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Jorge Barros Luis | Interest Rate and Credit Risk Models



1. INTRODUCTION

Credit Risk

“Default risk is the risk that an obligor does not honour his payment obligati-

n

ons.

Typically,

Default events are rare.

They may occur unexpectedly.

Default events involve significant losses.

The size of these losses is unknown before default.

All payment obligations represent some sort of default risk.
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DETERMINANTS OF CREDIT RISK

e “Credit risk is the risk of default or of reductions in market value caused by
changes in the credit quality of issuers or counterparties”, Duffie, Darrell
and Kenneth J. Singleton (2003), “Credit Risk”, Princeton University Press.

* Credit Risk is associated to the PD of the debtor, as well as the LGD.

* Regarding the credit risk of the debtor, it is relevant not only to quantify
the PDs but also the rating transition frequencies, which also impact on
bond prices.

* Nonetheless, the expected loss is usually calculated taking only default
into consideration: EL=PD x LGD

* Given the diversity of the counterparties, the market usually distinguishes
sovereign, banking, corporate and individual/household credit risk.
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DETERMINANTS OF CREDIT RISK

 The bond spreads usually provide relevant information on credit
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Source: Duffie, Darrell and Kenneth J. Singleton (2003), “Credit Risk”, Princeton University

Press.
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COMPONENTS OF CREDIT RISK

Arrival risk is a term for the uncertainty whether a default will occur or not. To enable
comparisons, it is specified with respect to a given time horizon, usually one year. The measure
of arrival risk is the probability of default. The probability of default describes the distribution
of the indicator variable default before the time horizon.

Timing risk refers to the uncertainty about the precise time of default, Knowledge about the
time of default includes knowledge about the arrival risk for all possible time horizons, thus
timing risk is more detailed and specific than arrival risk. The underlying unknown quantity
(random variable) of timing risk is the fime of default, and its risk is described by the probability
distribution function of the time of default. If a default never happens, we set the time of default
(o infinity.
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COMPONENTS OF CREDIT RISK

Recovery risk describes the uncertainty about the severity of the losses if a default has
happened. In recovery risk, the uncertain quantity is the actual payoff that a creditor receives
after a default. It can be expressed in several ways which will be discussed in a later chapter.
Market convention is to express the recovery rate of a bond or loan as the fraction of the
notional value of the claim that is actually paid to the creditor. Recovery risk is described by
the probability distribution of the recovery rate, i.e. the probabilities that the recovery rate is
of a given magnitude. This probability distribution is a conditional distribution, conditional
upon default.

If we consider the risk of joint defaults of several obligors, an additional risk component is
introduced. Default correlation risk describes the risk that several obligors default together.
Again here we have joint arrival risk which is described by the joint default probabilities over a
given time horizon, and joint timing risk which is described by the joint probability distribution
function of the times of default.
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PDs

o Ratings are a ranking of credit risk
and do not explicitly provide any PD
measure.

o However, one can obtain historical
frequencies of default for each
rating classification, as well as the
historical frequencies of transition
between ratings.

o The long term ratings of the main
agencies (S&P and Moody’s) split by
7 classes, each of them (excluding
AAA) with rating modifiers +/ /-
(S&P) or 1/2/3 (Moody’s).
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PDs

e Simplest measure of credit risk — default frequencies from rating
agencies:

Global Corporate Average Cumulative Default Rates By Rating (1981-2013)

———— AAA ——AA mm—ee A -----BB8 — —BB — —B

(Logarithmicscale)
100.00 T

7 8 9 10 11 12 13 14 15 16 17 18 19 20
(Time horizon, years)

Note: Data provided arc kKeontical to thot found in chat 4, converted to log-acale. Sources:
Standard & Poor's Global Fixed income Research and Standard & Poor's CreditPro®.

Source: S&P (2014), “Default, Transition and
Recovery: 2013 Annual Global Corporate
Default Study and Rating Transitions”.

© Standard & Poor's 2014.
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PDs

o Transition matrices illustrate the significant stability of rating
classifications, being this stability higher for higher ratings.

Average One-Year Letter Rating Migration Rates, 1920-2016

From/To: Aaa Aa A Baa Ba B Caa Ca-C WR Default
Aaa 86.746% 7.848% 0.784% 0.193% 0.030% 0.002% 0.000% 0.000% 4.397% 0.000%
Aa 1.059% 84.158% 7.642% 0.729% 0.160% 0.046% 0.012% 0.004% 6.129% 0.060%
A 0.070% 2.740% 84.952% 5.597% 0.646% 0.119% 0.036% 0.008% 5.747% 0.084%
Baa 0.036% 0.239% 4.261% 82.661% 4.632% 0.741% 0.129% 0.017% 7.027% 0.257%
Ba 0.006% 0.072% 0.456% 6.148% 73.923% 6.880% 0.669% 0.089% 10.553% 1.164%
B 0.005% 0.044% 0.162% 0.620% 5.574% 71.711% 6.175% 0.476% 11.940% 3.292%
Caa 0.000% 0.010% 0.028% 0.125% 0.567% 6.897% 67.342% 2.944% 13.675% 8.413%
Ca-C 0.000% 0.016% 0.108% 0.038% 0.616% 2.975% 8.034% 48.426% 18.719% 21.068%

Source: Moody’s (2017), “Corporate Default and Recovery Rates, 1920-2016".
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Exhibit 30
P D S Annual Issuer-Weighted Corporate Default Rates By Letter Rating, 1920-2016*
Year Aaa Aa A Baa Ba B Caa-C nv Crade Spec Crade All rated
e —— 1920 0.000 3.00 2153 4,382 0000 3.009 1234
1921 0.000 0444 2.683 13.332 2.150 1.068
1922 0.000 1.078 1.705 7.629 1.762 1.007
1923 0.000 0925 2.270 5937 1705 0.804
1924 0.000 2.065 2.705 12.835 2.852 1152
" 1925 0.000 1.745 2585 14,397 2567 1
o Default frequencies also tend to =
1927 0.000 0.000 0.212 0.000 1.300 1980 12.842 0.069 1.831 0.736
. 1928 0,000 0.000 0.000 0.164 1.320 10 477 0.000 0.877 0363
change along time, namely for lower =
1930 0.402 0917 3163 1720 0151 2.204 1.040
rati ngs' 1931 1.085 3.005 9523 31.670 0.502 7.897 3.805
1932 0.929 6.097 13978 24062 0.861 10,989 5.503
1933 177 5 16.147 25921 0.790 15.709 8489
1934 0.857 2529 4224 16.504 0.586 5.897 3.405
1935 1923 5134 4275 13.024 1.285 6.253
1936 0.327 1.234 2.385 7795 0.482 2720
1937 0.000 1043 0.997 2.669 9074 0.619
1938 0.000 1990 0991 1 12 808 1.550
1939 0.000 0.995 0.623 1744 6.073 0.42 1.224
1940 1370 0.433 3307 11829 0.592 2472
1241 0.000 0.873 0.813 5.071 0.000
1942 0.000 0.000 D/ 2004 0.000
1943 0,000 0000 1359 0000 0.000
1944 0.000 0.000 0.000 0.435 2.551 0.000 0.666
1945 0.000 0.000 0.000 0.000 0.000 3571 0000 0.565
1946 0.000 0.000 0.000 0.000 0000 0.000 0.000 0.000
1947 0.000 0.000 0.000 0.000 D19 2178 0000 0636
1948 0.000 0.000 0.000 0.000 0.000 0000 0.000 0.000
1949 0.000 ©.000 0.000 1.031 8.571 0.000 1926
1950 0.000 0.000 0.000 0000 0000 0.000 0.000
1951 ©.000 0.000 0.000 0.000 4762 0.000 0.433
1952 0.000 0.000 0.0600 0000 0.000 0.000 0.000
1953 (0.000 0.000 0000 0000 0.000 0.000 0.000
1954 0.000 0.000 0.000 7143 0.000 0.467 0.166
Q.000 0000 0000 1613 0000 0000 0518 0.766
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1957 0.000 0.000 0.000 1.266 0.000 0.000
1958 0.000 0.000 0.000 0000 0000 0.000
1959 0.000 0.000 0.000 0.000 0.000 0.000
1960 0.000 G.000 Q000 0000 1.251 0000 0000 0000

Source: MOOdy,S (201 7), “Corporate Default and Recovery 1961 0.000 0.000 0000 0000 0593 0000 8.696 0000
Rates, 1920-2016". 1962 0.000 0.000 0.000 0.000 1749 1471 0.000 0.000

1963 0.000 0.000 0.000 0.000 1162 14N 0.000 0.000
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PDs

o Actually, the volatility of default frequencies for lower
ratings (speculative grade) is significant.

Global Speculative- Grade Default Rate Remained Low in 2013
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Source: Moody’s (2014), “Corporate Default and Recovery Rates, 1920-2013.
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PDs

o Marginal frequencies obtained from the cumulative figures tend to exhibit a very
irregular shape.

o It can be observed that marginal PD curves have different inflection points,
depending on the rating class, with the lower inflection points for the higher risk

classes.
Unconditional Marginal PDs: Unconditional Marginal PDs:
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PDs

o The irregular shape of marginal PD curves occurs even when cumulative PD
curves exhibit an apparently smooth behavior.

o Therefore, in order to ensure a smother behavior of marginal PD curves, it is
recommended to smooth the cumulative PD curves, as the marginal curves as a
measure of the 1t derivative of the cumulative curves.

o The cumulative PD curves can be smoothed by methods like the Nelson-Siegel-
Svensson, with the cumulative PD curves corresponding to the spot curves and
the marginal PD curves to the instantaneous forward curves.

Cumulative PDs
Moody's 1920-2005
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PDs

e P(t) — Cumulative probability of surviving t years

* Unconditional marginal probability of default between t and s -
probability of default between any times t and s =2 t as seen today:
difference between the cumulative probability of default until s and the
same probability until t:

d’(s) = [1-P(s)]-[1-P(t)] = P(t) - P(s) = D(s) = D(t)

!l

difference between 2 cumulative probabilities of default (D) seen today

(being D,=0) l

* Cumulative default frequencies are the sum of unconditional marginal
default frequencies.
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PDs

e Cumulative probability of surviving to time s (P(s)) = probability of surviving until
t (P(t)) x probability of surviving between t and s, given that it has survived until t

(p(s|t)):

P(s) = P(t) x p(s]t)

* Conditional marginal probability of surviving to time s, given survival to time t:

p(s|t) = P(s)/P(t)

!

* Conditional marginal probability of default at time s, given survival to time t (or
forward default probability):

d(s|t) = 1- p(s[t) = 1-P(s)/P(t) = [P(t)-P(s)]/P(t) = -[P(s)-P(t)]/P(t) = -P’(t)/P(t)

* Cumulative default freque*cies can also be calculated as is 1 - the joint
(cumulative) probability of surviving until j-1 and the probability of surviving in i:
D; =1-(1-d;)(1-D;,)
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PDs

Table 24.1 Average cumulative default rates (%), 1970-2015 (Source: Moody's).

Term (vears): ) 2 3 4 5 7 10 15 20

Aaa 0000 0011 0011 0.031 0087 0.198 0396 0.725 0849
Aa 0022 0061 0.112 0.19% 0305 0540 0807 1.3%4 2266
A 0056 0.170 0357 0555 0794 1345 2313 405 6087
Baa 0.185 0480 0831 1252 1668 2525 4033 7273 10734
Ba 0959 2587 4501 6.538 B8.442 11.788 16455 23930 30.164
B 3.632 B8.529 13.515 17999 22071 29.028 36298 43.368 48.071
Caa-C 10.671 18.857 25.639 31.075 35638 41.812 47843 50.601 51319

Source: Hull, John (2018), “Options, futures and other derivatives”, 10t Edition, Pearson.

* For the Caa rating, the unconditional marginal probability of default (d’) seen today
for the 3™ year is equal to the difference between the cumulative probabilities of
default for 3 (s) and 2 (t) years: d’(3) =D(3) —D(2) =25.639% - 18.857% = 6.782%

e Conditional marginal probability of surviving at year 3, given survival to year 2:
p(3|2)=P(3)/P(2) = (1-0.25639)/(1-0.18857) =0.91642

“

* Conditional marginal probability of default at year 3, given survival to year 2:
d(3]|2) =1-p(3|2)=1-0.91642=0.0836.
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PDs

* The unconditional marginal probability of default between s and t
measured today is also the product between the cumulative probability of
survival until t and the probability of default between t and s, given

survival until t: l

d’(s) = P(t) x d(s|t) & d(s|t)=d’(s)/P(t) = 0.06782/(1-0.18857)= 0.0836

* Therefore, any unconditional probability of survival may be measured as:

' i
d; =0, TT01-d;4)
j=1

being d;=d(s|t), (1-d; ;) = P(t) and with d;’ = 0
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DEFAULT INTENSITY

o The conditional probability of default between s and t, given survival
until t (d(s|t) = d’(s) / P(t)), is also called default intensity or hazard rate.

o The conditional marginal default probability to the rating Caa previously
calculated (8.36%) was for a 1-year period.

o If one considers a very short period of time At, denoting the hazard rate
at t by A(t), the probability of default between t and t + At conditional
on no previous default (until t) is A(t) x At.

o Many models of PDs are based on the notion of the arrival intensity of
default.
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DEFAULT INTENSITY

o The simplest version of such a model defines default as the 15t arrival time t of a

Poisson process with some constant mean arrival rate — average default intensity
or hazard rate (A):

P(t ) = e™' - probability of survival for t years

1/A - expected time to default

AAt — default intensity in t over a small period of length A (between t and t+At),
given survival until t.

o Example: default intensity (A) = 0.04 =>

=> 1-year PD (1-P(1)) = 1-e-004x1 =3 9% => expected time to default (1/A) = 1/0.04 =
25 (years).
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DEFAULT INTENSITY

o As it was shown before, d’(s) = P(t) x d(s|t) <> d(s]|t) =d’(s) / P(t).
o For a very short period of time At, this result becomes:

d(t+At|t) = d’(t+At)/P(t)

o As d’(t+At) is the unconditional probability of default between t and A4t, it
is the difference between the cumulative probabilities of default for t+At
and t:

d’(t+At) = [1- P(t+At)]-[1- P(t)] = P(t) - P(t+At) => the previous equation
becomes:

d(t+At|t) = d’(t+At)/P(t) = [P(t) — P(t+At)]/P(t)
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DEFAULT INTENSITY

o As the conditional marginal probability of default (or default intensity)
for a very short period of time is AAt, we have:

[P(t) — P(t+At)]/P(t) = AAt & [P(t+At) - P(t)] = -AP(t) At

o Taking limits:

dP(t)/dt = -AP(t)
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DEFAULT INTENSITY

o |If default intensity varies along time, default intensity becomes A(t)At and the
probability of survival for t years becomes:

P(t) = e~ IAM1)+A(2)+...+A(t)] — Instead of P(t ) = e, where A is constant

o Actually, as P(s) = P(t) x p(s|t), for instance withs=2and t=1=>

<

— fot A(t)dt

P(2) = P(1) X p(2]1) = e W1+

o In continuous time, we get P(t) = e

t
D(t)=1-P(t) =1—e JoA®)at

<

The only relevant information to default risk along time is the survival until then.
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DEFAULT INTENSITY

o However, in reality, as time passes, one should have new
information, beyond simply survival, that would bear on the credit
quality of an issuer.

o The default intensity would generally vary at random as this
additional information arrives.

o For example, one may assume that the intensity varies with an
underlying state variable (driver), such as the credit rating,
distance to default, equity price, or the business cycle.
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DEFAULT INTENSITY

o If intensities are updated with new information at the beginning of
each year and are constant during the year => Probability of
survival to time t given survival to t — 1, and given all other
information available at time t - 1:

P(t —1 t) — e—}l(t) P(t — 1,t) is unknown before t-1, as A(t) is based on

information that is revealed only at time t-1.

o Attime t, we have 2 sources of uncertainty:
(i) the behaviour in the following period (survival or default);

(i) new information that will become available during the next period
that will be relevant to calculate probabilities of survival and
default in the following period.
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DEFAULT INTENSITY

o Example — 2 periods:

o Default intensity in the 2" year (A(2)), assuming the firm survives the 1%, is
uncertain and takes 2 possible levels, A(2,H) and A(2, L), with conditional
probabilities g and 1 - g, respectively (p(2|1)):

p(2|1) = qe—/’l(Z,H) +(1- q)e—A(z,L) _ E[e"l(z)]

When there was no new information
on the hazard rate there was no

o 2-year survival probability (P(2)): ;2;‘;2"32; b;‘é;?; N e

P(2) =P(1) - p(2|1) — o~ AD) .E[e—/’l(Z)] — E[e—[A(1)+)1(2)]] /
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DEFAULT INTENSITY

o Default time & 15t time that a coin toss results in “heads,” given
independent tosses of coins, one each period, with each toss
having a probability A of heads and 1-A of tails <& default is
unpredictable < when default does occur, it is a “surprise.” &
default time is inaccessible.

The following assumption describes the way in which default arrival risk is modelled in all
intensity-based default risk models:

Assumption 5.1 (intensity model default arrivals) Let N(1) be a counting process' with
(possibly stochastic) intensitv A(1). The time of default t is the time of the first jump of N, i.e.

t=inf{t e R, | N(1) = 0}. (5.1)

The survival probabilities in this setup are given by:

PO, T)=P[N(T) = 0|Fs]. (5.2)
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POISSON PROCESSES

A Poisson process N(r)is an increasing process in the integers 0, 1, 2, 3, .... More important
than its unexciting set of values are the rimes of the jumps T, 1o, 13, ... and the probability of
a jump in the next instant.

We assume that the(probability of @n the next small time interval Ar is proportional
o A: T~ Probability of default

_» in a small period of

P[N(I - Al) - N([) - 1] = LAL. time At = Probability(5‘3)

of 1 jump in the"
Poisson Process

that jumps by more than 1 do not occur, and that jumps in disjoint time intervals happen inde-

pendentlyOf each other, This means, conversely, that thegrobability of the process remaining

constant is

7 . -, Probability of sgrvival
There is only 1 default, P[N(I + A= N1)=0]=1- 1AL, in a small perlod. .of
i.e. the default is an time At = Probability

absorbing state. of no jumps in the
Poisson Process
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POISSON PROCESSES Probability of survival in 2

small periods is the joint
probability of default in each
of them (given that the hazard
rate is the same for all periods

Kover the interval [¢. 2A¢Dthis probability is / of the same magnitude)

PIN(t 4+ 2A1) — N(1) = 0]
=P[N(t + At = N(@)=0]-P[NI +2A1) = N + A1) = 0] = (1 — LA,

Now we can start to construct a We subdivide the interval [1, 7] into n
subintervals of length At = (7" — t)/n. Ineach of these subintervals the process N has a jump

with probability A7, We conduct n independent binomial experiments each with a probability
of Atk for a “jump’ outcome,

The grobability of no jump at all in |7, T13s given by:

l {
PIN(T)=N{@)] =(1 — AtL)Y = (1 @)k) .

n

Va | N

Probability of no jumps in the n periods
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POISSON PROCESSES

1 n
PIN(T)=N®)] =(1 - ArL)" = (l — (T —i)\’

Because (1 + x/n)" — ¢* as n — o<, this converges to:

P[N(T) = N(1)] — exp{—(T — 1))}

>

The Poisson
process
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POISSON PROCESSES

Next we look at the probability of exactly one jump in [#, 7']. There are n possibilities of having
exactly one jump, giving a total probability of

/ Probability of a jump
Probability of no jumps in n-1 periods
PIN(T) = N(t)=1] = n QAN , —

At — (' =1 1 — l('[' — 1)) ) Lim n->oc of the last component in
1 — H(T — i n ' the RHS is 0

= (T —rexp{—(T — 1))} asn — oC,

Probability of exactly
one jump in [t,T]
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POISSON PROCESSES

o For 2 jumps, there will be n/2 chances => probability of having 2 jumps:

1 Y.
PIN(T)— N(t) = 2] = (T — 1)’ A% exp{—(T — 1)}

—

o Probability of n jumps:

1
PIN(T) — N(t) = nl = —(T = 1)'A" exp{—(T — )3}
n!

o When a Poisson process with constant intensity A (homogeneous Poisson process)
is used, the term structure of spreads will be flat and constant over time => we
need a time-varying A => Cox process or inhomogeneous Poisson process
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POISSON PROCESSES

Roughly spcuking.‘(‘.m processes are Poisson processes with stochastic intensity.

PIN(t + At) = N(t) = 1] = A(t)dt
‘ T, Now X1 is time-

varying

7

P(N(T) - N()=0] = H(l — M1 4+ iADAD
i=1

The probability of no jumps over the period
—>between t and T is the joint probability of no
jumps in each moment during that period

InPIN(T)-N@=0] = Y In(l — At +iADAL) ~ - 0+ iADAL As In(1—x)~ —x
IZ; ; All + ) for small x

-
‘ — —f As)ds as At — 0
r
r 1 i \ M r
PIN(T)-Nt)=0] — cxpl = f }»(.\)dS} as At — 0 ‘PLN(T) —N{)=n]= —([ A(s)ds) cxp{ —j }.(s)ds}-
i nl\ J; :

\ With variable A, A(T-t) is replaced by the

With constant . pin (1) — N(¢t) = n] = i'(.jr — 1" A" exp{—(T — )r} — integral of A(s)
n!
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DEFAULTABLE ZERO COUPON BONDS

The implied survival probability fromt to T >t as seen from time t is the ratio of the
defaultable 1o the defauli-free ZCB prices:

- B(t.T) < Zero Coupon Defaultable bond (with
P, I)= BU.T) «— recovery rate = 0 and pay-off =1)

Zero Coupon Risk-free bond ——> B(t.T)=E[¢ /79 1]
(with pay-off =1)

o Probability of Default:

PG TY'=1—PU.T)
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DEFAULTABLE ZERO COUPON BONDS

| if default after T, ie.7 > T. For the Zero Coupon Defaultable
EayaR = lgar) = bond, the pay-off will be 1 only if
0 ifdefault before 7,ie.7 =T | the debtor is still alive at T.

“

E(I. T) = E[e—f:r ris)ds ](T)]

v

E(,’ ]) — E[e* fII risis 1('1)] — E[(’i f'rlrlis‘m's]E “(])]
= B(t, T)E[I(T)] = B(t, T)P(t,T),
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DEFAULTABLE ZERO COUPON BONDS

o If the time of default is the time of the 15t jump of a Poisson
process N(t) and is independent from the default-free interest
rate, the price of a defaultable bond with zero recovery becomes:

B0, T)=E[e Jo risXsy 0]

o

Assuming that the riskfree interest rate is
independent from the arrival intensity of default

T

|

B(0. T) = E[e o "% E[1n-0].

o 5
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Assuming that the riskfree interest rate is
correlated with the arrival intensity of default

|

B(0,T)=E[¢ fo r(s)+Als s

l

The defaultable bond price corresponds to the
NPV of the future cash-flows, using as discount
rate the yield of the defaultable bond.




CREDIT DERIVATIVES

Definition:

(a) A credit derivative is a derivative security that is primarily used to transfer, hedge or
manage credit risk.

(D) A credit derivative is a derivative security whose pavoff is materially affected by credit
risk.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”,
Wiley.

Narrower definition:

e A credit derivative is a derivative security that We need to
has a payoff which is conditioned on the occur- =  define what
rence of a credit event. are credit

events.
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CREDIT DERIVATIVES

‘Traditionally, a bank could only manage its credit risks at origination. Once the risk was
originated, it remained on the books until the loan was paid off or the obligor defaulted. There
was no efficient and standardised way to transfer this risk to another party, to buy or sell
protection, or to optimise the risk—return profile of the porttolio. Consequently, the pricing
of credit risks was in its infancy, spreads on loans only had to be determined at origination
and were often determined by non-credit considerations such as the hope of cross-selling
additional business in the corporate finance sector, There was no need to become more efficient
because the absence of a transparent market meant that the mode of operation was more like an
oligopoly than an efficient competition. Whether a loan was mispriced or not was impossible
to determine with certainty, it all depended on the individual subjective assessment of the
obligor’s default risk. The main “cost” of extending a loan was the cost of the regulatory risk
capital as prescribed by the rules of the Basel I capital accord, and this is the point where credit
derivatives came in.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”,
Wiley.
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CREDIT DERIVATIVES

Key terms:

Reference entity/reference credit: One (or several) issuer(s) whose defaults trigger the
credit event. This can be one or several (a basket structure) defaultable issuers.

Reference obligations/reference credit asset: A set of assets issued by the reference credit.
They are needed for the determination of the credit event and for the calculation of the recovery
rate (which is used to calculate the default payment). Possible reference credit assets can
range from “any financial obligation of the reference entity” to a specific list of some of
the bonds issued by the reference entity. Loans and liquidly traded bonds are a common
choice. The reference credit assets are clearly identified in the credit derivative’s specification.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”,
Wiley.
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Types of credit events:

[ e bankruptcy

e failure to pay

e obligation default
Standardized by ISDA

(International Swap Dealers
Association), even though

L. ) they may also be freely
e repudiation/moratorium negotiated.

< ¢ obligation acceleration

e restructuring

¢ ratings downgrade below given threshold

\ e changes in the credit spread

e The credit event is defined with respect to a re- Reference Credit:
ference credit, and the reference credit as- ) Firm, institution or
set(s) issued by the reference credit. person who may

default.
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Types of reference credit assets:

e |0ans

o floating or fixed rate

o may include optionality (interest rate caps,
credit facilities)

o nhottraded, thus recovery rate may be hard to
determine

Reference <

Credit Assets * bonds

o fixed—coupon or floater
o Zero coupon
o convertible

e counterparty risk

\
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MARKET TERMINOLOGY

o Credit derivatives can be defined on single-name or multi-name.

e Buying a credit derivative typically means buying credit protection, which
Is economically equivalent to shorting the credit risk.

e So selling credit protection means going long the credit risk.

e Alternatively, one may speak of protection buyers/sellers as the
payers/receivers of the premium.
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o The most popular single-name credit derivative is the CDS.

Table 1.1 Size of the market for credit dervatives according to surveys
by the British Bankers™ Association and Risk (Patel, 2002)

Year 1997 1998 1999 2000 2001

Outstanding notional (USD bn) 170 350 586 893 1398

Table 1.2 Market share by instrument type (rounded numbers)

[nstrument Share (%)
Credit default swaps (including FtDs) 67
Synthetic balance sheet CLLOs 12
Tranched portfolio default swaps Y
Credit-linked notes, asset repackaging, asset swaps 7
Credit spread options 2
Managed synthetic CDOs 2
Total return swaps 1

Hybrid credit derivatives 0.2

Source: Risk (Patel, 2002).

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”,
Wiley.

Jorge Barros Luis | Interest Rate and Credit Risk Models




CREDIT DEFAULT SWAPS

The aim is to transfer ONLY the default risk from A to B.

The protection seller B agrees to pay the default payment
notional x (1 — recovery rate)

to A if a default has happened.

For this, A pays a periodic fee 5 to B (until maturity of the CDS or until default,
whichever comes first)

In a single-name credit default swap (CDS) (also known as a credit swap) B agrees to pay
the default payment to A if a default has happened. The default payment is structured to replace
the loss that a typical lender would incur upon a credit event of the reference entity. If there is
no default of the reference security until the maturity of the default swap, counterparty B pays
nothing,

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

o CDS may have different specifications regarding the default payment.

Default 00 basis points per year Default
protection P protection
buyer Payment if default by seller

reference entity

Source: Hull, John (2018), “Options, futures and other derivatives”, 10t Edition, Pearson.

Default swaps can differ in the specification of the default payment. Possible alternatives are:

® Physical delivery of one or several of the reference assets against repayment at par;
¢ Notional minus post-default market value” of the reference asset (cash settlement);
® A pre-agreed fixed payoff, irrespective of the recovery rate (default digital swap).

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

o Example of a CDS with a fixed repayment at default:

Example2.1 Default digital swap on the United States of Brazil. Counterparty B (the insurer)
agrees to pay USD Im to counterparty A if and when Brazil misses a coupon or principal
pavment on one of its Eurobonds. Here:

e The reference credit is the United States of Brazil,

e The reference credit assets are the Eurobonds issued by Brazil (in the credit derivative
contract there would be an explicit list of these bonds);

® The credit event is a missed coupon or principal paviment on one of the reference assets,

® The default payment is USD Im.

In return for this, counterpartv A pavs a fee to B.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

o Most CDS have a physical delivery.

To identify a credit default swap, the following information has to be provided:

[. The reference obligor and his reference assets;

2. The definition of the credit event that is to be insured (default definition);
3. The notional of the CDS;

4. The start of the CDS, the start of the protection;

5. The maturity date;

6. The credit default swap spread;

7. The frequency and day count convention for the spread payments;

8. The payment at the credit event and its settlement.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS
o The definition of default is key:

The event that is to be insured against is a default of the reference obligor, but because
of the large payments involved the definition of what constitutes a default has to be made
more precise, and a mechanism for the determination of the default event must be given. The
standard definition of default includes:

® bankruptcy. filing for protection,

® failure to pay,

¢ obligation default, obligation acceleration,
¢ repudiation/moratorium,

&

restructuring.* —_—

There is a debate whethehould be included as a default event in the specifi-

cation or not, and some market makers even quote different prices for CDSs with and without
restructuring in the default definition. Sometimes (in particular in default definitions for CDOs),
a slightly different default definition is used which is based upon rating agencies’ definitions
of default. Despite the growing ardisation of the def; e adv '

L
v
-
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~
-

+
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Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

o CDS payments before default:
Example 2.3  Credit default swap on Daimler Chrysler.
The trade

At time t = 0, A and B enter a credit default swap on Daimler Chrysler, A as protection buyer
and B as protection seller. They have agreed on:

(i) The reference credit: Daimler Chrysler AG.

(ii) The term of the credit default swap. 5 vears.
(iii) The notional of the credit default swap: 20m USD. Semi-annual amount to be
(iv) The credit default swap fee: 5 = 116 bp. paid by the protection buyer

The credit default swap fee s = 116 bp is quoted per annum as a
pays the fee in regular intervals, semi-annually. To make ¢
count fractions to 1/2 such that A pays to B:

iction of the notional. A
ife easier, we simplify the day

116 bp x 20m /2 = 116000 USD |at T, =05, T, =1,..., Tio =S5

These payments are stopped and the CDS is unwound as soon as a default of Daimler Chrysler
OCCUTS.
Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

o CDS payments after default — physical settlement:
The default payment Because the payments are

/ done each semester
First, A pavs the remaining acertied fee. If the default occurred two months after the last fee

pavment, A will pay 116000 x 2/6. The next step is the determination of the default paymen.

If phvsical settlement has been aereed upon, A will deliver Daimler Chrvsler bonds to B with

a total notional of USD 20m (the notional of the CDS). The set of deliverable obligations has
been specified in the documentation of the CDS. As liquidity in defaulted securities can be
very low, this set usually contains more than one bond issue by the reference credit. Naturally
A will choose to deliver the bond with the lowest market value, unless he has an underlving
position of his own that he needs to unwind. (Even then he may prefer to sell his position in
the market and buy the cheaper bonds to deliver them to B.) This delivery option enhances the
value of his default protection. B must pay the full notional for these bonds, i.e. USD 20m in

our example.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

o CDS payments after default — physical settlement:

If cash settlement has been agreed upon, a robust procedure is necessary 1o determine
the market value of the bonds after default. If there were no liguidity problems, it would be
sufficient to ask a dealer to give a price for these bonds, and use that price, but liquiditv and
manipulation are a very real concern in the market for distressed securities. Therefore not one,
Dut several, dealers are asked to provide quotes, and an average is taken after eliminating the
highest and lowest quotes. This is repeated, sometimes several times, in order to eliminate the
mﬂuem e ()f rempomrv Izqmdm* Imlm 77mv the price of the defaulted bonds is determined,

1. Now, the protection seller pavs the difference
between this price and rlze par value for a notional of 20m USD, i.e.

(1000 — 430)/1000 x 20m USD = 11.4m USD

~

Because the price determination in so involved, most credit default swaps
specify physical delivery in default. Cash setilement is only chosen when there may not be
any physical assets to deliver (i.e. the reference entity has not issued enough bonds) or if the
CDS is embedded in another structure where physical delivery would be inconvenient, e.g. a
credit-linked note.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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Valuation

e In the previous example, the CDS fee or spread was given.

e However, in reality, this spread has to be calculated.

4

Example:

e Maturity =5 years

e Notional amount = S1

e CDS fee =5%

e Frequency of swap payments = yearly

e Recovery Rate =40%

e Defaults assumed to occur at mid-year

e Risk-free interest rate = 5% (continuously compounded, flat)

e Hazard rate = 2%
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Valuation

e Unconditional probability of default:

- P(t)=e
Year Probability of Probability of
surviving to year end default during year
| 0.9802 0.0198
2 0.9608 0.0194 — 0.9802-0.9608
3 0.9418 0.0190
4 0.9231 0.0186
5 0.9048 0.0183

Source: Hull, John (2018), “Options, futures and other derivatives”, 10t Edition, Pearson.
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Valuation

e Present value of expected payments:

/ = probability of survival x CDS fee

Time Probability Expected Discount PV of expected
(vears) of survival payment factor payment
1 0.9802 0.9802s 0.9512 0.9324s
2 0.9608 0.9608s 0.9048 0.8694s
3 0.9418 0.9418s 0.8607 0.8106s
4 0.9231 0.9231s 0.8187 0.7558s
5 0.9048 0.9048s 0.7788 0.7047s
Total 4.0728s

Source: Hull, John (2018), “Options, futures and other derivatives”, 10t Edition, Pearson.
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Valuation

e Present value of expected payoffs:

T'ime  Probability Recovery Expected Discount PV of expected

(vears) of default rate pavoff (8)  factor pavoff (8)
0.5 0.0198 0.4 0.0119 0.9753 0.0116
1.5 0.0194 0.4 0.0116 0.9277 0.0108
2.5 0.0190 0.4 0.0114 0.8825 0.0101
3.5 0.0186 0.4 0.0112 0.8395 0.0094
4.5 0.0183 0.4 0.0110 0.7985 0.0088

Total 0.0506

Source: Hull, John (2018), “Options, futures and other derivatives”, 10t Edition, Pearson.

e As the default occurs in mid-year, an accrual payment is owed, due to the
period between the last payment and the default date.
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Valuation

e Due to the difference between the default time (that occurs halfway
through a year) and the previous payment, an accrual payment is owed.

e This will be the sum of the present value of the expected cash-flows:
> . d'; - 1; - 5, being T; = the accrual time (0.5, as it is assumed that the
default occurs halfway through a year).

Time Probability Expected Discount PV of expected

(vears) of default accrual payment factor accrual payment
0.5 0.0198 0.0099s 0.9753 0.0097s
1.5 0.0194 0.0097s 0.9277 0.0090s
25 0.0190 0.0095s 0.8825 0.0084s
35 0.0186 0.0093s 0.8395 0.0078s
4.5 0.0183 0.0091s 0.7985 0.0073s
Total 0.04225

Source: Hull, John (2018), “Options, futures and other derivatives”, 10t Edition, Pearson.
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Valuation

e s will be calculated from the identity between the present value of the
expected payments and the present value of the expected pay-off:

4.0728s + 0.0422s = 0.0506 & s = 1.23%

e The valuation can also be done through a roll-back procedure,
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Valuation

e Maturity = 3 years;
e Notional =€ 100.000
e Payment in case of default = 70% of the notional

® Risk-neutral marginal probability of default in t, given
that it didn’t default in t-1:

Period (t) Probability (L)
1 0.59%
2 1.00%
3 1.27%
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Valuation

e Spot rates and discount factors (with discrete compounding) for

maturity t:
Maturity (t) Spot Rate Discount Factor
s(t) F(t)
1 4.0% 0.9615
4.2% 0.9210
3 4.4% 0.8788

e In order to obtain the swap premium, it is necessary (as usual) to
calculate the NPV of the future cash-flows, which will be done
recursively from the last cash-flows.
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Valuation

e E,[pay-off(3)|ND] = pay-off in case of no default *(1-PD) + pay-
off in default *PD

=0 x (1- 0.0127) + 0.7 x 0.0127 = 0.00889
>PD(3)
e E,[pay-off(3|D] =0.7

e E,[pay-off(3)|ND] = E,[pay-off(3) IND]*(1-PD)+ E,[pay-off(3)| D]
*PD= 0.00889 x (1—0.01) + 0.7 x 0.01 = 0.0158011

PD(2)
e E,[pay-off(3)|D] =0.7
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Valuation

o EX(3)] = Ejlpay-off(3)|ND]*(1-PD)+ E,[pay-off(3)|D] *PD=
0.0158011 x (1 —0.0059) + 0.7 x 0.0059 = 0.0198

e V(0,3) = F(0,3) E,[X(3)] *notional = 0.8788 * 0.0198*100000 = €1740.

e If the premium is paid on an annual basis, we’ll have:

1740 = 0.9615 x p +0.9210 x p + 0.8788 x p

p =630.14 = 0,63014% of the notional amount
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TOTAL RETURN SWAPS

Total Total return on bond " Total
return - retgrn
payer LIBOR + 25 basis points recaver
In a total return swap (TRS) (or total rate of return swap) A and B agree to exchange all | The aim is to
cash flows that arise from two different investments. Usually one of these two investments S""apl the
is a defaultable investment, and the other is a default-free Libor investment. This structure 2?“3 returz
al.lows an exchange of the assets” payoff profiles without legally transferring ownership of the | j e b
assels. o ] ‘ bond into a
The payotfs of a total rate of return swap are as follows. Counterparty A pays to counterparty | cash-flow  of
B at regular payment dates 7;,i < N LIBOR plus a
spread
® The coupon ¢ of the bond issued by C (if there was one since the last payment date 7;—,); A pays while the
® The price appreciation (C(71;) — C(1;-1))” of bond C since the last payment; bond price
e The principal repayment of bond C (at the final payment date); ‘ increases  (like
e The recovery value of the bond (if there was a default). zg'r']'tr;gct)a futures

B pays al the same intervals:

¢ A regular fee of Libor + s7%5;

¢ The price depreciation (C(T, 1) — C(T;))™ of bond C since the last payment (if there was
any);

¢ The par value of the bond (if there was a default in the meantime).

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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TOTAL RETURN SWAPS

Advantages:

¢ Counterparty B is long the reference asset without having to fund the investment up front.
This allows counterparty B to leverage his position much higher than he would other-
wise be able to. Usually, depending on his credit quality, B will have to post collateral,
though.

® If the reference asset is a loan and B is not a bank then this may be the only way in which
B can invest in the reference asset.

e Counterparty A has hedged his exposure to the reference credit if he owns the reference
asset (but he still retains some counterparty risk).

® The transaction can be effected without the consent or knowledge of the reference credit C,
A is still the lender to C and keeps the bank—customer relationship.

¢ If A does not own the reference asset he has created a short position in the asset. Because
of its long maturity, a short position with a TRS is less vulnerable to short squeezes than
a short repo position. Furthermore, directly shorting defaultable bonds or loans is often
impossible.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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FIRST TO DEFAULT SWAPS

A first-to-default swap (FtD)) is the extension of a credit default swap to portfolio credit risk.
[ts key characteristics are the following:

® Instead of referencing just a single reference credit, an FtD is specified with respect (o a
basket of reference credits C,, C». ..., Cy.

® The set of reference credit assets (the assets that can trigger default events) contains assets
by all reference credits.

e The protection buyer A pays a regular fee of 5 '°
event occurs or the FtD matures.

¢ The default event is the first default of any of the reference credits.

¢ The FtD is terminated after the first default event.

® The default paymentis “1 — recovery” on the defaulted obligor. If physical delivery is spec-
ified, the set of deliverable obligations contains only obligations of the defaulted reference
credit.

to the protection seller B until the default

The basket of a FtD tipically comprises 4 to 12 reference credits.

A natural extension of the first-to-default concept is the introduction of second-to-defaull
(StD) and nth-to-default (ntD) basket credit derivatives. Such credit derivatives only differ in
the specification of the default event, the basic structure remains the same. While FtD credit
derivatives are a common structure, second- and higher-order ntD structures are rarer.

Jorge Barros Luis | Interest Rate and Credit Risk Models 303



COLLATERALIZED BOND OBLIGATIONS

¢ underlying portfolio of defaultable bonds

e the portfolio is transferred to an SPV

e the SPV issues notes These notes are
_ . collateralized by the
o an equity (or first loss) tranche bonds sold to the SPV

o several mezzanine tranches
o a senior tranche

.. Underly | ed i
Similar to gt sk Securities Sener
RMBS but with l

bonds instead Assets SPV Mezzanine

. ) BBAE,BB
of residential
— — .
mortgage loans . B Equity
Initial Investment Initial lmyestmen
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e if during the life of the CBO one of the bonds
defaults, the recovery payments are reinvested
in default—free securities

e at maturity of the CBO, the portfolio is liquida-
ted and the proceeds distributed to the tran-
ches, according to their seniority ranking

Loss
1.

Senior

In this case, no losses will be

Mezzanine
—— suffered by the senior bonds,
Equity o while equity bonds will get a
total loss.

Defaults
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COLLATERALIZED DEBT OBLIGATIONS

e Designed exactly in the same way as CBOs. The main difference is that the
underlying assets can be defaultable bonds or any other credit related

instruments.

 (Cash CDO — when the underlying assets are bonds

e Synthetic CDOs — when the underlying bonds are replaced by credit
derivatives, e.g.:

* CLOs—when the underlying assets are loans.

* CDS are often used as underlying assets.
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CREDIT-LINKED NOTES

Credit-linked notes (CLLNs) are a combination of a credit derivative with a medium-term note.
The underlying note pays a coupon of Libor plus a spread and is issued by a high-quality
issuer, The issuer of the note buys protection on the risk referenced in the credit derivative,
In addition, having effectively sold protection on the underlying credit exposure, the investors
also face the counterparty risk of the issuer.

Example 2.8 (Wal-Mart credit-linked note) [ssuer: JPMorgan, September 1996 (via an
AAA trust). The buvers of the CLN receive:

e Coupon (fixed or floating),

® Principal if no default of reference credit (Wal-Mart) until maturity;

® Onlv the recoverv rate on the reference obligation as final repavment if a default of reference
credil OCcurs.

The buvers of the note now have credit exposure to Wal-Mart which is largely equivalent to the
direct purchase of a bond issued by Wal-Mart. They also have some residual exposure (o the
credit risk of the AAA-rated trust set up to manage the note. From JPMorgan’s point of view
the investors of the CLN have sold them a CDS and posted 100% collateral.
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