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 Intensity‐based models do not provide any fundamental explanation for the arrival
of default, providing only a consistent description of the distribution of arrival
times.

 Structural models provide this theoretical background, explaining the arrival of
default by using company’s balance sheet and stock market data.

 In structural models, the default time is determined endogenously by the
behavior of the company’s asset  default occurs when the market value of
assets falls below the debt face value ‐ 1st passage of assets by a default boundary.

 These models became quite popular in the last decades, also due to the drawbacks
of traditional credit risk models and rating updates by agencies.

 The rationale of structural models is that market prices are the best assessment
available on the companies’ capital or debt value, notwithstanding the higher
volatility of market prices, namely for stocks, leading to false alarms of defaults.

2. STRUCTURAL MODELS OF CREDIT RISK
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Altman Z‐score (1968)

 The first attempt to incorporate market prices in a credit risk model was
done in the Z‐Score model, by Altman (1968), which is an ad‐hoc
specification for credit risk as a function of several financial ratios, being
one of them dependent on stock market capitalization.

 22 financial ratios from 66 companies between 1946 and 1965 were
used, evenly split between defaulting and non‐defaulting companies.
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Altman Z‐score (1968)
 For defaulting companies, financial statements one year before the

default were used, having been obtained the following model (PD
decrease along with the Z‐score):

Z = 1.2 X1 + 1.4 X2 + 3.3 X3 + 0.6 X4 + 1.0 X5

where:
X1 = working capital (net) / total assets;
X2 = retained earnings/ total assets
X3 = EBIT / total assets;
X4 = market capitalization/book value of long‐term liabilities
X5 = sales/total assets

 Z<1,81 – defaulting companies
 Z>2,99 – non‐defaulting companies
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 Later, Black and Scholes (1973) and Merton (1974) developed a corporate
valuation approach based on financial options.

 This approach became known in the literature as the Merton Model.

 The model is based on the assumption that, when the company issues
debt, shareholders transfer the control of the company to creditors.

 However, they retain an option of recovering that control if the company
reimburses the debt.

311

Merton Model



Jorge Barros Luís |  Interest Rate and Credit Risk Models

Merton Model
 Therefore, the value of capital may be seen as the price of a call‐option

on the company assets, with a strike equal to the debt value:

where

VE = market value of the company’s own funds
VA = market value of company’s assets
X = nominal value of the company’s total debt payable in maturity T.
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 The value of the debt can also be seen as a derivative, as its payoff
correspond to:

(i) face value – if there is no default

(ii) the market value of assets – if there is a default (in this case, the
recovery will provide bondholders a payment that will stem from the
asset liquidation)

where

VB = market value of the company’s debt
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 Payoffs of shares and bonds for X = 60:

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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Source: Crosbie and Bohn (2002), “Modeling
Default Risk”, KMV.
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 If on the redemption date, the market value of assets is lower
than the debt value, the shareholders don’t exercise the call
option, i.e. the debt is not repaid =>

PD= P[Market Value of Assets < Debt value].

Merton Model
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 Consequently, if the call‐option can be valued, the PD will be obtained
from the distribution function resulting from the stochastic process of
the company’s asset market value.

 Assuming that the option is European and the asset market value may be
taken as the price of non‐paying dividend asset, one can use the Black‐
Scholes formula and calculate the PD from the implied volatility of the
company’s asset value and an estimate for the respective growth rate.

 The Merton model is based on the assumption of the growth rates of the
company’s market value of assets (VA) being normally distributed:

 dzVdtVdV AAAA 

where VA is the company’s market value of assets,  and A the respective trend and
instantaneous volatility and dz is a Wiener process (random shocks normally distributed).

dzdtVdV AAA  
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 Given that this is exactly the stochastic process of the underlying asset of
an European option under the assumptions taken in the Black‐Scholes
pricing formula, the pricing formula for the European call‐option on the
company’s market value of assets that corresponds to the stock price is:

)2()1( dXNedNVV rT
AE



where
VE is the market value of the company’s own funds
N is the cumulative normal distribution function
r is the risk-free interest rate for the maturity T
X is the nominal value of the company’s total debt payable in maturity T.
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 Therefore, the option valuation involves the calculation of the
market value of assets and equity.

 Accounting identity =>

 However, most debt in VB is not observable for most firms (most
firms don’t even have traded debt).

 VA is not observable neither.

 In the option pricing formula, there are 2 unknowns: VA and A.

Merton Model
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 Consequently, an additional equation is required, in order to
determine the values for those 2 variables.

 This equation will result from the relationship between the
volatility of assets and the volatility of capital:

(1) (from )

 In Jarrow and Rudd (1983), it is shown that the stock volatility is a
multiple of the volatility of the market value of assets:

(2)

  A
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V
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equation system including the
option pricing formula and (4)
allows to estimate VA and A .
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Merton Model
 The PD is thus the probability of the market prices of assets falling below

the nominal value of debt at the expiry date:

 Given that the market value of assets follows a log‐normal distribution,
one gets (with  = expected asset returns):

 Therefore, the PD is:

 Risk‐neutral PD ( = r ):
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Merton Model
 Open issues:

 How to obtain values for  and E?

 How to deal with complex debt structures, with different
maturities, seniority degrees and installments?

 How to deal with the sensitivity of PDs to the leverage ratio?

 How to solve the kurtosis problem in the market value of
assets?

 How to use the PD estimates as a leading indicator of rating
changes?

 Estimation – non‐linear least squares, minimizing the sum of the
squared differences between the market value and the estimated
value of the stocks (through the option pricing formula) and the
assets.
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Moody’s KMV Model
 Moody’s KMV overcomes the distribution problems motivated by the

normality assumption through a database of loans providing empirical
PDs as a function of the distance‐to‐default measure:
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Source: Duffie, Darrell and Kenneth J. Singleton (2003),
“Credit Risk”, Princeton University Press.
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Moody’s KMV Model
 In this model, A is a linear combination of a modeled and an
empirical volatility (the latter weighting 70%, 80% for Financial
Institutions).

 Empirical vols ‐ calculated as the annualized standard deviation of
the growth rates of the nominal value of assets, using 3 years of
weekly observations for US companies (5 years of monthly data for
European companies), excluding extreme values and adjusting for
effects of M&A.

Modeled vols ‐ obtained from a regression between the observed vol
and size, revenues, profitability, sector and region variables.
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Moody’s KMV Model

 For banks, the PD is harder to estimate, given the diversity and
uncertainty of the liabilities’ maturities.

Moreover, by definition, banks are highly leveraged companies.

Moody’s KMV proposes the default point (the value of the payable
liabilities in the maturity considered) to be calculated as a % of the
total liabilities, being that % differentiated according to the type of
institution.
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Moody’s KMV Model
 In Chan‐Lau and Sy (2006), it is proposed an adjustment to the Moody’s KMV
model, in order to accommodate the possibility of a bail‐out.

 Consequently, the “Distance‐Risk measure” concept is created, with Lt being the
bank’s liabilities (=1 => DR=DD) and PCAR the planned capital ratio:

 With a very low PCAR,  gets higher and the DR lower  with a lower capital
target, the bank gets closer to default and can reach this stage at a lower level of
liabilities.

 According to Oderda et al. (2002), Moody’s KMV model anticipates defaults with
a lead of around 15 months, but also produces false alarms in 88% of the cases.
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Fitch EIR
 In order to smooth the excessive volatility of PDs obtained from equity
prices, hybrid models were developed, being the PD obtained from
corporate financial, market and macroeconomic information.

 One of these models was developed by Fitch, the Equity Implied Rating
(EIR), relating the DD to a set of financial ratios and macroeconomic
variables:

Source: Fitch (2007).
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Bondscore

 Another model is the Bondscore, developed by CreditSights:

7654
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469.5807.3501.2333.6
308.5989.3366.7593.9
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being:
X1 = Total Liabilities/Market Value of Capital
X2 = EBITDA/Sales
X3 = Sales/ Total Assets
X4 = Working Capital / Total Assets
X5= log(Assets)
X6= Vol of EBITDA/Sales
X7= Vol of Market Value of Capital
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3. REDUCED FORM MODELS
 A structural model of credit risk provides a link between the prices of
equity and debt instruments issued by a given firm.

 A reduced‐form model does not give any fundamental reason for the
arrival of the defaults, assuming that hazard rates for the different
companies are stochastic processes correlated with macroeconomic
variables.

 Given that credit spreads can be decomposed in default risk (PD, or ) and
recovery risk (LGD, or ), the PD can be modeled from the credit spreads
and LGDs.

 Taking several maturities, one can obtain a term structure of PDs.

 However, we must have in mind that spreads are not only a function of PDs
and LGDs, but also of liquidity, taxation and risk premia charged by
investors => PDs implied by spreads are risk neutral.
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Credit spreads
 2 equivalent ways to calculate the price of a risky zero coupon

bond (assuming one‐period maturity and redemption value of
one monetary unit):

(i) Expected value of the future cash‐flows, discounted at the risk‐
free rate:

(ii)Future cash‐flows, discounted at the risk‐free rate plus the
credit spread:
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Credit spreads

 Equalizing both expressions =>

=> Credit spread:
 Increases with the probability of default ;
 Decreases with the recovery rate ;
 Increases with the risk‐free rate r;
 In reality, these spreads may also be impacted by risk premium due 

to uncertainty about risk‐free interest rates, PDs and LGDs.
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Credit spreads
 This relationship can be generalized for any maturity:

(i) Expected value of the future cash‐flows, discounted at the risk‐
free rate:

(ii) Future cash‐flows, discounted at the risk‐free rate plus the credit
spread:
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 Consequently, the (risk‐neutral) PD can be obtained by
modeling the risk‐free and the recovery rate, instead of the
market value of the company’s assets.

 From the spreads of similar bonds for different maturities,
one can obtain the PD term structure, that can be compared
to the statistics of rating agencies (the “true” PDs).

 The initial and most popular reduced form models were
presented in Artzner and Delbaen (1995), Jarrow and Turnbull
(1995) and Duffie and Singleton (1995).

Credit spreads
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Advantages:

Disadvantages:

X There is no explicit link to the company’s fundamentals
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‐ Zero recovery defaultable bond price:

being * the risk‐neutral hazard rate

‐ Risk‐free interest and hazard rates depend on a set of macroeconomic
variables (X(t)):

As both depend on X(t), the hazard rate becomes correlated with the
interest rates.
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REDUCED FORM MODELS
‐ From the equations in the previous slide, we get prices for the

defaultable and the risk‐free bond, respectively:

‐ Credit risk spread:
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4. CREDIT RATING MODELS

337

 Credit risk may be assessed for different levels of credit ratings, by
modelling rating changes.

 Stylized facts:
(i) Frequencies for low‐probability events are usually based on a very

small number of observations
(ii) Ratings momentum – rating changes tend to be more frequent for

entities whose ratings have been revised recently
(iii) Ratings delay – rating changes tend to lag market prices for

several months
(iv) Credit spreads are often misaligned with PDs, as the latter are just

historical information.
(v) Credit spreads change along time.
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4. CREDIT RATING MODELS

338

 An important source about rating frequencies corresponds to the
regular reports published by rating agencies.

 These reports include information about cumulative PDs, 1y PDs
along time and transition matrices, namely for 1y.

 From these 1y rating transition matrices, it is possible to calculate
frequencies of default for larger periods.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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4. CREDIT RATING MODELS

339

 2y PD for rating A?
 As this default may occur either in the 1st or in the 2nd year, the most

straightforward answer would be to calculate the Cumulative Probability of
Default as 1 ‐ Cumulative Probability of Survival, being the latter the joint
probability of surviving in both years:

 1 െ  1 െ  ൌ 0,95ଶ ൌ 0,9025 => ଶ௬ܦܲ ൌ 1 െ 0,9025 ൌ 0,0975

 However, this answer would be valid only with no ratings (or no rating
transitions besides defaults, or a single non‐default rating).

 We need to take into account all rating transitions during the whole period
before default, not only the transitions to default, but also the rating
changes before default (i.e. during the 1st year).
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4. CREDIT RATING MODELS

340

 Therefore, if a default occurs in the 2nd year, the rating transition to default may
be either from rating A or from B, as defaults are often preceded by rating
downgrades.

 Actually, during the 1st year , a rating A may be kept or may be downgraded to B,
or even move straight to default:

A ‐> A ‐> D =>  ൌ 0,80 · 0,05 ൌ 0,04
A ‐> B ‐> D =>  ൌ 0,15 · 0,10 ൌ 0,015
A ‐> D (‐> D) =>  ൌ 0,05 · 1 ൌ 0,05

 ଶ௬ܦܲ ൌ      ൌ 0,04  0,015  0,05 ൌ 0,105 (which
compares to 0,0975 when rating transitions before default were discarded).

 All 2y transition frequencies will result from the squared rating transition matrix.
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 Default mode (DM) – take into consideration only the changes
in the value of bonds due to defaults.

 Marked‐to‐market (MTM) – allows to assess the impact on the
credit value of any change in its risk.

 Individual models – focus on the changes of a credit value,
regardless the correlations with other credits in the portfolio.

 Portfolio models – incorporate the correlations between the
several assets of a credit portfolio.

TYPES OF MODELS
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Challenges in Estimating Portfolio Credit Risk

 Non‐normal returns ‐ credit returns are highly skewed and fat‐tailed.
 Difficulty in modeling correlations ‐ lack of data, contrary to equities.

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

342



Jorge Barros Luís |  Interest Rate and Credit Risk Models

Credit‐VaR

343

 CreditMetrics is a portfolio model that estimates the Credit‐Var,
taking into account the current ratings of bonds, the transition
frequencies and the correlation between bond prices.

 We will start by considering a very simple portfolio, comprising just
one BBB 5y‐bond at par (redemption value of 100), with an annual
coupon rate of 6%, paid annually.

 To calculate the potential losses 1 year ahead, due to rating
downgrades, we need to obtain the value of the bond after rating
migrations in 1 year.

 This can be done by using forward interest rates for each rating
level to discount the remaining cash‐flows 1 year ahead (the 4
remaining coupons and the redemption value).
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Credit‐VaR

344

 Credit‐Var = Unexpected loss due to credit risk increase = Difference
between the price after a very unlikely unfavorable event and the
expected value of the future price at the risk horizon.

 Credit‐Var = Difference between the mean of the distribution and a
value at the left tail

Source: JPMorgan (1997), “CreditMetrics ‐ Technical document”
Note: The default price is the expected recovery rate.
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Credit‐VaR

345

 Calculation of prices for the risk horizon requires:

(i) Obtain the forward interest rate curves for each rating (m= risk
horizon; n = maturity at the risk horizon of the remain cash‐flows

(ii) Calculate the NPV at the risk horizon of the remaining cash‐flows
until maturity.

 Forward Price if the upgrade from BBB to rating A occurs:

Source: JPMorgan (1997), “CreditMetrics ‐ Technical document”
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Credit‐VaR

Ratings Probability of Loan Value Difference Contribution
Transition (%) at year-end to the mean to the variance

(1) (2) (3)=(2)- (4)=(1)x(3)^2
AAA 0.02 109.37 2.27 0.00
AA 0.33 109.19 2.09 0.0
A 5.96 108.66 1.56 0.15
BBB 86.93 107.55 0.45 0.18
BB 5.3 102.02 -5.08 1.37
B 1.17 98.10 -9.00 0.95
CCC 0.12 83.64 -23.46 0.66
Default 0.18 51.13 -55.97 5.64

Mean () 107.09
Variance ((4)) 8.95
Standard-dev. 2.99
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 1‐year 99% Credit‐Var = Mean‐P1,B (as the probability of having 1
year ahead a rating not above B = P(B) + P(CCC) + P(D)) = 1,17 +
0,12 + 0,18 ≈ 1% = 107,1‐98,1 = 9.
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Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

Year‐end
Bond Price

Probability of
Transition (%)

347

 Now we add a single‐A 3y bond, with annual coupon rate of 5%.
 Year‐end price of the single‐A 3y bond, after the several potential

rating migrations 1 year ahead:

The rating where the cumulative
probability of 1% is crossed is BB
(0,74+0,60+0,01+0,06=1,41), where
the price is 103,15.

1‐year 99% Credit‐Var of the standalone A‐bond =
Mean ‐ P1,BB = 106,54 – 103,15 = 3,39 (lower than the
B‐bond, as the credit risk is lower).
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Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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 All potential values of the portfolio will result from the
combination of the 8 potential values for each bond (8x8):
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Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

349

 The joint probabilities would just be product of the rating
migration probability for each bond, if these ratings were
independent.
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Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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 However, ratings do not tend to be independent, as they may be
moved by the same macroeconomic factors.

 Joint rating migration probabilities with correlated bonds:
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Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.
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Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

Conclusion: The means of the BBB and the A bonds sum directly, but the risk (standard
deviations) is much less than the summed individual risks due to diversification.

BBB Bond A Bond Portfolio

Mean 107,10 106,53 213,63

St.‐Dev. 2,99 1,49 3,35

1‐year 99% Credit‐VaR = Mean‐PP1,(B,A) (as the probability of having 1 year after a
rating not above B in the 1st bond and A in the 2nd bond =
P(B,A)+P(B,BBB)+…+P(D,D) = 0,92+0,18+…+0 =1,45 ≈ 1%) = 213,63‐204,4 = 9,23.
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VaR(%) = N(1-%)* =>

VaR(5%) = 1.65* = 1.65*3.35=5.53
VaR(1%) = 2.33* = 2.33*3.35=7.81 (lower than the observed 

value - 9,23 - due to fat tails)

Credit‐VaR

 Assuming a normal distribution, the VaR would be:

354

With zero correlation, the ratings considered to calculate the 99% Credit‐VaR would
be the same, as the cumulative probability =1% is only achieved at the rating
combination (B,A), but the actual degree of freedom would be slightly smaller:

1‐year 99% Credit‐VaR = Mean‐PP1,(B,A) (as the probability of having 1 year after a
rating not above B in the 1st bond and A in the 2nd bond = P(B,A)+P(B,BBB)+…+P(D,D)
= 0,92+0,18+…+0 =1,45 ≈ 1%) = 213,63‐204,4 = 9,23.
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Credit‐VaR

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

 The decision to hold a bond or not is likely to be made within the context
of some existing portfolio.

 Thus, the more relevant calculation is the marginal increase to the
portfolio risk that would be created by adding a new bond to it = 0,36 in
standard‐deviation and 0,24 in Credit‐VaR.

 This increase in Credit‐VaR is much smaller than the A‐Bond 99% Credit‐
Var (3,39) due to the diversification effect.

BBB‐Bond
(1)

A‐Bond
(2)

Portfolio
(3)

A‐Bond Marginal 
Risk (4) = (3)‐(1)

Standard‐deviation 2,99 1,49 3,35 0,36

99% Credit‐Var 8,99 3,39 9,23 0,24
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Creditmetrics

Source: Riskmetrics Group (2007), “CreditMetrics – Technical Document”.

Information required:
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