied what you learned to real, fun data and tested real, fun 
hypotheses. They were fun... right!?

Lastly, we discussed parametric assumptions, how to verify that they were met, and 
one option for circumventing their violation at the cost of power: non-parametric 
tests. We learned that the non-parametric alternative to the independent samples 
t-test is available in R as wilcox.test, and the non-parametric alternative to the 
one-way ANOVA is available in R using the kruskal.test function.

In the next chapter, we will also be discussing mechanisms for testing hypotheses, 
but this time, we will be using an attractive alternative to NHST based on the famous 
theorem by Reverend Thomas Bayes that you learned about in Chapter 4, Probability. 
You'll see how this other method of inference addresses some of the shortcomings 
(deserved or not) of NHST, and why it's gaining popularity in modern applied data 
analysis. See you there!
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