
Chapter 3

Common statistical
procedures

This chapter describes how to generate univariate summary statistics for con-
tinuous variables (such as means, variances, and quantiles), display and analyze
frequency tables and cross-tabulations for categorical variables, and carry out
a variety of one and two sample procedures.

3.1 Summary statistics

3.1.1 Means and other summary statistics
Example: See 3.6.1

xmean = mean(x)

The mean() function accepts a numeric vector or a numeric dataframe as ar-
guments (date objects are also supported). Similar functions include median()
(see 3.1.5 for more quantiles), var(), sd(), min(), max(), sum(), prod(), and
range() (note that the latter returns a vector containing the minimum and
maximum value). The which.max() and which.min() functions can be used
to identify the observation containing the maximum and minimum values, re-
spectively (see also which(), Section 1.5.2).

3.1.2 Means by group
Example: See 2.13.6See also 4.1.6 (fitting regression separately by group)

tapply(y, x, mean)

or

ave(y, as.factor(x), FUN=mean)

73

74 CHAPTER 3. COMMON STATISTICAL PROCEDURES

or

aggregate(y, list(x1, x2), mean)

The tapply() function applies the specified function given as the third argu-
ment (in this case mean()) to the vector y stratified by every unique set of values
of the list of factors specified x (see also 1.6.3, the apply family of functions).
It returns a vector with length equal to the number of unique set of values of x.
Similar functionality is available using the ave() function (see example(ave)),
which returns a vector of the same length as x with each element equal to the
mean of the subset of observations with the factor level specified by y. The
aggregate() function can be used in a similar manner, with a list of variables
given as argument (see also 2.13.6).

3.1.3 Trimmed mean

mean(x, trim=frac)

The value frac can take on range 0 to 0.5, and specifies the fraction of observa-
tions to be trimmed from each end of x before the mean is computed (frac=0.5
yields the median).

3.1.4 Five-number summary
Example: See 3.6.1

The five-number summary (minimum, 25th percentile, median, 75th percentile,
maximum) is a useful summary of the distribution of observed values.

quantile(x)
fivenum(x)
summary(ds)

The summary() function calculates the five-number summary (plus the mean)
for each of the columns of the vector or dataset given as arguments. The default
output of the quantile() function is the min, 25th percentile, median, 75th
percentile and the maximum. The fivenum() function reports the lower and
upper hinges instead of the 25th and 75th percentiles, respectively.

3.1.5 Quantiles
Example: See 3.6.1

quantile(x, c(.025, .975))
quantile(x, seq(from=.95, to=.975, by=.0125))

Details regarding the calculation of quantiles in quantile() can be found using
help(quantile).

3.1. SUMMARY STATISTICS 75

3.1.6 Centering, normalizing, and scaling

zscoredx = scale(x)

or

zscoredx = (x-mean(x))/sd(x)

The default behavior of scale() is to create a Z-score transformation. The
scale() function can operate on matrices and dataframes, and allows the spec-
ification of a vector of the scaling parameters for both center and scale (see also
sweep(), a more general function).

3.1.7 Mean and 95% confidence interval
Example: See 3.6.4

tcrit = qt(.975, length(x)-1)
ci95 = mean(x) + c(-1,1)*tcrit*sd(x)/sqrt(length(x))

or

t.test(x)$conf.int

While the appropriate 95% confidence interval can be generated in terms of
the mean and standard deviation, it is more straightforward to use the t-test
function to calculate the relevant quantities.

3.1.8 Maximum likelihood estimation of distributional
parameters

Example: See 3.6.1
library(MASS)
fitdistr(x, densityfunction}

Options for densityfunction include beta, cauchy, chi-squared, exponential,
f, gamma, geometric, log-normal, lognormal, logistic, negative binomial,
normal, Poisson, t or weibull.

3.1.9 Bootstrapping a sample statistic

Bootstrapping is a powerful and elegant approach to estimation of sample statis-
tics that can be implemented even in many situations where asymptotic results
are difficult to find or otherwise unsatisfactory [11, 24]. Bootstrapping proceeds
using three steps: First, resample the dataset (with replacement) a specified
number of times (typically on the order of 10,000), calculate the desired statis-
tic from each resampled dataset, then use the distribution of the resampled
statistics to estimate the standard error of the statistic (normal approximation

76 CHAPTER 3. COMMON STATISTICAL PROCEDURES

method), or construct a confidence interval using quantiles of that distribution
(percentile method).

As an example, we consider estimating the standard error and 95% con-
fidence interval for the coefficient of variation (COV), defined as σ/µ, for a
random variable X. Note that for both packages, the user must provide code
(as a function) to calculate the statistic of interest.

library(boot)
covfun = function(x, i) {sd(x[i])/mean(x[i])}
res = boot(x, covfun, R=10000)
print(res)
plot(res)
quantile(res$t, c(.025, .975)) # percentile method

The first argument to the boot() function specifies the data to be bootstrapped
(in this case a vector, though a dataframe can be set up if more than one variable
is needed for the calculation of the sample statistic) as well as a function to
calculate the statistic for each resampling iteration. Here the function covfun()
takes two arguments: The first is the original data (as a vector) and the second
a set of indices into that vector (that represent a given bootstrap sample).

The boot() function returns an object of class boot, with an associated
plot() function that provides a histogram and QQ-plot (see help(plot.boot)).
The return value object (res, above) contains the vector of resampled statistics
(res$t), which can be used to estimate the quantiles or standard error. The
boot.ci() function can be used to generate bias-corrected and accelerated in-
tervals.

3.1.10 Proportion and 95% confidence interval
Example: See 7.1.2

binom.test(sum(x), length(x))
prop.test(sum(x), length(x))

The binom.test() function calculates an exact Clopper–Pearson confidence
interval based on the F distribution [4] using the first argument as the number
of successes and the second argument the number of trials, while prop.test()
calculates an approximate confidence interval by inverting the score test. Both
allow specification of p for the null hypothesis. The conf.level option can be
used to change the default confidence level.

3.2. CONTINGENCY TABLES 77

3.1.11 Tests of normality

library(nortest)
ad.test(x) # Anderson-Darling test
cvm.test(x) # Cramer-von Mises test
lillie.test(x) # Lilliefors (KS) test
pearson.test(x) # Pearson chi-square
sf.test(x) # Shapiro-Francia test

3.2 Contingency tables

3.2.1 Display counts for a single variable
Example: See 3.6.3

Frequency tables display counts of values for a single variable (see also 3.2.2,
cross-classification tables).

count = table(x)
percent = count/sum(count)*100
rbind(count, percent)

Additional marginal displays (in this case the percentages) can be added and
displayed along with the counts.

3.2.2 Display cross-classification table
Example: See 3.6.3

Contingency tables display group membership across categorical (grouping)
variables. They are also known as cross-classification tables, cross-tabulations,
and two-way tables.

mytab = table(y, x)
addmargins(mytab)
prop.table(mytab, 1)

or

xtabs(~ y + x)

or
library(prettyR)
xtab(y ~ x, data=ds)

The addmargins() function adds (by default) the row and column totals to
a table, while prop.table() can be used to calculate row totals (with option
1) and column totals (with option 2). The colSums(), colMeans() functions
(and their equivalents for rows) can be used to efficiently calculate sums and

78 CHAPTER 3. COMMON STATISTICAL PROCEDURES

means for numeric arrays. Missing values can be displayed using table() by
specifying exclude=NULL.

The xtabs() function can be used to create a contingency table from cross-
classifying factors. Much of the process of displaying tables is automated in the
prettyR library xtab() function (which requires specification of a dataframe
to operate on).

3.2.3 Pearson chi-square statistic
Example: See 3.6.3

chisq.test(x, y)

The chisq.test() command can accept either two factor vectors or a matrix
with counts. By default a continuity correction is used (this can be turned off
using the option correct=FALSE).

3.2.4 Cochran–Mantel–Haenszel test

The Cochran–Mantel–Haenszel test provides an assessment of the relationship
between X2 and X3, stratified by (or controlling for) X1. The analysis provides
a way to adjust for the possible confounding effects of X1 without having to
estimate parameters for them.

mantelhaen.test(x2, x3, x1)

3.2.5 Fisher’s exact test
Example: See 3.6.3

fisher.test(y, x)

or

fisher.test(ymat)

The fisher.test() command can accept either two class vectors or a ma-
trix with counts (here denoted by ymat). For tables with many rows and/or
columns, p-values can be computed using Monte Carlo simulation using the
simulate.p.value option.

3.2.6 McNemar’s test

McNemar’s test tests the null hypothesis that the proportions are equal across
matched pairs, for example, when two raters assess a population.

3.3. BIVARIATE STATISTICS 79

mcnemar.test(y, x)

The mcnemar.test() command can accept either two class vectors or a matrix
with counts.

3.3 Bivariate statistics

3.3.1 Epidemiologic statistics
Example: See 3.6.3

It is straightforward to calculate summary measures such as the odds ratio,
relative risk and attributable risk (see also 5.1, generalized linear models).

sum(x==0&y==0)*sum(x==1&y==1)/(sum(x==0&y==1)*sum(x==1&y==0))

or
tab1 = table(x, y)
tab1[1,1]*tab1[2,2]/(tab1[1,2]*tab1[2,1])

or
glm1 = glm(y ~ x, family=binomial)
exp(glm1$coef[2])

or
library(epitools)
oddsratio.fisher(x, y)
oddsratio.wald(x, y)
riskratio(x, y)
riskratio.wald(x, y)

The epitab() function in library(epitools) provides a general interface to
many epidemiologic statistics, while expand.table() can be used to create
individual level data from a table of counts.

3.3.2 Test characteristics

The sensitivity of a test is defined as the probability that someone with the
disease (D=1) tests positive (T=1), while the specificity is the probability that
someone without the disease (D=0) tests negative (T=0). For a dichotomous
screening measure, the sensitivity and specificity can be defined as P (D =
1, T = 1)/P (D = 1) and P (D = 0, T = 0)/P (D = 0), respectively (see also
6.1.17, receiver operating characteristic curves).

sens = sum(D==1&T==1)/sum(D==1)
spec = sum(D==0&T==0)/sum(D==0)

80 CHAPTER 3. COMMON STATISTICAL PROCEDURES

Sensitivity and specificity for an outcome D can be calculated for each value of
a continuous measure T using the following code.

library(ROCR)
pred = prediction(T, D)
diagobj = performance(pred, "sens", "spec")
spec = slot(diagobj, "y.values")[[1]]
sens = slot(diagobj, "x.values")[[1]]
cut = slot(diagobj, "alpha.values")[[1]]
diagmat = cbind(cut, sens, spec)
head(diagmat, 10)

The ROCR package facilitates the calculation of test characteristics, including
sensitivity and specificity. The prediction() function takes as arguments the
continuous measure and outcome. The returned object can be used to calculate
quantities of interest (see help(performance) for a comprehensive list). The
slot() function is used to return the desired sensitivity and specificity values
for each cut score, where [[1]] denotes the first element of the returned list
(see Section 1.5.4, help(list), and help(Extract)).

3.3.3 Correlation
Example: See 3.6.2 and 6.6.9

pearsoncorr = cor(x, y)
spearmancorr = cor(x, y, method="spearman")
kendalltau = cor(x, y, method="kendall")

or

cormat = cor(cbind(x1, ..., xk))

Tests and confidence intervals for correlations can be generated using the func-
tion cor.test(). Specifying method="spearman" or method="kendall" as an
option to cor() or cor.test() generates the Spearman or Kendall correla-
tion coefficients, respectively. A matrix of variables (created with cbind(),
see 2.9.1) can be used to generate the correlation between a set of variables.
Subsets of the returned correlation matrix can be selected, as demonstrated in
Section 3.6.2. This can save space by avoiding replicating correlations above
and below the diagonal of the correlation matrix. The use option for cor()
specifies how missing values are handled (either "all.obs", "complete.obs",
or "pairwise.complete.obs").

3.3.4 Kappa (agreement)

library(irr)
kappa2(data.frame(x, y))

3.4. TWO SAMPLE TESTS FOR CONTINUOUS VARIABLES 81

The kappa2() function takes a dataframe (see 1.5.6) as argument. Weights can
be specified as an option.

3.4 Two sample tests for continuous variables

3.4.1 Student’s t-test
Example: See 3.6.4

t.test(y1, y2)

or

t.test(y ~ x)

The first example for the t.test() command displays how it can take two
vectors (y1 and y2) as arguments to compare, or in the latter example a single
vector corresponding to the outcome (y), with another vector indicating group
membership (x) using a formula interface (see Sections 1.5.7 and 4.1.1). By
default, the two-sample t-test uses an unequal variance assumption. The option
var.equal=TRUE can be added to specify an equal variance assumption. The
command var.test() can be used to formally test equality of variances.

3.4.2 Nonparametric tests
Example: See 3.6.4

wilcox.test(y1, y2)
ks.test(y1, y2)

library(coin)
median_test(y ~ x)

By default, the wilcox.test() function uses a continuity correction in the nor-
mal approximation for the p-value. The ks.test() function does not calculate
an exact p-value when there are ties. The median test shown will generate an
exact p-value with the distribution="exact" option.

3.4.3 Permutation test
Example: See 3.6.4

library(coin)
oneway_test(y ~ as.factor(x), distribution=approximate(B=bnum))

The oneway_test function in the coin library implements a variety of
permutation-based tests (see also the exactRankTests package). An empir-
ical p-value is generated if distribution=approximate is specified. This is

82 CHAPTER 3. COMMON STATISTICAL PROCEDURES

asymptotically equivalent to the exact p-value, based on bnum Monte Carlo
replicates.

3.4.4 Logrank test
Example: See 3.6.5

See also 6.1.18 (Kaplan–Meier plot) and 5.3.1 (Cox proportional hazards model)

library(survival)
survdiff(Surv(timevar, cens) ~ x)

If cens is equal to 0, then Surv() treats timevar as the time of censoring,
otherwise the time of the event. Other tests within the G-rho family of Fleming
and Harrington [18] are supported by specifying the rho option.

3.5 Further resources

Verzani [77] and Everitt and Hothorn [13] present comprehensive introductions
for the use of R to fit a common statistical model. Efron and Tibshirani [11]
provide a comprehensive overview of bootstrapping. A readable introduction
to permutation-based inference can be found in [22]. Collett [5] presents an
accessible introduction to survival analysis.

3.6 HELP examples

To help illustrate the tools presented in this chapter, we apply many of the
entries to the HELP data. The code for these examples can be downloaded
from http://www.math.smith.edu/r/examples.

3.6.1 Summary statistics and exploratory data analysis

We begin by reading the dataset.

> options(digits=3)

> options(width=68) # narrows output to stay in the gray box

> ds = read.csv("http://www.math.smith.edu/r/data/help.csv")

> attach(ds)

A first step would be to examine some univariate statistics (3.1.1) for the base-
line CESD (Center for Epidemiologic Studies–Depression measure of depressive
symptoms) score.

We can use functions which produce a set of statistics, such as fivenum(),
or request them singly.

http://www.math.smith.edu/r/data/help.csv
http://www.math.smith.edu/r/examples

3.6. HELP EXAMPLES 83

> fivenum(cesd)

[1] 1 25 34 41 60

> mean(cesd); median(cesd)

[1] 32.8

[1] 34

> range(cesd)

[1] 1 60

> sd(cesd)

[1] 12.5

> var(cesd)

[1] 157

We can also generate desired statistics. Here, we find the deciles (3.1.5).

> quantile(cesd, seq(from=0, to=1, length=11))

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1.0 15.2 22.0 27.0 30.0 34.0 37.0 40.0 44.0 49.0 60.0

Graphics can allow us to easily review the whole distribution of the data. Here
we generate a histogram (6.1.9) of CESD, overlaid with its empirical PDF
(6.1.21) and the closest-fitting normal distribution (see Figure 3.1).

> library(MASS)

> hist(cesd, main="distribution of CESD scores", freq=FALSE)

> lines(density(cesd), lty=2, lwd=2)

> xvals = seq(from=min(cesd), to=max(cesd), length=100)

> param = fitdistr(cesd, "normal")

> lines(xvals, dnorm(xvals, param$estimate[1],

+ param$estimate[2]), lwd=2)

3.6.2 Bivariate relationships

We can calculate the correlation (3.3.3) between CESD and MCS and PCS
(mental and physical component scores). First, we show the default correlation
matrix.

84 CHAPTER 3. COMMON STATISTICAL PROCEDURES

distribution of CESD scores

cesd

D
en

si
ty

0 10 20 30 40 50 60

0.
00

0.
01

0.
02

0.
03

Figure 3.1: Density plot of depressive symptom scores (CESD) plus superim-
posed histogram and normal distribution.

> cormat = cor(cbind(cesd, mcs, pcs))

> cormat

cesd mcs pcs
cesd 1.000 -0.682 -0.293
mcs -0.682 1.000 0.110
pcs -0.293 0.110 1.000

To save space, we can just print a subset of the correlations.

> cormat[c(2, 3), 1]

mcs pcs
-0.682 -0.293

3.6. HELP EXAMPLES 85

Figure 3.2 displays a scatterplot (6.1.1) of CESD and MCS, for the female
subjects. The plotting character (6.2.1) is the primary substance (Alcohol,
Cocaine, or Heroin). We add a rug plot (6.2.9) to help demonstrate the marginal
distributions.
> plot(cesd[female==1], mcs[female==1], xlab="CESD", ylab="MCS",

+ type="n", bty="n")

> text(cesd[female==1&substance=="alcohol"],

+ mcs[female==1&substance=="alcohol"],"A")

> text(cesd[female==1&substance=="cocaine"],

+ mcs[female==1&substance=="cocaine"],"C")

> text(cesd[female==1&substance=="heroin"],

+ mcs[female==1&substance=="heroin"],"H")

> rug(jitter(mcs[female==1]), side=2)

> rug(jitter(cesd[female==1]), side=3)

10 20 30 40 50 60

10
20

30
40

50
60

CESD

M
C

S

A

A

A

A
A

A

A

A

A

A

A

A
A

A

A

A

A

A
A

A

A
A

A

A
A

A

A

A

A

A
A

A

A

A

A

A

C

CC

C

C
C

C

C

C

C

C

C

C

C

C

C
C

C
C

C
C

C

C

C

C

C
C

C
CC

C
C

C

C

C

C

C

C

C

C

C
H H

H

H

H

H

HH
H

H

H

H

H H

H

H
HH

H

H

H

H

H

H

H

H
H

H

H

H

Figure 3.2: Scatterplot of CESD and MCS for women, with primary substance
shown as the plot symbol.

86 CHAPTER 3. COMMON STATISTICAL PROCEDURES

3.6.3 Contingency tables

Here we display the cross-classification (contingency) table (3.2.2) of homeless
at baseline by gender, calculate the observed odds ratio (OR, Section 3.3.1),
and assess association using the Pearson χ2 test (3.2.3) and Fisher’s exact test
(3.2.5).

> count = table(substance)

> percent = count/sum(count)*100

> rbind(count, percent)

alcohol cocaine heroin
count 177.0 152.0 124.0
percent 39.1 33.6 27.4

For cross-classification tables, similar syntax is used.

> table(homeless, female)

female
homeless 0 1

0 177 67
1 169 40

The prettyR library provides a way to display tables with additional statistics.

> library(prettyR)

> xtres = xtab(homeless ~ female, data=ds)

Crosstabulation of homeless by female
female

homeless 0 1
0 177 67 244

72.54 27.46 53.86
51.16 62.62

1 169 40 209
80.86 19.14 46.14
48.84 37.38

346 107 453
76.38 23.62

odds ratio = 0.63
relative risk (homeless-1) = 0.7

We can easily calculate the odds ratio directly.

3.6. HELP EXAMPLES 87

> or = (sum(homeless==0 & female==0)*

+ sum(homeless==1 & female==1))/

+ (sum(homeless==0 & female==1)*

+ sum(homeless==1 & female==0))

> or

[1] 0.625

> library(epitools)

> oddsobject = oddsratio.wald(homeless, female)

> oddsobject$measure

odds ratio with 95% C.I.
Predictor estimate lower upper

0 1.000 NA NA
1 0.625 0.401 0.975

> oddsobject$p.value

two-sided
Predictor midp.exact fisher.exact chi.square

0 NA NA NA
1 0.0381 0.0456 0.0377

The χ2 and Fisher’s exact tests assess independence between gender and home-
lessness.
> chisqval = chisq.test(homeless, female, correct=FALSE)

> chisqval

Pearson's Chi-squared test

data: homeless and female
X-squared = 4.32, df = 1, p-value = 0.03767

> fisher.test(homeless, female)

Fisher's Exact Test for Count Data

data: homeless and female
p-value = 0.04560
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.389 0.997
sample estimates:
odds ratio

0.626

88 CHAPTER 3. COMMON STATISTICAL PROCEDURES

The fisher.test() command returns the conditional MLE for the odds ratio,
which is attenuated towards the null value.

3.6.4 Two sample tests of continuous variables

We can assess gender differences in baseline age using a t-test (3.4.1) and non-
parametric procedures.

> ttres = t.test(age ~ female, data=ds)

> print(ttres)

Welch Two Sample t-test

data: age by female
t = -0.93, df = 180, p-value = 0.3537
alternative hypothesis:
true difference in means is not equal to 0

95 percent confidence interval:
-2.45 0.88
sample estimates:
mean in group 0 mean in group 1

35.5 36.3

The names() function can be used to identify the objects returned by the
t.test() function.

> names(ttres)

[1] "statistic" "parameter" "p.value" "conf.int"
[5] "estimate" "null.value" "alternative" "method"
[9] "data.name"

> ttres$conf.int

[1] -2.45 0.88
attr(,"conf.level")
[1] 0.95

A permutation test (3.4.3) can be run to generate a Monte Carlo p-value.

3.6. HELP EXAMPLES 89

> library(coin)

> oneway_test(age ~ as.factor(female),

+ distribution=approximate(B=9999), data=ds)

Approximative 2-Sample Permutation Test

data: age by as.factor(female) (0, 1)
Z = -0.92, p-value = 0.3623
alternative hypothesis: true mu is not equal to 0

Similarly, a Wilcoxon nonparametric test (3.4.2) can be requested,

> wilcox.test(age ~ as.factor(female), correct=FALSE)

Wilcoxon rank sum test

data: age by as.factor(female)
W = 17512, p-value = 0.3979
alternative hypothesis: true location shift is not equal to 0

as well as a Kolmogorov–Smirnov test.

> ksres = ks.test(age[female==1], age[female==0], data=ds)

> print(ksres)

Two-sample Kolmogorov-Smirnov test

data: age[female == 1] and age[female == 0]
D = 0.063, p-value = 0.902
alternative hypothesis: two-sided

We can also plot estimated density functions (6.1.21) for age for both groups,
and shade some areas (6.2.14) to emphasize how they overlap (Figure 3.3). We
create a function (see 1.6) to automate this task.

> plotdens = function(x,y, mytitle, mylab) {

+ densx = density(x)

+ densy = density(y)

+ plot(densx, main=mytitle, lwd=3, xlab=mylab, bty="l")

+ lines(densy, lty=2, col=2, lwd=3)

+ xvals = c(densx$x, rev(densy$x))

+ yvals = c(densx$y, rev(densy$y))

+ polygon(xvals, yvals, col="gray")

+ }

The polygon() function is used to fill in the area between the two curves.

90 CHAPTER 3. COMMON STATISTICAL PROCEDURES

> mytitle = paste("Test of ages: D=", round(ksres$statistic,3),

+ " p=", round(ksres$p.value, 2), sep="")

> plotdens(age[female==1], age[female==0], mytitle=mytitle,

+ mylab="age (in years)")

> legend(50, .05, legend=c("Women", "Men"), col=1:2, lty=1:2,

+ lwd=2)

20 30 40 50 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Test of ages: D=0.063 p=0.9

age (in years)

D
en

si
ty

Women
Men

Figure 3.3: Density plot of age by gender.

3.6.5 Survival analysis: Logrank test

The logrank test (3.4.4) can be used to compare estimated survival curves be-
tween groups in the presence of censoring. Here we compare randomization
groups with respect to dayslink, where a value of 0 for linkstatus indi-
cates that the observation was censored, not observed, at the time recorded in
dayslink.

3.6. HELP EXAMPLES 91

> library(survival)

> survobj = survdiff(Surv(dayslink, linkstatus) ~ treat,

+ data=ds)

> print(survobj)

Call:
survdiff(formula = Surv(dayslink, linkstatus) ~ treat, data = ds)

n=431, 22 observations deleted due to missingness.

N Observed Expected (O-E)^2/E (O-E)^2/V
treat=0 209 35 92.8 36.0 84.8
treat=1 222 128 70.2 47.6 84.8

Chisq= 84.8 on 1 degrees of freedom, p= 0

> names(survobj)

[1] "n" "obs" "exp" "var" "chisq"
[6] "na.action" "call"

