2.3. AFFINE MODELS OF THE TERM STRUCTURE

 Fundamental asset pricing concept - The pricing of any financial
asset is based on a very intuitive result - the price corresponds to
the present value of the future asset pay-off:

(1) b = Ef[Ph—l*M!*l]

being P, the price of a financial asset providing hominal cash-flows and M,,,
the nominal stochastic discount factor (sdf) or pricing kernel, as it is the
determining variable of P, .

In fact, solving equation (1) forward, the asset price may be written solely as
a function of the pricing kernel, as:

(2) P, = Et[*MHl'“*MHn]
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* Asset prices and returns are related to their risk, i.e., to the asset
capacity of offering higher cash-flows when they are more
needed and valued.

* Actually, the more an asset helps to smooth income fluctuations,
the less risky it is and the higher will be its demand for ensuring
against “bad times”.

* Considering that
E(XY)=E(X)E(Y)+COV(X,Y)
e Equation (1) may be written as:

(3) P, = Et[Pnl]Ef[*’Mtu] + COZ’;[PfH ,NIHl]
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* When the asset is riskless, its pay-off in t+1 is known in t with

certainty => P,,, may be considered as a constant in t, which
implies, from (1):

Pi’

(4) = Et[*Mt+1]

t+1

 As the LHS of (4) is the inverse of the risk-free asset’s gross
return, denoted by 1+’ ,replacingin equation (3) E[M,,,] by
Y1+il,, itis Obtained‘ (3) B, = E,[P, JE[M,..]+ Cov, [Py, M,.,]

(6) P =E|]P +1] —+ Cov,[ P,

t+1 '

The asset price is the discounted expected value of its future pay-
off or price, adjusted by the covariance of its return with the sdf.

t+17 t+1]
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 As it will become clear later, this covariance consists in a risk
factor and it is positive for assets that pay higher returns when
they are more needed.

* The same result may be obtained for interest rates, instead of
prices. Actually, dividing both sides of equation (1) by P:, one
getS: (1) P, :EF[PHI‘Mt—l]

f+1

(6) L=E[(1+i,,)M,,,]
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* Applying the already used statistical result
E(XY)=E(X)E(Y)+COV(X,Y)

to (6) it is obtained (6) 1=E[(1+i.M,,]

; ; 5 4 7 [l Cov(i, . Mr+1)]
(7) E,(1+i,,)-E,(M,,,)+Covli,,; M, 1) =1 E,(1+i,,)= E(M_) '
f+1

* Following equation (4) we obtain:

_E[Mm]

. e - R
(8) E(1+i)=—t - LuM) Ly (14i,)- ( 1)
tr'(A/IJ"-l-l) !:f(MH—l) b'(Mr’-}—l)

9

* Therefore' We get: The interest rate of an asset results from the

risk-free rate, adjusted by a risk factor => the

lower the covariance, the higher the risk and
the interest rate.

CU"‘"r[Mm ".r+|]
E:‘ [Mt-r—l]

(9) Er[iml]zifil -
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With some additional self-explanatory algebra, the following
result is obtained:

(10) Efi.]=il+

CU'(’r [MHI ’it+1] .(_ Vnrf [Mt+1]

=il +B, . A
Vﬂl}[Mr+l] Er[MH]] ] i +)8a.‘+1..‘\‘l,+1

e P, .. isthe coefficient of a regression of i,., on M

!

f+1

[ measures the correlation between the asset’s return and the
stochastic discount factor (sdf) - quantity of risk.

Vﬂl’}- [MHI]
Ei[MHl]

Market price of risk: 1=-
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* From equation (8), denoting by 2, , the correlation
coefficient between the sdf and the asset’s rate of return and

O, and O, , the excess return of any asset over the risk-free

asset is: ' oy 1 _ Cooli,,, M,.,y) , N (14 4f _C“"("H:-Mm)
(8) E(1+i.,) E(M._) Ef(MM) SE (1+i,,) (,1+’;+1) E,‘(MH)

11) A =Efin]-il=-p, ,
( ) ¢ — L llin i = p;'u'ml.(,ﬂ E,[AJH_I]

4

e Equation (11) illustrates a basic result in finance theory: the excess
return of any asset over the risk-free asset depends on the
correlation of its rate of return with the sdf => an asset with pay-
off negatively correlated to the sdf is riskier.
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* The mean-variance frontier will correspond to the limiting values
of equation (11) => expected values and standard-deviations must
liein theinterval | o, o, o, o |.  (A1)A=E[i.]-iL=-p

- E[M...] E[M,,] _—

o M n O-“-[
s B ]

mean-variance region
minimum risk (frontier): P, . = 1
* t+1 **t+

* As on the frontier all asset returns are perfectly correlated with
the sdf, all asset returns are also perfectly correlated with each
other => it is possible to define the return of any asset as a linear
combination of the returns of any 2 other assets - market or
wealth portfolio and the risk-free asset:

(1 2) Er[ir+1]: ﬂ; t[’r+]]+(1 _18 I )"}:1 = "}11 +»B,-.,‘l_..';;| (b[lr—-l]_lﬂ)

Tr41 4141 USRS

;¥ - Rate of return of market portfolio \ CAPM

f+1
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COU;‘ [MHI ’if+l] .(_ Vﬂrf [M“'l ]]

: =i/, +
Var[M,.,] EM.]) ™

| /
(1 2) Er[ir+1]: p, -L\IE[’.;L]'*'(I_JB- W )’.}11 =ié':1 +h, (E[i;:-l]_i}il)

)
a1 o+ 1 i+ a1 441

(1 0) E, [ir+l] = ir"il +

- A
lis -‘\IH-I

 (10) + (12) => CAPM assumes the sdf as a function of the gross
rate of return of the wealth market portfolio, while the market
price of risk is the spread between the expected market portfolio
return and the risk-free asset return.
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* A representative investor solves the following optimisation
problem:

(13) MaxE {Z su(c,., )} J - time-constant discount factor
=0 C . -investor's consumption in the period t+

U(C,,,)- utility of consumption in the period t+;

* Optimisation problem in a two-period setting:

Max U(C,)+dE, [U(C,,,)] e—income
(1 4) st C =e —P%¢ p" - price of a financial asset providing real cash-flows

¢ - number of asset units bought

Cn=€n+E,6 \
Consumption in t+1 = Income in t+1 +

Proceeds of the Investment done at t

4

Consumption = Income — financial investments (or savings)

t and t+1 — present and future
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* Inserting the constraints in the objective function in (14), the
following optimisation problem arises:

(15) MaxU(C,.C.o)) =Ule, = 2'¢) + 65 [Ufe,.o + P )

e Solution:

dl( )

(16) = PU(C,)=E[U(C,,) P

\ 4

* marginal utility of consuming one real monetary unit less at time t
= discounted expected value of the marginal utility of consuming
at time t+1 the proceeds of an investment of P® monetary units at
time t in the financial asset. ‘

* |n equilibrium:
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¥

 Consumption CAPM (CCAPM) equation (from 16):

(17) r'=E[PiD,,

being
u(c.,)

(1 8) D, =06 U(C:)

¥

intertemporal marginal rate of substitution, stochastic discount
factor (sdf) or pricing kernel
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* Real assets are usually scarce.

\ 4

* The most well known are inflation-indexed Government bonds
and they exist only in a few countries (UK, US and France are the
most liquid, but these securities have also been issued in
Germany, Canada, Greece, Australia, Italy, Japan, Russia, Sweden,
Spain, Hong-Kong, Iceland, India, Brazil and Mexico).

\ 4

e Equation (17) is often adapted to nominal assets:

P P similar to (1), with .=~ =2
(19) U‘”E {0'1 D, ] # => real and nommal “assets are
- " priced in the same way.
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o, O

A - E * . . f . g - Mg 141

(11) i l[l.'-i-l] I1+1 p-""f+1-1.'+1 E{[A.-'[H-l]
u(c,,)
18 o - t+1
(18} Du "T(C,)

\ 4

e CCAPM: an asset will pay a higher return or is riskier when the
correlation of its return with the marginal utility of consumption is
lower, i.e. when consumption is higher => the asset is riskier when
it pays more when those cash-flows are less needed.
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* Affine models: log-linear relationship between asset prices and
the sdf, on one side, and the factors or state variables, on the
other side.

 These models were originally developed by Duffie and Kan (1996),
for the term structure of interest rates.

* They allow for a parsimonious representation of the TSIR
dynamics, as a function of a given number of observed or
unobserved factors (or state variables).
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* Equation (1) in logs:

(20) p, =log(E [P, M,,])

* Assuming joint log-normality of asset prices and discount factor
=> if log X ~ N(1,02) then log E(X) = 1+ o2/2 (as X is lognormally
distributed, being its mean E(X) = exp(u + 02/2)=> basic equation
considered in the affine models:

(21 ) P: = Et[”’Hl + Pr+1] +0.5- Vﬂl} [mr+1 + PHI]
J7; o’
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e DK models: multifactor affine models of the term structure, where
the pricing kernel is a linear function of several factors

T
o~ 1 — - —
r—n!l_ p— (i-l.j,lo'r"l‘l‘f)

e DK models advantages:

(i) Accommodate the most important term structure models, from
Vasicek (1977) and CIR one-factor models to multi-factor models.

(ii) Allow the estimation of the term structure simultaneously on a
cross-section and time-series basis.

(iii) Provide a way of computing and estimating simple closed-form
expressions for the spot, forward, volatility and term premium
curves.
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* Discount factors:
V(Zt) - variance matrix of the random

shocks on the sdf, defined as a diagonal
matrix with elements  ©v.(z, )=, + .z
and No.rows/columns equal to the No.
factors.

et - independent shocks &, ~ N(0,])

2"~ market prices of risks, as they govern
the covariance between the stochastic
discount factor and the yield curve factors.

)]/2

(22) -m,=&+y'z,+AV(z) "€

t+1

* Higher As < higher covariance between the discount factor and
the asset return <~ lower expected rate of returns or lower risk.

* Another way to write the pricing kernel (from (22)):
(23)

—Mpp1 =&+ V1Z1e + VoZor + -+ VieZie + 1101¢€1 641 T 42020041 + - + Ak Okt Ext 41
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* The k factors z, are defined as mean reverting, forming a k-

dimensional vector: 6 - long-run mean of the factors.
‘ s wlde ® - has positive diagonal
(24) Zis1 = ([ —D)0+ (D:; " V(:f ) €1 elements, that determine the

speed of convergence of the
factors to the long-term mean,
ensuring that the factors are

tati ;
* From (24), we have the factors as follows: SeHena

(25) Zit+l = (:l—(D, :)9:' +0,2;; +01€ 411 1 where Oi = \"{lai + Bz + Bzt Bz

e Asset prices are also log-linear functions of the factors:

(26) w  Wha A“ : 2 B” Z, n - term to maturity
A, and B, - vectors of parameters to be estimated.
B, - factor loadings (impact of a random shock on the

factors over the log of asset prices).
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 The question now is how to relate the parameters of the stochastic
factors to the parameters of bond prices and the term structure of
interest rates < identification of the parameters.

* In term structure models, the identification of the parameters is
easier assuming that the term structure is modelled using zero-
coupon bonds paying 1 monetary unit => the log of the maturing
bond price p,,=0=> (from (26)) A, =B, =0

* According to (22) and (26), the 1t term on the RHS of (21) is in (27):
(21) p, =E 1m0+ pro ]+ 05-Var [, +p,.]

\1/2

(22) —m,,, =E+y" 2, +AV(z,) "¢

t+1
(26) 1., =A, +B, 2 =>int+l: =py_q 111 = Ap_1 + Bj_12¢44
(27) E![”I.‘+l +}):+I]:Er{_[§+ }/" :.' +/11.V(:.' )l/jg."i'l]_(A“'l +B”-1; :“H )}
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+ Using the factor definition in (24) ., =(I-®)+dz, +V(z,)"”
from (27), replacingin (z,,, = (I - ®)6+ dz, +V(z )1/2

€., we get

H-l

(27)  Elma+pal=E{{e+72 +2V(z) ]~ (A1 +B,1 20)]

7‘ L I§+ ¥z, +ATV(z,) e, + A, ]
(28)  Elfma+pa]=-t 1+B,,_1" [(1-@)6+ @z, +V(z)" €,+1]"

 Computing the expected value and given that the random shocks
are assumed to have zero mean => all terms in &,,; will be cancelled
=> (28) may be simplified to:
(29)  E[ma,+pa]=—{¢+7"z + AL +B, [(I-D)o+dz ]}
= —[A,_,_1 +&+B,, (I —(I)’)Q]—(y" +B,, @)z,
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1/2

(22) -m,.,, =¢+y' +/1"'V(:r)]/2€r+1 +(24) z., =(1-®)0+Dz, +V(z) &, +

(26) _pu t = Au +BNT:f '

 To obtain the variance in the 2nd term on the RHS of

(21) r =LE,[m, . + P+ 05 Var [m,, +p.,] , all constant terms will be
eliminated:

(30)  Van[AV(=)" +B,/V(z)"*] = Var (4 +B,. V(=]
= (4 B, Var(a+ B )| (2+B,.,)

* Evidencing the independent terms and the terms in z, :

(31 ) V{'H“, [ﬂi V(:' )1/2 +Bu—l;‘v(:! .)1/2] =] (/‘i’ +Bn—1_)l Q’(/l +Bn—l )+ (i +Bu—l)f.ﬁ]:! (/’i a Bu—l)
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* From
(21) 7 = I;’f[mHl + pm] +0.5- Var, [mf+1 +Pr+1]
(29) E, [m,+l + p,ﬂ] = -{§+ y!':, +A _ + B,l,_l" [(I — D)0+ Dz, ]}
=A,_ +&+B, [ (I-®)8|- (7" +B,,/ @),
(31)  Var|[A'V(z)"” +B,'V(z)"|=(2+B,) a(4+B,,)+(4+B,.) B’z (4+B,.,)

(32) .= JA.+&+B,, (1-0)8]+(y" +B,., @)z, |
—~[(A+B,.) @A +B,)+(4+B,.) B’z (4+B,.)]
e Putting in e;/idence the independent terms and the terms in z, ,
from (32) one obtains:

. : 1 7 ‘
P, = -{[A“_l +¢+B  (I-®)0-—(A+B, ) a(A+B | )}}

(33)

. . 1 T o
+[7‘ +B, , ®--(4+B ) ﬂ‘(/1+3“,_1)];f
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 Comparing the coefficients on the RHS of
(26) -p..=A,+B, 7
to the independent term and the term associated to the factor in

(33) 7., :J[Ah_l+§+8“_1’ (I—(I))B—%(/I+B“,_1)" a(A+B ) }

l
+( y' +B,_,'® —%(/1 +B._,) B'(A+B,,) .\z,
. y4 /

the recursive restrictions in (34) and (35) are obtained:
(34) A=A _ +&+B [ (I-d)6- %(,1 +B ) a(A+B_,)

(35) B, =y +B,_, ®-—(A+B_) B' (A+B, )
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* Considering that the continuously compounded yield is:

logP,

(36) .=

n

 From (36) and
(26) _pu of = Au +Bu T:r'

the yield curve is defined as:

(37) »,, = l(.{” +B,'z,)

n
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* From equations (34), (35) and (37)

(34) A, =A, +&+B, (I-®)6-<(1+B,,) a(2+B,,) 5
2 dan

(35) B, =y +B,, ®-—(A+B,_,) B (A+B, )

(37) v, = l(ﬁ - B”"' :-,)

n /

as well as the normalisation A,=B,=0 , it is obtained the short-
term rate (as with n=1, A, and B, _; will be A, and B, correspondingly,
both equal to 0):

P 1 r r ]. ' AT
38) w, =- A ads|y - X B A
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* Correspondingly, using the definition of the factors in

(24) z.,=(1-®)+Dz, +V(z) ¢

~t+l f+1

* and solving backwards, one gets:

(39)  E(zi.)

(16,8, +.2 1., =(1-6,)0, +8,[(1-0,)6, + ¢.2,...... ]
=3[0 1-0)0] vz,

* Given that the expression in the sum corresponds to the sum of the
first n-terms of a geometric progression with rate @ and first term
equalto (1—¢,)0, , equivalent to [ 1-¢,)6 ]1 2 , the following
expression is obtained: I ¢’

(40) Et(z,-.ﬂ,,):[(l—cb,-)e,-] fbw, L =6,(1-¢")+ ¢z,
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* To calculate the expected value of future short-term interest rate,
one can use

g ]. r r ]. r r
(38) v, :g—;ﬂ'a/l+[}/‘ —;/1'[3’/1};

* and plug

1-¢7
(40)  El(z,.)=[(1-0)0 ="+ 01z, =0,(1-0)+ !z,

I-9

writing in matrix form (as the matrices involved in the computations
are diagonal)

Er (]/1,r+n ) = Et(é:_%/lll (Z;t +|:Y" _%A”ﬁfﬂ“]:rﬂz )
4= 1 r I r 1 I oT . \
-2 Ha+|y - A B )
(41) PR R
:g_EA'am_y’ —5/1’[3’,1][(1—@ o+, |
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* From

(24) =z, =(I-D)o+dz +V(z) ¢,

“r41 .

(37) y, , = _1(‘»1” + B”"' :,)

Yt
n

+1

one gets the variance of interest rates:

(42)  Var,(y,,.)= £ B,'V(z,)B,

Y+l 2
n

* |nstantaneous or one-period forward rate = log of the inverse of the
gross return =>

(43) ,f;;_; = /)H.I - I)H'f‘l_l
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* From

(26) —p,, = A, +B”T:f

(43) /1., =Pus — Pun,

(34) A, =A,_ +&+B, (I-0)p- %(/t +B,,) a(4+B,,)

(35) B =y +B“._1"I’—;(/L+B..‘—1} p

one gets the instantaneous or one-period forward curve:

../-u.! :(ANH +BJ1+1{I:1‘)_(AH +Bu!':1‘) - (A11+1 iz)+(BJJ+1I[ Bn ):t -
(44) = [§+B,J (1 —¢>0—%X(Af +B,.”)2a,]+[y’ +B,,’(¢—1)—§2(/1,. +B,_,,)3ﬂf}:f
< i=l <=1
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* From the current and the one-period ahead bond prices in the price
equation in

(26) -p,, =A,+B,'z
and the short-term rate in
(38) vy, =532 a+ |y -3 X B A
it is obtained the term premium as the difference between the one-
period expected return and the short-term interest rate:
At =EPys = Puss =Y

(45) =E,(-A, -B, z,,)+(Aa+B..1 2,)- (; %/1 a/b{/ ——Ai/j /1] )

& fe) < =

=-A,-B,'[(I-®)6+dz,]+ (A._H+B,__+1':,)—{§—%i/ﬁa;+(y” —%i/ﬁﬂf :,}
- ' )
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* From the recursive restrictions on the factor loadings in
(27) A =A_,+&+B ' (I-®)6- %(,1 +B ) a(A+B,,)

(28) B, =y +B_ ®-—(4+B,) B (1+B,,)

equation (45) can be simplified as in (46):

A, =Ep, 11— Pusrs — Vs
=E,(-A,-B, 2,,,)+(A1+B, 2,)- (5——&‘001{ Ms /l} )

—

45
( ) r - I £ l :‘ 2 { 1 ;\ 2
=—AH—BN [([—(I))9+(I)”£]+(.Au+l+Bf.'+l “".')_ 5_;21‘16{:-‘- :/ —;z/{iﬁ: ‘:!

1, 16 50 )]
:{A,+1 [A +&+B (- CD)H]-,Z’?‘:‘Z:}+[B~H;—(}/{ +B’:’¢—7zﬂ:ﬁ;)2!

sz.nﬂ:' J,_
1t nli 2 =

k B.-l,, : k
(46) Au.! :-;i:Buza: _“-Ta-( —
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* The term premium can alternatively be calculated from the pricing
equation

(21) P =E[m.+pa]+05-Var[m,, +p,.,]

* Solvingin order to E [p,,,] , we get:

(47) E, [p,ﬂ] =p, —E, [m‘,ﬂ] -0.5- Vm;[m,+1 +p_,+1]

(48) Ep,io—Prass ={Pusss —Elm ] -05-Var[m,, +p, .|} -p,...

V”r.’ (’”.'+1 ) + Vﬂi’, (‘Pu ..'+1) + 2(:02’(’”! +1 ’Pu Jf+1 )
= £ [m,..]- Pogec 00 |

* Given thatthe Cov(m,,,.p,,.,)=Coo(n,,,.i,,.) as Pns+1is the only
stochastic component in the rate of return (i = P,,,/P,= InP,,;- InP,=
p..; - b,), the previous equation is equal to:

Var.(m, Var (1, ,
(49) Epoiss=Puss = —E[m] - Wil) A ,MH)—C‘7Z’(”’r+1'jﬁr.r+l)

g 2

P P
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* According to

(21) p, =L, [m,+1 + p,+1]+ 0.5- Var, [’”m + p,ﬂ]

and considering the assumption 7, =0

e Solving in order to E,[pm] , we get the price of the short-term
bond:

(50) P =E [’"—:+1 +Po.:+1]+ 0.5-Var, ["1:+1 +Po.s+1] =E, [’”—:+1]+ 0.5-Var, ["’-:+1]
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* From
Var,(m,,,) V”’f-(ﬁ.m)

(49) E.' Pui+1 = Pury = _E.' [”11+1] o o COZ'(’”H—I *ip.-..*-r-l)

2 2
(50) pis =Ei|mp +Poss|+05-Var, | myy +posa | =Ei[my 4]+ 05-Var, [m, ]
(36) . __log Ru
Vs = ”

S I
(38) Yi; :g_;/l 0(/1+[}/’ _5/1 /8’/1}:; and A‘.-.: :Erl’um ~Pus1r — Y1y

Risk premium determined by the

the term premium Wi" be equal to: covar. of the asset’s rate of return

/ with the stochastic discount factor

=> the lower the covar., the higher

(5 1) A.-u ==C0 I: (i.-‘l.(-f-l 1M, +1) = ~m; (j.ii-f +1) /2 the risk premium is.

Jorge Barros Luis| Interest Rate and Credit Risk Models



e As from

(26) —p,, =A, +B "z,

we get

(52) i, = Puysr —Puny =—A, =B,z + A,y + B2,
the covariance in

(51) A, =-COV (i, ,.m.,)=Var(i,.)/2 is =B COV,(z

“1+1? r+1 )

 Consequently, equation (51) for the term premium becomes
equivalent to:

(53) f o B (()l ( =L E !+1) B I(" ( 1+1)B /2
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the term premium in
(53) A, =B,COV(z,.m,,)-B,Var,(z,,)B, /2
may be written as:

' - B'V(z)B
(54) A”J - -A If(:r )B” ___n ( { ) n

$

at least one of the market prices of risk must be negative in
order to have a positive term premium.
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* One-factor models were the first step in modelling the term structure of interest

rates.

* These models are grounded on the estimation of bond yields as functions of the

short-term interest rate.

* Vasicek (1977) presented the whole term structure as a function of a single factor,

the short-term interest rate, whose volatility was assumed to be constant -

Gaussian models: 1
K ei CD a’l Bl g ’Yl
1 Qord* ¢ o? 0 O+A%/2 1

* Depending on whether the true values of interest rates or their differences to the mean are considered.

 The Cox et al. (1985a) model added the stochastic volatility feature to the Vasicek
model, avoiding interest rates to go negative, as in the Vasicek model. Thus, it

corresponds to an analogous particular case of the DK model, with e, =0 and 8 =0’ |

Jorge Barros Luis| Interest Rate and Credit Risk Models 193



» Affine models may be classified according to:
(i) number of factors considered;

(ii) volatility properties.

* According to Litterman and Scheinkman (1991), the pronounced
hump-shape of the US yield curve => 3 factors are required to explain
the shifts in the whole term structure of interest rates.

 These factors are usually identified as the level, the slope and the
curvature, being the level often responsible for the most important
part of interest rate variation.
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e Given the stochastic properties of interest rates volatility, Gaussian or
constant volatility models are often rejected. Besides, these models
impose constant volatility and one-period term premium curves (non-
pure version of expectations theory).

* The forward rate also exhibits some shortcomings.
* Nonetheless, Gaussian models are used very often as:

(i) interest rate volatilities don’t suffer significant changes during most
periods;

(i) Constant volatility models as much easier to implement, namely
with non-observable or latent factor, given that the volatility
depends on the square root of the factors in stochastic volatility
models => signal restrictions have to be imposed, which is harder to
do in iterative econometric processes.
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Shortcomings of the forward rates under constant volatility:

[t can be shown that the asymptotic forward rate cannot be
simultaneously finite and time-varying.

-I.u.f :(An+1 +B:+l "'f) (A +B ) (A1+1 _Au)+(Bt ; _Buf‘)'—' =

i s

(37) ] & _ . 1
[5+B 52 (2,+B,,) @ } [y’ +B“’(<D—1)—;Z(/1 +B,) B ]:f

= j=1

* [=0in Gaussian models => the forward rate may be written as:

(55) 1, =¢+B,(1- @)9—%2(/1,+B,_,,)2a,+[y“+B,,"(<I)—l)]:,

i=1

e Vasicek models => volatility is constant => last term of the RHS of

(35) B”"' = }/il +Bu—11(l)_%(/‘i +Bp:—1)lei:! (/‘i +Bn—1) IS Zero (ﬁi:O), Whlle 7/i=1'

—
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4

* Each factor loading in a multifactor Vasicek model corresponds to:

1 ~ 1 . l’” 1 . Q),”
B =140 +0 +..+0," = =y x = :
(56) i,n (p.' q): (PJ ;(p 1 l—r 1_(0"

4

' (A +B,) e, +[y" +B, (®-1)

* From

(55) f,, =&+B, (I-®)o-

Hl'
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* Though this specification of the forward-rate curve accommodates
very different shapes, the Ilimiting forward rate cannot be
simultaneously finite and time-varying.

* Infact,if ¢, <1 , the asymptotic value will not depend on the
factors, as the limit of the last term on the RHS is zero.

* If ¢, =1, the limiting value of the instantaneous forward becomes

. . . pe . 1= . .
time-varying but assumes infinite values, as l_‘; = in this case.
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* According to the non-pure version of the expectations theory, the
forward rate corresponds to:

the term premium doesn’t have the subscript
n t, as it is constant under this theory

(58) /1! = E’ (*1.1-"'"-” ) +A

e Law of iterated expectations => (58) corresponds to:

(59) /u = Ez(Ef+1(.v1,f+n)+ A.n) = Er (./p‘.:—l,r+1) + (Au o An—l)

g

* The Gaussian model implies that the forward rates are martingales if
the term structure of risk premium is constant along time (non-pure
version of the expectations theory) and flat.
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* Solving (59) in order to the expected future value of the forward,
one can assess whether the expectations theory holds, by

performing the following regression:
(59) frs = E(Ea(Visen) + An) = E(frcryur) + (A, = A,y)

(60) factss1 = Vi = coustmzt+c”(f” —‘1/1__;)+residunl

* |f expectations theory holds => the best estimate for the difference
between the forward and the current short-term rate at a future
time will be the current value for that difference + a constant that
embeds the slope of the term premium curve => ¢ =1

4

* A rejection of this hypothesis suggests that term premia vary with

time, i.e., that the expectations theory does not hold.
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log P,
(36) v, =—— =>y1¢+ = —P1¢

B |

* from (43) /.. =P, — P

fot =Pot Pt =0+ Y1t =Y1t

4

(61) fo =A +Blf Z,

* The theoretical values of ¢, implied by the Gaussian model
correspond to :

COZ’( ™ B o™ T )
Vm(f,,—fﬂ,)

(62) ¢, =
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* Solving (59) in order to the expected future value of the forward,
one can assess whether the expectations theory holds, by

performing the following regression:
(59) frs = E(Ea(Visen) + An) = E(frcryur) + (A, = A,y)

(60) factss1 = Vi = coustmzt+c”(f” —‘1/1__;)+residunl

* |f expectations theory holds => the best estimate for the difference
between the forward and the current short-term rate at a future
time will be the current value for that difference + a constant that
embeds the slope of the term premium curve => ¢ =1

4

* A rejection of this hypothesis suggests that term premia vary with

time, i.e., that the expectations theory does not hold.
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log P,
(36) v, =—— =>y1¢+ = —P1¢

B |

* from (43) /.. =P, — P

fot =Pot Pt =0+ Y1t =Y1t

4

(61) fo =A +Blf Z,

* The theoretical values of ¢, implied by the Gaussian model
correspond to :

COZ’( ™ B o™ T )
Vm(f,,—fﬂ,)
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(62) ¢, =



* Also from (43) /., =P..—P.., and from (26) -p,, =A, +B,’

i

A ) (BI 1+1 B}il):!

!

(64) f;1+1 (A A ) (B;iI-B:—I):m

!

* The first difference in the covariance in (62)c¢, =

(63) f.,=(A,

n+l

Cm’(fn-l.m = forr fus _fo..')
Var(f,, - fo.)

becomes:

(65) fu—l,:+l o .fo,.' - (VA.'.‘ . An—l o A1)+ (Bu{. o B)Ll )::+1 o Blf':!
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(65) ](; -1,/+1 fO ('A” o An—l o A1)+(BJ:{. _Blf;l ):.'+1 _BI{I:!

1/2

(24) =z, =(1-D)O+Dz, +V(z,) "e,,,

“t+1

(66) frrn—for=(A,=A = A)+(B] -B,)|(I-®)0+z +V(z) "¢, |-B/z,
=(A, = A~ A)+(B] B, )1 -®)8+(B] ~B, )0z +(B] ~B,)V(z) "€, ~B]z

i

(67) .fa.',! _.fO.! = (Ai:-i-l _An _A ) (B +B Ba +1) 61

. . . Cov .fu— It _.f ..*'fu,.f_f .f)
* The covariance and the variance in (62) becomes: «. - | V'm.(lf — ] -
Jnt JOt

(68) Coo(f, ;11— fos+fos —fo.)=(B,+B,—B,., ) I,(B,—®'(B,-B,,)

(69) Var(f,,-f,,)=(B,+B,~-B,.,) T,(B,+B,~B,.,)
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* To calculate ¢, in (62), it is still necessary to calculate I, - the
variance-covariance matrix of z, which corresponds to E{[z-E(z)[z-E(=)] |

e Specification of the factors in

1/2

(24) z., =(1-D)o+Dz, +V(z,)

4

(70) z—-E(z)=®(z-6)+V

4

* [\, components will be calculated as:

r+1

(71) wvec(T,)=wvec (DT, D" )+vec(V)
‘ as vec(ABC)=(C'®A)vec(B)

(72)  vec(Ty)=(1-0@D") .vec(V)
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e Kronecker product:

If Aisan m x n matrix and B is a p x g matrix, then the Kronecker product A @ B is the mp x ng block matrix:

anB .- a;,B
A®B= : .

amB -+ amB

more explicitly:

[aibn  anbiz -+ anby -+ o0 Gwmbu  awmbiz -+ @by |

aitbn  anbxn -+ anby -+ -+ ambn  ambn - amby
a1 bpl Gubpz te allbpq et alnbpl Gmbpz T alﬂ.bpq
A®B=

ambi  Gmbiz 0 Gmbyy c+ ccr Gmabil Gmabiz  c Gmabig
@miby  @miby o Gmiby cc o Gmaba Gmabz o Gmaby

| Gmibpt  Gmibpz o0 Gmibpg 0 0 Gmnbpt Gmabp  ccc Gmnbpg

 Example:

1[0 5] 2[0 5] 1x0 1x5 2x0 2x5 0 5 0 10

[1 2]@[0 5]= 6 7 6 7]| _|1x6 1x7 2x6 2x7| _[6 7 12 14
3 4 6 7 3[0 5] 4[0 5] 3x0 3x5 4x0 4x5 0 15 0 20
6 7 6 7 3x6 3xT7 4x6 4x7 18 21 24 28
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* From

B COZ’(_/;_LM] - _fo.,r ’_fu " ! fO‘)
V{”'( ‘f”“, e .f()_g )

(68) Cov(f, 1131 = for+ fur — Jo.)=(By +B, =B, _): I,(B,-®'(B,-B,, ))

(62) -«

(69) Var(ff - fO.f ) - (Bl +Bn' _B..*-f] )l ro(,Bl +B,i _B,‘,H )|
fuctie1 — Y1, = constant +c”(f”_f — % ) + residual

we get Yisst ~ Yuery =cCOnstant +d, (13/-+u ~ Y1 )+r’35id”a[

(B,+B,-B,,,) Ty(B,-®'(B,-B,.,))
B (Bl +B.: _Br;+1 ) | rO(Bl +B{.' _Bl.‘+l )

(73) -«

(74) ’ll_ILlC, - :1 ) aS B“‘_1 =B” =B When H — oo

n+1
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* Most empirical tests of the pure expectations hypothesis involve
instead yield regressions of the form:

(62) Y, o1 —VYuur, =constant+d (y,.,, —v,, ) +residual

* By definition

Coo( —U .1 —
(75) d” = (‘/'“"*' ‘ Yere Yousrr — Y )
var(-]/"-fﬂ Yty )

1
* Dueto(37) ».=(4+8'2) , the 1% and 2" elements of the
covariance in (75) are correspondingly:

(76) Y Y.-ﬂj - A — Ar.‘+1 + B Zp41 _ B.i+lzr

nE n n+l n n+1
(77) YT__'_II, _}/lf i Au.‘-—l _Al = Br.‘+1 _Bl: \‘;‘f
o " on+l n+l r
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e AsalltermsinAin (75) _ CO(Y, 1 = Yosrs Ytz ~Vi2)
“I var(y-..Hl _y.;+|.f )

don’t contribute to the covariance.

!

, . ‘A A, B'z. Bz A B! .
COE’ Y. o~V T -1 ZCOZ’ no_ n+l 4 t+l _ “ntl™t : n+l —A i i+l _B- )Z
(78) Yorst = Yiusrs Yusrs —Y1e) 5 el = n+l ‘n+l ' \n+1 S

are constant, they

qp ‘ \172
Bl[(1-®)p+az, +V(z) 2| g . (B
= Cov| — : f ] _ Bz ! B -B, )z,
n n+l \n+l

" bz P ‘ , "Dz :
=Cov B:; I t _B.:+1 .. Br.‘+l _Bl. ]Z, = Cov B.; I r __n+l : B..-+1 _B1 ):"

n n+l \n+1 n n n+1
—Coo| | Br® _m+1 z, ,{—B"*l -B, ).:! = [Bl" _Bu )FO(”B“’“‘I ~®B, ]

n n n+1 n+l n+1 ‘
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_CovlyY st = Yurrs Yusrs ~Y1e) i
Var(]/n‘,]"fl _3/l£+1,f )

!

. . A A, Bz, B .z A A, Bz B' .z
(79)  Var(y, . —,,)=Cov| = — =k y Znzul _ —wsdnt 2w Zued 4 2ol ol
' n n+1 n n+l n n+1 n n+1

* The variancein (75) 4

=(B,—(n+1)'B,.,) Ty(B,—(m+1)"'B,,,)

B,/'T,(I-®")B

(80) lim d, = . , where B=limB,
T B,'T,B, e
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o 2-factor constant volatility (i.e. Vasicek-type) model:

K a o o ,31 E ¥
2 Bor 0 [901 ] o2 0 2\ 22 1
(PZ 5+ _lo.iz
2.5
Stochastic discount factor: From (22)
- il e, T My7f - \1/2
(81) -m,, =5+) —-0; +z,+A,0,€,,, -m,,,=¢+y z+AV(2,) €&,
=1 =

Factors - first-order autoregressive processes with zero mean
(corresponds to considering the differences between the “true” factors

and their means): From (24)

T
(82) Zinn — 9,2, TO0,E “t+1 = (1 _(D)9+q):f +V(:f )] 28”1
Bond prices: From (26)
(83) _PH.! = AH +Bl.n‘:lt +BZ.H:2! _[)“ t — A” +B”-’r:t
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Yield curve: From (37)
- ; ; Ay
(84) ,“.-r_; - n (‘ln % Bl.,-‘i"'l:‘ + Bl.f)“lf) .‘ nit — - (A” i BH —;)
Factor loadings: From (34), (35) and (81)

. - 2 2 !
(85) A =A_, +é+—Z[/‘t£,o,“ —(A,0,+B,,_,0, )z] i | i, _— |
215 A, =A_+5+B  (I-9)6-—-(A+B,,) a(A+B, )

(86) B, =(1+B ,0)
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Short-term interest rate: From (38)
(87) v, =5+, n =532 ake|y -3 25 A

l

Given the common normalisation 2. =9, 4y=B,y=By =0,

* This model has the appealing feature of the short-term being the
sum of 2 factors plus a constant.

* The usual conjecture is that one factor is related to inflation

expectations and that the other factor reflects the ex-ante real
Interest rate.
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One-period forward curve:
2 n : 2

(88) £, :6+%Z{/ﬁa?—(i,o{ + 11"4”.- o,.) }LZ[G’T:”]
i=1 i=

|

From (44)

./-n.r :(A)Hl +Bu*1 “r) (A +B ”"f) (A

n+1

. 1 |
:[;‘JrB”f([—cD)B—;Z(/L+Bm) } [/ +B,' _5,221’/1 +B, :}

Volatility curve: From (42)
- : 1
(89) b ar, (."‘.'.-..- I ar, ( n 1+1) ( )B
n’
as the factors have constant volatility, given by vVar(z ., )=0’, the

volatility of yields depends neither on the level of the factors, nor on
the level of the short-rate.
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Term premium:
1 - % 9 ].— " 3
A:r.' = b ]).*.'_'+1 _p.|:+1_- _.vl_r =? /1'-6- _[ /10 ‘ & (0 (02 ]
< i=l -9
(90) ; _1 B g?
=Y |-A40 B, ———
i=1 -

From (46)

- B o -
AH..‘ = _.;2:1‘/1:81.:10{.' - 2 _(;A’:B.‘.HIB: -

Bn'z..llﬂf
2

-~
g |
i
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* If the factors that determine the dynamics of the yield curve are
assumed to be non-observable and the parameters are unknown, a
usual estimation methodology is the Kalman filter and a maximum
likelihood procedure.

* Kalman Filter - algorithm that computes the optimal estimate for the
state variables at t using the information available up to t-1.

« Maximum likelihood procedure — provides the estimates for the

parameters.
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* The starting point for the derivation of the Kalman filter is to write the
model in state-space form:

- observation or measurement equation

" Y ay by, by |- 0y
Q1) Y, = A-X,+H-Z +w, ] | R :
I"XH] ( i’x:‘{] L E . e . + . . _ + .
(rx1) | (nx1) (kx1) (rx1) i,
Vi | @] b by | Wy ]
where vy, ... , y.. are the [ zero-coupon yields at time t with maturities j =1, ... , u

periods and w,, ... ,w; are the normally distributed i.i.d. errors, with null mean and

. ’ 2 . .
standard-deviation equal to e’, of the measurement equation for each interest rate

considered, a, =4, [j. b, =B,,[j.b,, =B, ,/].
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- state or transition equation

(92) Z, =C+ F-Z ,+G v,

{ -
(kx1) (kX1 (kxk) i) (kx1)

Z1 441 o, 0|z, o, 01]v,,
= +
Zp 141 0 o, |z 0 o, [0

r —No. variables (interest rates) to estimate

n — No. observable exogenous variables (with no observable factors, n=1 => A becomes a column vector
with the independent terms for each interest rate)

k — No. non-observable or latent exogenous variables (the factors).

@ and v, -i.i.d. residuals, distributedas  ¢p ~ N(0,R) and ¥, ~ N(0,Q)

Variance matrices: R = E( w,w, ,)

(rxr)

Q =EV, %)

{,\ XA |
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* One may estimate simultaneously the yields and the volatilities, to
avoid implausible estimates for the latter:

— —

Y, a, | [by; by, | &y, |
(93) ,v..'.- CI f bl ! b;\ ) :1‘, v_,-_‘,
S =l 7 |+] . ' +
,"la': (}"1.'+1 ) a ., 0 0 Zs, v‘:+1‘,
var(y,)| |ay | [0 o 0,

where a,,,, =—(B},0,+B;,05) and 2| is the number of variables to estimate
: rI.. -/ Z,} s

In our model A is a column vector with elements «  for the first I rows and
1

2 2 2 2 - . . . ?
—,(B{‘,O'; + B, G;) for the next I rows; X, is a 2I-dimension column vector of one’s
' T

(n=1), C is a column vector of zeros and F is a k Xk diagonal matrix, with typical
element F, =¢, (k=2).
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e Contrary to the pioneer interest rate models, such as Vasicek (1977)
and Cox et al. (1985a), where the short-term interest influenced the
whole term structure, the latent factor models do not use explicit
determinants of the yield curve.

* As previously referred, one common conjecture is to assume that one
factor is related to the ex-ante real interest rate and a 2"9 factor linked
to inflation expectations.

* Therefore, one may start by estimating the factors and at a second
stage try to identify how does one of the factors relate to inflation.

* Alternatively, one may specifically relate inflation to the second factor
in the model to be estimated, in line with Fung et al. (1999).

Fung, Ben Siu Cheong, Scott Mitnick and Eli Remolona (1999), “Uncovering
Inflation Expectations and Risk Premiums from Internationally Integrated Financial

Markets”, Bank of Canada Working Paper Series, No. 99-6.
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e Assuming that inflation (z) is an AR(1) process, being 7 its mean,
7, the deviation of inflation from its mean and p a parameter that
measures the rate of mean-reversion:

(94) (7 -7 =pm,—7)+u,,

e |f the short-term interest is the sum of the factors and one of the
factors is related to inflation, we may write:

(95) %= E (7., _7_[)2 p(r, —7) = p7,

* From the 2 previous equations:

(96) 22441 = Ei(7,)=pR,, = [)(PTQ )= PRyt Py P=0
I
* From (82) Zin =9z, vO0,€ and (95) Py =028,

=it
I
]rf__"Z.t

2
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* If the link between inflation and the second factor is considered, the
observation equation becomes:

p— - — - p— w—

Yi; I, b, by, Vg
]/ [t ”.’ A bl A bZ ;- _ l)‘, +
“1.t
(97) |Var,(y,,.1) |=| @ [+] O O {__ }L Upr1s
. . . . ~3 .
Vl?l} (k]/.'__t+1 ) a,, 0 0 Uy,
I T, i 0 IR 0 b, | B
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* Major drawback: it implies the 2" factor to explain simultaneously
the inflation and the long term rates, which in some periods may
evidence significantly different volatilities.

!

(i) In periods of higher volatility of the long-term rates, the estimated
inflation tends to present a more irregular behaviour than the true
inflation.

(ii)) The AR(1) process for inflation is not necessarily the optimal model
for forecasting inflation, being too simple concerning its lag
structure and not allowing for the inclusion of other macro-
economic information that market participants may use to form
their expectations of inflation (e.g. monetary aggregates,
commodity prices, exchange rates, wages and unit labour costs).
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* However, a more complex model would certainly hamper the
identification of the factor.

* One way to overcome these problems is by using a joint model for the
term structure and the inflation, where the latter still shares a
common factor with the interest rates but is also determined by a

second specific factor:

(98) 7, = l(A,, +B,'z,)

n

:31
where Z :|: il and Ziganl = Pinliny TO 12E 11011

:Lw
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i+ dy, b, b, 0 Vy,
Vi d,, b, b,, 0|z, v,
99 , _ -
( ) J ar, (.1-’1_,“ ) =i, | T 0 0 0 ot ¥ + V414
: _‘:lﬂ'.! ] :
Var,(vi,a)| | a, | [0 0 o v,
| &, | 0 0 b, b, v
‘:1.1 +1 (pl O O :1.r 01 0 0 gl.r+1
(100) :2.1+1 =10 992 0 :2_1 +| 0 02 g2.1+1
_:1”-’+1 i [ 0 0 Dir _ _:ln',r 1 L 0 0 Oy _glzr:r+1 3
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* One may also use the DK framework to model simultaneously the
term structures of interest rates of 2 countries.

* A first attempt to model jointly the term structures of 2 countries is
found in Fung et al. (1999), where a 2-factor stochastic volatility
model is used to estimate simultaneously the U.S. and the Canadian
term structures.

e |n this case, it was assumed that both countries share a common
factor related to the real interest rate, following the close trade
relationship between those countries.

* As each country pursued its own monetary policy, it was assumed
that the U.S. and the Canadian term structures also depended on a
specific factor, related to the inflation expectations and, accordingly,
to the monetary policy.
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* In the Euro area, the opposite happens, i.e., there is a common
monetary policy and real interest rates differ among the member

countries. 1

* One can model the joint term structures of 2 Euro Area countries
assuming a common factor related to the inflation expectations and a
specific factor that is supposed to be related to the real interest rate,
modelling the 1%t term structure as previously stated and the 2" as:

S
(81) -m,, = (H—Z(—’O',’ +z, +/1,,O',.€.+1)
=1

2
2

) | |

* * jj_. #2 * * o
_ 1
(101) -m =4 +0, 4z, + 4,0, ., +

2

2
o, +z, +A,0,€

i+1
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* Remaining equations:
(102) _p:t _A +Blr-lf+B’u“"’r
(103) "1.'+1 (pI:; +O'IF:_.,+1

(104) v, =—(4,+B,,z,+B,,2,)

. 2-country model with (common) inflation:

Y ay, b, by, 0 Uy,
Vi a, b, b,, 0 v,
Y a, 0 b, b, U,

(105) | 0 ||« | |0 & B2 |

l'ur,(yl_,ﬂ) =@, |+ 0 0 0|z, [+]| Vs,
: : . - : _:1'_/ :

Var,(¥,,.1) a,, 0 0 0 Uy,

Var, (.";Hl) ”;ﬂ.n 0 0 0 U;‘HJ

Var,(y;,.) a,, 0 0 © Uy,

L }f’, J L 0 J = 0 hn’? OJ = U)T -
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* The estimation departs from assuming that the starting value of the
state vector Z is obtained from a normal distribution with mean

7. and variance P, (usually it is assumed that the starting values of
the factors are zero).

« Z,can be seen as a guess concerning the value of Z using all
information available up to and including t = 0.

* UsingZ and P,and following (92) 4 =G * L 4+Go the

1. 1. 1.
(kx1) (kx1)  (kxk) (kx1) (kx1) ’

optimal estimator for Z; will be given by:

(106) 21{3 =C+ FZ(:'
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* Consequently, the variance matrix of the estimation error of the
state vector will correspond to:

Pro =E[(Z0 = 240 (S - 24 )]
=E[(C+FZ,+Gv, -C-FZ,)(C+FZ,+Gv, -C-FZ,)]
= E[(Fv, +Go, )(v, F+0,'G’)]
= E(Fo,v, F')+E(Go,v,’G))
= FP,,F+GQ,G’

(107)

e Giventhat vec(ABC)=(C®A4)-vee(B) , P, may be obtained from:

vec(P,, ) = vec( FP, F') +vec(GQ,G’)

(108) =(F®F)-vec(P,, ) +(G®G)-vec(Q,)

-1

J J:(F@H] [(G®G)-vec(Q, )]
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* As w, is independent from X, and from all the prior information on
y and x (denoted by ¢..), we can obtain the forecast of vy,
conditional on X, and ¢, directly from

(109) Y, = A-X,+ H-Z +w, with w, ~N(OR)

4 o \ S
(i_xll ( ¥Xi1) [NXI] ( ¥XK) [fi'(xl] (i’xll

(110) E(y,|X,..{.,)=AX, +HZ, ,  with v, -N(0.Q)

* Therefore, from (109) and (110), we have the following expression
for the forecasting error:

(111) Y, -E(Y,|X,.{,,)=(AX, +HZ +w,)-(AX, +HZ, ,)=H(Z,-Z,_, |+w,
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* From (110), the conditional variance-covariance matrix of the
estimation error of the observation vector will be:

11) E{[Y, E(Y,|X,.¢. Y. ~EVIX, ]} =E{[H(Z - 2, )+ [H(Z - 2, ) +w,]]
- HE[('Z__ _Z-.--l )( Z — Z—;;_l )']H'+E(_z{:rml_')

— HP, ,H'+R
e After the updates of the mean and variance-covariance matrices of

the dependent variables, the log-likelihood function is computed
to estimate the parameters:

(113) logL(Y zlogf (Y;|T._;)

(Y|It 1):

te-1

te-1

exp[—%(]ﬂ -A- HZ“ 1) (HP H +R) (1/, —A—HZEH):I
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* The maximization of the log-likelihood function is often performed
as the minimization of the symmetric of that function.

* In order to characterise the distribution of the observation and
state vectors, it is also required to compute the conditional
covariance between both forecasting errors.

* From (81) we get:

(114) E{[y, -E(v,|X,.¢. )] Z -E(Z|X,.¢.)]} =E-{[H( Z, -2y, 1”"-][2- ‘Zl]}
= HE[(Z - 2:3:—1 N Zf N Zf"—l )']
=pr|r—1

* Therefore, using (109), (111) and (113), the conditional distribution
of the vector (Y,.Z, ) is:

Y,| X, '5":_]'] N[ AX, +H,..‘l_| HP,, \H'+R HP__‘I—H
(115) Z:er'g:*l J ) Zr:-l " Pr[r-IH‘ P

iJ.“‘l ¥,

Jorge Barros Luis| Interest Rate and Credit Risk Models 234



* Consequently, following (114), the distribution of Z, given Y,, X, and

-~

{.is N(Z,.P,) ,where Z,and P, are respectively the optimal
forecast of Z, given P, and the mean square error of this forecast,

corresponding to the following updating equations of the Kalman
Filter:

(116) Z2,=2,,+P, H(HP, f_,H'+R)_l[}", ~(AX, +H,,,)|

(117) P, =P, ,—P, H(HP, ,H*R) HP,

* Following this update, new estimates can be obtained, generalizing
(106) Z,,=C+FZ,

(118) 2., =C+FZ, =C+F|

= C+ Fzr:—l + Fpr:—lH'(HP‘r—lH.-}-R)—][}: —(AX +H:!:—I ]]

Z:r—! +I)::—IH"HP:f—lH‘-*-R:]Fl[Y: _(AX +Hr|r—l )]}
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(119) P, =FP F+GOG’
- F[lfl__l - P, H H/{,_IH'+R)‘1H1{,_1]F'+(;Q. (G —— Ricatti equation

= FP, \F—FP, \H(HP, \H+R) HP, ,F+GQG"

* The matrix FP,_ H| H[{,_IH‘+R)_1 is usually known as the gain matrix, since it
determines the update in Z..,, due to the estimation error of Y..

* Concluding, the Kalman Filter may be applied after specifying starting values for

-~

Z,, and P, using equations (110), (112), (116), and (117) and iterating on
equations (118) and (119).
(110) E(y,| X, L) = AX, +HZ,_,

E[[Y, —E(Y,|X,.£ )Y, -E(YIX, .0} = E{[H( z,-2,,)+w, ][H( -7, ,)+u, ]}

( 11 2) = HE[{Z‘, o ')‘]H'+E( w,w,)

=HP,,_ \H+R
(116) Zz,=2,,+P, H(HP r_]H'+R1”][Y, ~(AX, +H,,)]

(117) b, =P, - P, \H'(HF, \H+R )_IHR.-_l

(118) 7., -csr2, =c+ Fl2, ,+P, \H'(HP, H+R) [Y,-(AX, +H, |||
=C+FZ,  +FP ‘,_IH'(HR,_IH#R}_}[Y_. —(AX, +H,_, )]
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Starting values for the parameter ‘ (106) Z”g =C+ FZ[)

matrices (A HC.F.R Q) (107) - =E[(z| _Zlm Vs, _Zla)']

¥

[ Starting values for the state vector Z =E[(C+ FZ,+Gv, -C-FZ,)C+FZ, +Gv, -C-FZ, }-]
=E[(Fo, +Go, (v, F+v,'G')]
v girdd
New value for Z|0 =E(Fo,v,'F')+E(Gv,v,'G))
(106) and for P10 (107) =FP,,F'+GQ,G’
' (110)  E,|x,.£.)=AX, +HZ,

| New value for Y (110) |

(111) Y, -E(Y|X,.{.)=(AX, +HZ, +w,)-(AX, +HZ, ) =H(Z,-Z,_,)+w,

T (112) -2 Sl -1 £ =2 -2, [ -2, )
r - HE[(Z, N - ]']H'+E(wru'_"_}
Variance matrix of the estimation / )
error of the observation equation (112) =HP, H'+R
(113) oxi0r)- 1o
Value of the log-likelthood log L(¥:) ,2; log f(¥;[1:-1)
TR ( 1 ]_4) ElY. —E(IX. ¢ [z -EZ)X, £ )| =EH(Z - 2, )+w 2. - 2,.]}
Conditional covariance between the = HE[(Z" - Zw—l " Z - er—l )]
errors of both equations (114) =HP:“_1

| (116) Z;r = 2.‘\.‘-[ +R:—IH‘(Hprf—lH'+R)-l[‘li‘ _'AX‘ +Hr\:—] ]]
Updating Z (116) and P (117)

(117) By =Py Py H(HE, (HR) HE,
Forecasting t:hernew values for

Z (118) and P (119) (if there are (118) 2, =C+F2, =C+F|Z, ,+P, H(HP, H+R) [Y,(AX, +H,,)]}
if all iteraty iterati tobe d A -
(it o seranons Heranions to be dans) =C+FZ,  +FB, H'(HP, H+R)[Y, ~(AX, +H, ]|
are done) ! ! i : i ¥
Sum of the values of the
log-likelihood function (113) (if the maxdmum hasn't 5 s s

(if the maximum for the been obtained) (119) !:—l.- :}-}::}""(’Q:(’
sum has been obtained) g 3 -1 o e

[ END = I*{If;_l - P, \H'(HP, \H'+R) HI{,J]P +GO G

= FP, \F-FP, \H(HP, H+R) HP, ,F+GQG’
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2.4. HIM

Heath. D.. R. Jarrow, and A. Morton, 1992, "Bond Pricing and the Term Structure

of Interest Rates: A New Methodology for Contingent Claims Valuation."
Economefrica, 60. 77-105.

Goal: Model the dynamics of the entire yield curve, assuming
there is just one factor in a risk-neutral world.
A zero-coupon bond return will be the risk-free rate

\ 4

dP(t, T)=r(t)P(t, T)dt + v(t, T, Q2,)P(t, T)dz(t)

P(t,T): Price at time t of a risk-free zero-coupon bond with princpal Sl
matunng at time T
Q,: Vector of past and present values of interest rates and bond prices at
time ¢ that are relevant for determining bond pnce volatilities at that time
(e, T, Q): Volatility of P(t,T)
f(t,T,,T>) : Forward rate as seen at time t for the period between time 7, and
time 7>
F(t, T): Instantaneous forward rate as seen at time t for a contract maturing at
time T
r(t): Short-term risk-free interest rate at time ¢

dz(t): Wiener process driving term structure movements.
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Stochastic process:

(1)  dP(t, T) = r(t)P(t, T)dt + v(t, T, Q,)P(t, T) d=(1)

Forward rate:

lﬂ[P(r, Tl )] — ln[P(t. T: )]
T, —T,

(2) f(t, T[,T:)*

From (1) and Ito’s Lemma:

dIn[P(t, T))] = [r(t) _ 26 T‘{

Q 2
L ] dt 4+ v(t, Ty, 2,) dz(t)
I, 11,34;)

y.

dIn[P(t, T,)] = \.F(I) - J dt + v(t, Ty, Q,) d=(1) The risk-neutral process

for the forward rate

depends solely on the
l / bond price volatility
ot, T, Q) — ult, Ty, Q) gp o 6T R0) — ot T3, Q)

3 n ) =
(3) dfit, 1. Ty AT, —T)) T, - T,

dz(t)
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It is possible to show that:

(4) dF(t,T)=vo(t,T,Q2)vp(t, T, Q) dt — vy(t, T, ;) dz(1)

!

There is a link between the drift and the standard-deviation of
the instantaneous forward rate (F(t,T)).

Key problem: risk-free interest rate is non-Markov <~ the risk-
free interest rate process depends on its previous path.

HJM can be extended to several factors:

(5) dF(t,T)=m(1, T, Q) dt + Z.\‘;\(l. T, Q2)dz
k
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