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PART III
CREDIT RISK MODELS
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1. INTRODUCTION

Credit Risk

242



Jorge Barros Luís |  Interest Rate and Credit Risk Models

DETERMINANTS OF CREDIT RISK

• “Credit risk is the risk of default or of reductions in market value caused by
changes in the credit quality of issuers or counterparties”, Duffie, Darrell
and Kenneth J. Singleton (2003), “Credit Risk”, Princeton University Press.

• Credit Risk is associated to the PD of the debtor, as well as the LGD.

• Regarding the credit risk of the debtor, it is relevant not only to quantify
the PDs but also the rating transition frequencies, which also impact on
bond prices.

• Nonetheless, the expected loss is usually calculated taking only default
into consideration: EL = PD x LGD

• Given the diversity of the counterparties, the market usually distinguishes
sovereign, banking, corporate and individual/household credit risk.
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DETERMINANTS OF CREDIT RISK

Source: Duffie, Darrell and Kenneth J. Singleton (2003), “Credit Risk”, Princeton University
Press.

• The bond spreads usually provide relevant information on credit
risk.
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COMPONENTS OF CREDIT RISK
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COMPONENTS OF CREDIT RISK
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 Ratings are a ranking of credit risk
and do not explicitly provide any PD
measure.

 However, one can obtain historical
frequencies of default for each
rating classification, as well as the
historical frequencies of transition
between ratings.

 The long term ratings of the main
agencies (S&P and Moody’s) split by
7 classes, each of them (excluding
AAA) with rating modifiers +/ /‐
(S&P) or 1/2/3 (Moody’s).

PDS

S&P Moody's

Investment Grade AAA Aaa
AA Aa
A A
BBB Baa

Speculative Grade BB Ba
B B
CCC Caa
CC Ca
C C
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PDS
• Simplest measure of credit risk – default frequencies from rating
agencies:

Source: S&P (2014), “Default, Transition and
Recovery: 2013 Annual Global Corporate
Default Study and Rating Transitions”.
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 Transition matrices illustrate the significant stability of rating
classifications, being this stability higher for higher ratings.

Source: Moody’s (2017), “Corporate Default and Recovery Rates, 1920-2016”.

PDS
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 Default frequencies also tend to
change along time, namely for lower
ratings.

Source: Moody’s (2017), “Corporate Default and Recovery
Rates, 1920-2016”.

PDS
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 Actually, the volatility of default frequencies for lower
ratings (speculative grade) is significant.

Source: Moody’s (2014), “Corporate Default and Recovery Rates, 1920-2013”.

PDS
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 Marginal frequencies obtained from the cumulative figures tend to exhibit a very
irregular shape.

 It can be observed that marginal PD curves have different inflection points,
depending on the rating class, with the lower inflection points for the higher risk
classes.

PDS
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 The irregular shape of marginal PD curves occurs even when cumulative PD
curves exhibit an apparently smooth behavior.

 Therefore, in order to ensure a smother behavior of marginal PD curves, it is
recommended to smooth the cumulative PD curves, as the marginal curves as a
measure of the 1st derivative of the cumulative curves.

 The cumulative PD curves can be smoothed by methods like the Nelson‐Siegel‐
Svensson, with the cumulative PD curves corresponding to the spot curves and
the marginal PD curves to the instantaneous forward curves.

PDS
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PDS
• P(t) – Cumulative probability of surviving t years

• Unconditional marginal probability of default between t and s ‐
probability of default between any times t and s ≥ t as seen today:
difference between the cumulative probability of default until s and the
same probability until t:

d’(s) = [1‐P(s)]‐[1‐P(t)] = P(t) − P(s) = D(s) – D(t)

difference between 2 cumulative probabilities of default (D) seen today
(being D0=0)

• Cumulative default frequencies are the sum of unconditional marginal
default frequencies.
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PDS
• Cumulative probability of surviving to time s (P(s)) = probability of surviving until

t (P(t)) x probability of surviving between t and s, given that it has survived until t
(p(s|t)):

P(s) = P(t) x p(s|t)

• Conditional marginal probability of surviving to time s, given survival to time t:

p(s|t) = P(s)/P(t)

• Conditional marginal probability of default at time s, given survival to time t (or
forward default probability):

d(s|t) = 1‐ p(s|t) = 1‐P(s)/P(t) = [P(t)‐P(s)]/P(t) = ‐[P(s)‐P(t)]/P(t) = ‐P’(t)/P(t)

• Cumulative default frequencies can also be calculated as is 1 ‐ the joint
(cumulative) probability of surviving until i‐1 and the probability of surviving in i:
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PDS

• For the Caa rating, the unconditional marginal probability of default (d’) seen today
for the 3rd year is equal to the difference between the cumulative probabilities of
default for 3 (s) and 2 (t) years: d’(3) = D(3) – D(2) = 25.639% ‐ 18.857% = 6.782%

• Conditional marginal probability of surviving at year 3, given survival to year 2:
p(3|2)=P(3)/P(2) = (1‐0.25639)/(1‐0.18857) =0.91642

• Conditional marginal probability of default at year 3, given survival to year 2:
d(3|2) = 1‐p(3|2)= 1‐0.91642= 0.0836.
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Source: Hull, John (2018), “Options, futures and other derivatives”, 10th Edition, Pearson.
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PDS

• The unconditional marginal probability of default between s and t
measured today is also the product between the cumulative probability of
survival until t and the probability of default between t and s, given
survival until t:

d’(s) = P(t) x d(s|t) d(s|t)=d’(s)/P(t) = 0.06782/(1‐0.18857)= 0.0836

• Therefore, any unconditional probability of survival may be measured as:

being di = d(s|t), (1‐dj‐1) = P(t) and with d0’ = 0
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 The conditional probability of default between s and t, given survival
until t (d(s|t) = d’(s) / P(t)), is also called default intensity or hazard rate.

 The conditional marginal default probability to the rating Caa previously
calculated (8.36%) was for a 1‐year period.

 If one considers a very short period of time t, denoting the hazard rate
at t by (t), the probability of default between t and t + t conditional
on no previous default (until t) is (t) x t.

 Many models of PDs are based on the notion of the arrival intensity of
default.

DEFAULT INTENSITY
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 The simplest version of such a model defines default as the 1st arrival time τ of a
Poisson process with some constant mean arrival rate – average default intensity
or hazard rate (λ):

P(t ) = e−λt ‐ probability of survival for t years

1/λ ‐ expected time to default

λt – default intensity in t over a small period of length  (between t and t+t),
given survival until t.

 Example: default intensity (λ) = 0.04 =>

=> 1‐year PD (1‐P(1)) = 1‐e‐0.04x1 =3,9% => expected time to default (1/λ) = 1/0.04 =
25 (years).

DEFAULT INTENSITY
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 As it was shown before, d’(s) = P(t) x d(s|t) d(s|t) =d’(s) / P(t).

 For a very short period of time t, this result becomes:

d(t+t|t) = d’(t+t)/P(t)

 As d’(t+t) is the unconditional probability of default between t and t, it
is the difference between the cumulative probabilities of default for t+t
and t:

d’(t+t) = [1– P(t+t)]‐[1– P(t)] = P(t) ‐ P(t+t) => the previous equation
becomes:

d(t+t|t) = d’(t+t)/P(t) = [P(t) – P(t+t)]/P(t)

DEFAULT INTENSITY
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 As the conditional marginal probability of default (or default intensity)
for a very short period of time is λt, we have:

[P(t) – P(t+t)]/P(t) = λt [P(t+t) ‐ P(t)] = ‐λP(t) t

 Taking limits:

dP(t)/dt = ‐λP(t)

DEFAULT INTENSITY
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 If default intensity varies along time, default intensity becomes λ(t)t and the
probability of survival for t years becomes:

P(t ) = e−[λ(1)+λ(2)+…+λ(t)]

 Actually, as P(s) = P(t) x p(s|t), for instance with s = 2 and t = 1 =>

P(2) = P(1) x p(2|1) = e−[λ(1)+ λ(2)]

 In continuous time, we get ܲ ݐ ൌ ݁ି ׬ ఒ ௧೟
బ ௗ௧

ܦ ݐ ൌ 1 െ ܲ ݐ ൌ 1 െ ݁ି ׬ ఒ ௧೟
బ ௗ௧

The only relevant information to default risk along time is the survival until then.

DEFAULT INTENSITY

262

Instead of P(t ) = e−λt , where  is constant
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 However, in reality, as time passes, one should have new
information, beyond simply survival, that would bear on the credit
quality of an issuer.

 The default intensity would generally vary at random as this
additional information arrives.

 For example, one may assume that the intensity varies with an
underlying state variable (driver), such as the credit rating,
distance to default, equity price, or the business cycle.

DEFAULT INTENSITY
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 If intensities are updated with new information at the beginning of
each year and are constant during the year => Probability of
survival to time t given survival to t − 1, and given all other
information available at time t − 1:

ܲ ݐ െ 1, ݐ ൌ ݁ିఒ ௧

 At time t, we have 2 sources of uncertainty:
(i) the behaviour in the following period (survival or default);
(ii) new information that will become available during the next period

that will be relevant to calculate probabilities of survival and
default in the following period.

DEFAULT INTENSITY
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ܲ ݐ െ 1, ݐ is unknown before t‐1, as ߣ ݐ is based on
information that is revealed only at time t‐1.
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 Example – 2 periods:

 Default intensity in the 2nd year (λ(2)), assuming the firm survives the 1st, is
uncertain and takes 2 possible levels, λ(2,H) and λ(2, L), with conditional
probabilities q and 1 − q, respectively ݌) 2|1 ):

݌ 2|1 ൌ ఒି݁ݍ ଶ,ு ൅ 1 െ ݍ ݁ିఒ ଶ,௅ ൌ ܧ ݁ିఒ ଶ

 2‐year survival probability (P 2 ):

P 2 ൌ P 1 · ݌ 2|1 ൌ ݁ିఒ ଵ · ܧ ݁ିఒ ଶ ൌ ܧ ݁ି ఒ ଵ ାఒ ଶ

DEFAULT INTENSITY
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When there was no new information
on the hazard rate there was no
uncertainty about the ’s:
P 2 ൌ P 1 · ݌ 2|1 ൌ ݁ି ఒ ଵ ାఒ ଶ



Jorge Barros Luís |  Interest Rate and Credit Risk Models

DEFAULT INTENSITY

 Default time  1st time that a coin toss results in “heads,” given
independent tosses of coins, one each period, with each toss
having a probability λ of heads and 1−λ of tails  default is
unpredictable  when default does occur, it is a “surprise.” 
default time is inaccessible.
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POISSON PROCESSES

267

Probability of default
in a small period of
time t = Probability
of 1 jump in the
Poisson Process

There is only 1 default,
i.e. the default is an
absorbing state.

Probability of survival
in a small period of
time t = Probability
of no jumps in the
Poisson Process
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POISSON PROCESSES

Probability of no jumps in the n periods

268

Probability of survival in 2
small periods is the joint
probability of default in each
of them (given that the hazard
rate is the same for all periods
of the same magnitude)

t
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POISSON PROCESSES

269

The Poisson
process

x
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POISSON PROCESSES

Probability of a jump

Probability of no jumps in n-1 periods

t

270

Probability of exactly 
one jump in [t,T]

Lim n-> of the last component in 
the RHS is 0
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POISSON PROCESSES

 For 2 jumps, there will be n/2 chances => probability of having 2 jumps:

 Probability of n jumps:

 When a Poisson process with constant intensity  (homogeneous Poisson process)
is used, the term structure of spreads will be flat and constant over time => we
need a time‐varying  => Cox process or inhomogeneous Poisson process
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POISSON PROCESSES

272

Now  is time-
varying

The probability of no jumps over the period
between t and T is the joint probability of no
jumps in each moment during that period

As ݈݊ 1 െ ݔ ൎ െݔ
for small x

With constant :
With variable  (T‐t) is replaced by the
integral of (s)
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DEFAULTABLE ZERO COUPON BONDS

Zero Coupon Defaultable bond (with 
recovery rate = 0 and pay-off =1)

Zero Coupon Risk-free bond 
(with pay-off =1) 

273

 Probability of Default:
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DEFAULTABLE ZERO COUPON BONDS

274

For the Zero Coupon Defaultable
bond, the pay-off will be 1 only if 
the debtor is still alive at T.
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DEFAULTABLE ZERO COUPON BONDS

The defaultable bond price corresponds to the
NPV of the future cash-flows, using as discount
rate the yield of the defaultable bond.

275

 If the time of default is the time of the 1st jump of a Poisson
process N(t) and is independent from the default‐free interest
rate, the price of a defaultable bond with zero recovery becomes:

Assuming that the riskfree interest rate is 
independent from the arrival intensity of default

Assuming that the riskfree interest rate is 
correlated with the arrival intensity of default
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CREDIT DERIVATIVES

We need to 
define what 
are credit 
events.

276

Definition:

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, 
Wiley.
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CREDIT DERIVATIVES

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, 
Wiley.

277



Jorge Barros Luís |  Interest Rate and Credit Risk Models

CREDIT DERIVATIVES

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, 
Wiley.
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Key terms:
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Reference Credit: 
Firm, institution or 
person who may 
default.

279

Standardized by ISDA
(International Swap Dealers
Association), even though
they may also be freely
negotiated.

Types of credit events:
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Reference 
Credit Assets

280

Types of reference credit assets:
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MARKET TERMINOLOGY

281

 Credit derivatives can be defined on single‐name or multi‐name.
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Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, 
Wiley.

 The most popular single‐name credit derivative is the CDS.
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CREDIT DEFAULT SWAPS

The aim is to transfer ONLY the default risk from A to B.

283

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

284

Source: Hull, John (2018), “Options, futures and other derivatives”, 10th Edition, Pearson.

 CDS may have different specifications regarding the default payment.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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 Example of a CDS with a fixed repayment at default:
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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 Most CDS have a physical delivery.
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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 The definition of default is key:
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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 CDS payments before default:

Semi-annual amount to be 
paid by the protection buyer
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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Because the payments are
done each semester

 CDS payments after default – physical settlement:
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CREDIT DEFAULT SWAPS

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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 CDS payments after default – physical settlement:
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Valuation
 In the previous example, the CDS fee or spread was given.
 However, in reality, this spread has to be calculated.

Example:
 Maturity = 5 years
 Notional amount = $1
 CDS fee = s%
 Frequency of swap payments = yearly
 Recovery Rate = 40%
 Defaults assumed to occur at mid‐year
 Risk‐free interest rate = 5% (continuously compounded, flat)
 Hazard rate = 2%
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Valuation

292

P(t ) = e−λt

0.9802‐0.9608

 Unconditional probability of default:

Source: Hull, John (2018), “Options, futures and other derivatives”, 10th Edition, Pearson.
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Valuation
 Present value of expected payments:

293

= probability of survival x CDS fee

Source: Hull, John (2018), “Options, futures and other derivatives”, 10th Edition, Pearson.
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Valuation
 Present value of expected payoffs:

 As the default occurs in mid‐year, an accrual payment is owed, due to the
period between the last payment and the default date.

294

Source: Hull, John (2018), “Options, futures and other derivatives”, 10th Edition, Pearson.
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Valuation
 Due to the difference between the default time (that occurs halfway

through a year) and the previous payment, an accrual payment is owed.

 This will be the sum of the present value of the expected cash‐flows:
∑ ݀′௜ · ߬௜ · ହݏ
௜ୀଵ , being ߬௜ = the accrual time (0.5, as it is assumed that the

default occurs halfway through a year).

295

Source: Hull, John (2018), “Options, futures and other derivatives”, 10th Edition, Pearson.
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Valuation
 s will be calculated from the identity between the present value of the

expected payments and the present value of the expected pay‐off:

ݏ4.0728 ൅ ݏ0.0422 ൌ 0.0506 ↔ ݏ ൌ 1.23%

 The valuation can also be done through a roll‐back procedure,

296
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Valuation

 Maturity = 3 years;
 Notional = € 100.000
 Payment in case of default = 70% of the notional
 Risk‐neutral marginal probability of default in t, given

that it didn’t default in t‐1:

Period (t) Probability ()

1 0.59%

2 1.00%

3 1.27%
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 Spot rates and discount factors (with discrete compounding) for
maturity t:

 In order to obtain the swap premium, it is necessary (as usual) to
calculate the NPV of the future cash‐flows, which will be done
recursively from the last cash‐flows.

Maturity (t) Spot Rate  
s(t) 

Discount Factor 
F(t) 

1 4.0% 0.9615 
2 4.2% 0.9210 
3 4.4% 0.8788 

 

Valuation
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 E2[pay‐off(3)|ND] = pay‐off in case of no default *(1‐PD) + pay‐
off in default *PD
=0 x (1 0.0127) + 0.7 x 0.0127 = 0.00889

 E2[pay‐off(3|D] = 0.7

 E1[pay‐off(3)|ND] = E2[pay‐off(3)|ND]*(1‐PD)+ E2[pay‐off(3)|D]
*PD= 0.00889 x (1 – 0.01) + 0.7 x 0.01 = 0.0158011

 E1[pay‐off(3)|D] = 0.7

PD(3)

PD(2)

Valuation
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 E0[X(3)] = E1[pay‐off(3)|ND]*(1‐PD)+ E1[pay‐off(3)|D] *PD=
0.0158011 x (1 – 0.0059) + 0.7 x 0.0059 = 0.0198

 V(0,3) = F(0,3) E0[X(3)] *notional = 0.8788 * 0.0198*100000 = €1740.

 If the premium is paid on an annual basis, we’ll have:

1740 = 0.9615 x p +0.9210 x p + 0.8788 x p

p = 630.14 = 0,63014% of the notional amount

Valuation
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TOTAL RETURN SWAPS

The aim is to
swap the
actual return
of a
defaultable
bond into a
cash‐flow of
LIBOR plus a
spread

301

A pays while the
bond price
increases (like
selling a futures
contract)

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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TOTAL RETURN SWAPS

Advantages:
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Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.



Jorge Barros Luís |  Interest Rate and Credit Risk Models

FIRST TO DEFAULT SWAPS

The basket of a FtD tipically comprises 4 to 12 reference credits.
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COLLATERALIZED BOND OBLIGATIONS

These notes are
collateralized by the
bonds sold to the SPV
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Similar to
RMBS but with
bonds instead
of residential
mortgage loans
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In this case, no losses will be
suffered by the senior bonds,
while equity bonds will get a
total loss.
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COLLATERALIZED DEBT OBLIGATIONS

• Designed exactly in the same way as CBOs. The main difference is that the
underlying assets can be defaultable bonds or any other credit related
instruments.

• Cash CDO – when the underlying assets are bonds

• Synthetic CDOs – when the underlying bonds are replaced by credit
derivatives, e.g.:

• CLOs – when the underlying assets are loans.

• CDS are often used as underlying assets.
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CREDIT‐LINKED NOTES
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