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Unit roots

Consider the first-order autoregressive (AR(1)) model:

Yt = φYt�1 + εt,

where εt is white noise (mean zero, constant variance σ2
ε , zero

autocovariances).
This process is stationary if the roots of the polynomial
Φ (z) = 1� φz are outside the unit circle.
We have the following cases:
If �1 < φ < 1, then Yt is stationary.
If jφj > 1, Yt is explosive.
If φ = 1, Yt has a unit root.
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Unit roots

Recall that in a AR(p) process of the form

Yt = φ1Yt�1 + ...+ φpYt�p + εt

where εt is a white noise process.
To study stationarity we consider the roots of the polynomial
Φ(z) = 1� φ1z� ...� φpzp.

If the roots lie outside the unit circle the process is stationary.
If some roots are equal to one there are unit roots.
If some roots are inside the unit circle the process is explosive.

Explosive series are not frequent in economics. Usually we have
stationary series or series with unit roots.
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Unit roots in the AR(1) model

Consider the AR(1) process

Yt = φYt�1 + εt,

If φ = 1, Yt has a unit root and the model becomes a random walk,

Yt = Yt�1 + εt,

with mean Y0 and variance σ2t.
Often it is appropriate to include an intercept in the AR(1) model

Yt = µ+ φYt�1 + εt,

where εt is white noise process.
If φ = 1, Yt has a unit root and the model becomes a random walk
with a drift,

∆Yt = µ+ εt,

and changes in Yt are equal to a constant µ plus a stationary
component εt.
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Unit roots in the AR(1) model

Sometimes a linear trend is also appropriate and the AR(1)
model becomes

Yt = µ+ βt+ φYt�1 + εt,

where εt is white noise process.
If φ = 1, Yt has a unit root and the model becomes a random walk
with a drift and a trend,

∆Yt = µ+ βt+ εt,

and changes in Yt are equal to a linear trend plus a stationary
component εt.
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Unit roots in the AR(1) model

Examples: The pictures below graph a white noise (in red), a
random walk (in blue), a random walk with a drift (in green) and
a random walk with a drift and a trend (in magenta)
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Unit roots

Inference using non-stationary processes (processes with a unit
root) is problematic because the standard asymptotic results do
not hold.
For example, if two independent random-walks fxtg and fytg are
generated, regressing yt on xt leads to intriguing results:

Granger and Newbold (1974) showed that a t-test for the
significance of the parameter associated with xt often leads to the
rejection of the null.
For example, for T = 50 the rejection frequency for a two-sided test
at 5% is 66.2%.
With T = 250, the rejection frequency goes up to 84.7%.
The R2 is often very high.

These spurious regressions arise because, under the null, the
model does not satisfy the usual assumptions.
Regressions using non-stationary variables are only interesting
in a particular case to be studied later.
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Unit roots
Dickey-Fuller tests

Consider the AR(1) process

Yt = φYt�1 + εt,

Unit root test (Dickey-Fuller): t-test for γ = φ� 1 = 0 against
γ < 0 in least-squares regression

∆Yt = γYt�1 + εt, t = 1, . . . , T. (1)

Test for H0 : Yt � I(1) ( γ = 0) against H1 : Yt is stationary
(γ < 0).
Testing this hypothesis can be done as t-ratio from the OLS
regression in (1) which can be written as

tγ =
γ̂

se(γ̂)

This is known as Dickey-Fuller test.
The Dickey-Fuller Test uses the t-statistic, but tγ is not
asymptotically normal. Its distribution is non-standard:
One-sided 5% critical value is �1.95. Rejection rule: We reject
H0 if the observed value of tγ is smaller than the critical value.
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Unit roots
Dickey-Fuller tests

Consider now the AR(p) model

Yt = ∑p
i=1 φiYt�i + εt,

Φ(L)Yt = εt

where Φ(L) = 1�∑
p
i=1 φiL

i.
Test H0 : Φ(z) has a unit root equal to 1, i.e. Φ(1) = 0.
The model can be written

∆Yt = γYt�1 + α1∆Yt�1 + . . .+ αp∆Yt�p+1 + εt.

where γ = �Φ(1),and αi = �∑
p
k=i+1 φk. We test H0 : Yt � I(1) (

γ = 0) against H1 : Yt is stationary ( γ < 0). We continue to use
the t-statistic for H0.
Same (asymptotic) critical values as the DF statistic.
Now it’s called an augmented Dickey-Fuller (ADF) test, but still the
same critical values
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Unit roots
Dickey-Fuller tests

In practice we apply the DF/ADF test even if the true process is not a
AR(p) process:

Lag length p should be chosen such that εt does not display any
autocorrelation.
The lags are intended to clear up any serial correlation, if too few,
test won’t be right.
So we have to test if there is serial correlation in model (1). If
there is, include lagged dependent variables.
A popular approach is to base the lag length selection on the
minimization of the Akaike or Schwarz information criteria.
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Unit roots
Dickey-Fuller tests

In practice the model can be extended to include a constant or
constant & linear trend:

To allow for non-zero constant mean under null and alternative
hypothesis, estimate:

∆Yt = γYt�1 + µ+ εt.

The 5% critical value shifts to �2.86.
To allow for drift under the null and trend-stationarity under the
alternative hypothesis, estimate:

∆Yt = γYt�1 + µ+ λt+ εt.

The 5% critical value shifts to �3.41.
Remark: Usually, in practice we include always an intercept. The
non-stochastic trend is included if the variable displays a trend.
However, you could test this using a t-statistics for µ and λ. The
asymptotic distributions of these t-statistics are also non-standard.
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Unit roots
Phillips and Perron (1988) unit roots test

The Phillips-Perron (PP) unit root test differ from the ADF tests
mainly in how it deals with serial correlation and
heteroskedasticity in the errors.
In particular,where the ADF tests use a parametric
autoregression to approximate the ARMA structure of the errors
in the test regression, the PP test corrects the t statistics for any
serial correlation and heteroskedasticity in the errors of the test.
The asymptotic distribution of the PP statistic is the same
asymptotic distributions of the ADF t-statistic
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Cointegration and common trends
Introduction

The available evidence points towards the existence of many
non-stationary macro-economic variables.
As we have seen, estimating regressions with I(1) variables is
likely to lead to erroneous conclusions.
A possible solution is to work with differenced series (this was the
practice adopted by most people after the Granger and Newbold
paper).
However, models in differences are mute about the relation
between the levels of the variables in a steady state.
Moreover, economic theory suggests that there are stable relations
between the levels of some of these variables.
This is possible if some linear combination of non-stationary
variables is stationary.
That is, although the series have random trends, they drift
“together”.
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Cointegration and common trends
Introduction

Consider two time series yt and xt which are both I(d):
If there exists a vector γ = (1,�β)0, such that the linear
combination

ut = yt � βxt � I(d� b),

then, yt and xt are said to be cointegrated with γ being the
cointegrating vector and d � b > 0.

In 2003, Clive Granger was awarded the Nobel prize for introducing
“methods of analyzing economic time series with common trends
(cointegration)".
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Cointegration and common trends
Introduction

Several points are worth noticing:
1 Cointegration refers to a linear combination of nonstationary

variables;
2 The cointegrating vector is not uniquely defined;
3 Both variables must be integrated of the same order to be candidates

to form a cointegrating relationship.
4 Like most of the literature, we will focus on the case that d = b = 1,

since few economic variables prove to be integrated of higher order
5 If yt and xt are cointegrated, they must share (up to a scalar) the

same stochastic trend, called a common trend.
6 When two series are cointegrated it suggests that even though both

processes are nonstationary, there is some long-run equilibrium
relationship linking both series so that relationship is stationary.
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Cointegration and common trends
Introduction

Examples of possibly cointegrated pairs of time series:
exchange rates and relative prices (purchasing power parity);
spot and futures prices of assets or exchange rates;
short- and long-term interest rates (term structure models);
stock prices and dividends (present value relations).

The concept is easily extended to more than two series: if
yt, x1t, . . . , xkt are all I(1) ,

ut = yt � β1x1t � . . .� βkxkt,

then there is a a cointegrating relation if ut is stationary.
δ = (1,�β1, ...,�βk)

0 is known as cointegrating vector.
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Cointegration and common trends
Introduction

There are two approaches to test for cointegration and estimate the
cointegrating parameters:

The single equation approach.
The system equation approach.
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The single equation approach.
Engle-Granger procedure

Engle and Granger proposed to analyse cointegration between time
series (yt, x1t, . . . , xkt), as follows.

Choose one of the variables as the dependent variable, e.g., yt,
and estimate the static long run equation

yt = β0 + β1x1t + . . .+ βkxkt + ut

by ordinary least-squares.
Apply an ADF unit root test to the residuals ût from this
regression.

∆ût = γût�1 + α1∆ût�1 + . . .+ αp∆ût�p + vt,

(an intercept and a time trend can also be included ) the t-statistic
is given by

tγ =
γ̂

se(γ̂)
.

where γ̂ is the OLS estimator of γ.
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The single equation approach.
Engle-Granger procedure

The t�statistic has a non-standard distribution (different from
the usual ADF tests). This yields a test for H0 : ut � I(1)
(spurious regression) against H1 : ut � I(0) (cointegration).
Critical values depend on number of regressors (k). They also
change if an intercept and/or a time trend are included.
Rejection rule: We reject H0 if the observed value of tγ is smaller
than the critical value.
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The single equation approach.
Limitations of Engle-Granger procedure:

Choice of the dependent variable is arbitrary; all variables could
be endogenous. Selecting a variable xit as dependent variable
should not matter asymptotically (as number of observations
T ! ∞), but will make a difference in practice.
Method can only be used if there is only a single unique
cointegrating relation, which involves yt. Thus (x1t, . . . , xkt) are
not allowed to be cointegrated without yt.
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The single equation approach.
Estimation of the cointegrating vector

The OLS estimators β̂ are (super-)consistent estimators of the
cointegrating vectors under cointegration but has some
drawbacks.

It is can be considerably biased in finite samples.
we cannot apply standard t-tests or confidence intervals to them.

One approach to this problem is to use the VAR approach
described later.
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The single equation approach.
Estimation of the cointegrating vector

A simpler approach is to use the Saikkonen-Stock-Watson
augmented least squares estimator.
This estimator is obtained by running the regression

yt = α+ β0xt +∑p
j=�p δ0jxt+j + vt

where p is allowed to increase with T at the appropriate rate
xt = (x1t, . . . , xkt)

0. The resulting estimator is also
super-consistent for β.
In practice the choice of p is as in the ADF tests and the chosen
value must ensure that the errors vt are serially uncorrelated.
It is also common practice to choose the value of p based on the
Schwarz criterion.
Although, the distribution of the estimator of β is not normal,
Saikkonen (1991) showed that valid inference about the long-run
parameters can be performed using t and Wald statistics. That is,
the asymptotic distributions of the t-statistics and the Wald
statistics are standard normal and chi-squared respectively
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The single equation approach.
The error correction model

Cointegration has implications for the short-run dynamics of the
series.
If the series are cointegrated the equilibrium error ut contains
information about ∆yt.
Models incorporating this information were introduced by
Davidson, Hendry, Srba and Yeo (1978) and are said to contain
an error correction mechanism.
Granger representation theorem: Let yt � I(1) and xt � I(1) : yt
and xt are cointegrated with cointegrating vector (1, β0) if and
only if there is a (reduced rank) error correction model that
explains the short run behaviour of yt and xt (more on this
theorem later).
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The single equation approach.
The error correction model

The (reduced rank) error correction model describing the short
run behaviour of yt is given by

∆yt = θ0+ ρ
�
yt�1 � α� β0xt�1

�
+∑q1

i=1 λi∆yt�i+∑q2
i=1 ϕ0i∆xt�i+ut

where ut is a stationary process and q1 and q2 are suitable values.
The parameter ρ is known as the adjustment coefficient:
ρ
�
yt�1 � α� β0xt�1

�
corresponds to the adjustment in ∆ytin

response to a disequilibrium
�
yt�1 � α� β0xt�1

�
.

The vector error correction model can be estimated by running
the regression

∆yt = θ0+ ρ
�

yt�1 � α̂� β̂
0xt�1

�
+∑q1

i=1 λi∆yt�i+∑q2
i=1 ϕ0i∆xt�i+ ηt

where α̂ and β̂ are super-consistent estimators of α and β and ηt
is the error term.
Stock (1987) showed that standard inference for the short-run
parameters is valid.
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The system equation approach
Using the Johansen Technique Based on VARs

An approach that allows us to overcome the problems of the Engle
Granger test is the methodology introduced by Johansen. The
starting point is a VAR(p) process for Xt = (X1t, X2t, . . . , Xkt)

0

Φ(L)Xt = εt

where Φ(L) = Ik �∑
p
i=1 ΦiLi(no intercept for convenience) and εt is a

multivariate white noise process. This process can be written as

∆Xt = ΠXt�1 +∑p�1
i=1 Φ�

i ∆Xt�i + εt,

Φ�
i = �∑p

j=i+i Φj,

Π = ∑p
j=1 Φj � Ik = �Φ(1)

Let us assume that Xt is I(1) that is (1� L)Xt is stationary.
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The system equation approach
Using the Johansen Technique Based on VARs

We can only have two possible cases:
1 rank(Π) = 0 , Π = 0 ) Φ(L) has at least k unit roots:

∆Xt = ∑
p�1
i=1 Φ�

i ∆Xt�i, i.e. VAR(p� 1) model for ∆Xt.
2 0 < rank(Π) = r < k, We have cointegration.

Remark: The case rank(Π) = k is not compatible with Xt being I(1)
as it implies that jΦ(1)j 6= 0, so no unit roots: Xt � I(0).
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The system equation approach
Using the Johansen Technique Based on VARs

To see that case 2 implies cointegration note that if
0 < rank(Π) = r < k it can be shown that Π = αβ0 with α and β
(k� r) matrices of rank r yielding the vector error correction model.

∆Xt = αβ0Xt�1 +∑p�1
i=1 Φ�

i ∆Xt�i + εt (2)

Notice that since ∆Xt � I(0), we must have αβ0Xt�1 � I(0) otherwise
(2) would be logically inconsistent.

Notice that αβ0Xt�1 � I(0), β0Xt�1 � I(0).
Let β = [β1, ..., βr]. That is, βi is a column of β. Thus

β0Xt�1 =

264 β01Xt�1
...

β0rXt�1

375
Hence β0Xt�1 � I(0)) β0iXt�1 � I(0). Thus the columns βi of β
are the cointegrating vectors, β0iXt�1 can be interpreted as long run
equilibrium relations β0iXt�1 displays mean reversion, cannot
drift too far from its mean.
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The system equation approach
Using the Johansen Technique Based on VARs

Let

α =

264 α11 � � � α1r
...

. . .
...

αk1 � � � αkr

375 .

Thus

αβ0Xt�1 =

264 ∑r
j=1 α1jβ

0
jXt�1

...
∑r

j=1 αkjβ
0
jXt�1

375 .

Hence α contain the adjustment coefficients: αijβ
0
jXt�1 is the

adjustment in ∆Xit in response to a disequilibrium in β0jXt.

28 / 37



The system equation approach
Using the Johansen Technique Based on VARs

Formally we have the following result:

Theorem (Granger Representation Theorem)

Let Xt be a k� 1 and let

∆Xt = ∑∞
`=0 Ψ`εt�j,

where εt is white noise with positive definite matrix Ω, Ψ0 = Ik,
∑∞

j=0 j
��Ψij(`)

�� < ∞ (i, j = 1, ..., k). If there are 0 < r < k cointegration
relationships, then there is a r� k matrix β0 such that β0Xt is stationary.
The matrix β0 satisfies β0[∑∞

`=0 Ψ`] = 0. Further, if Xt is a VAR(p) process
Φ(L)Xt = εt, then there exists a k� r matrix α such that Φ(1) = �αβ0 and

∆Xt = αβ0Xt�1 +∑p�1
i=1 Φ�

i ∆Xt�i + εt

Remark: The Granger’s representation theorem states that cointegration
is equivalent to the existence of a reduced rank error correction
model.
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The system equation approach
Using the Johansen Technique Based on VARs

α and β are not unique. Take any nonsingular (r� r) matrix Q
and define

α� = αQ0, β� = βQ�1 ) α�β�0 = αβ0 = Π

Often useful class of identifying restrictions

β =

�
Ir
�B

�
where B is a (k� r)� r. Thus if Xt = (X01t, X02t)

0, then
β0Xt = X1t � B0X2t.

30 / 37



The system equation approach
Example:

Bivariate VAR model Xt

Xt = ΦXt�1 + εt,

Φ =

�
0.8 0.2
0.4 0.6

�
.

Note that the model is equivalent to

∆Xt = ΠXt�1 + εt

where

Π = Φ� I2

=

�
�0.2 0.2
0.4 �0.4

�
.

The roots of the characteristic equation jI2 �Φzj = 0 are z1 = 1
and z2 = 2.5 ) The process has one unit root.
Note that rank(Π) = 1 ) The process has one unit root and
there is cointegration.
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The system equation approach
Example:

Writing the model in the reduced rank vector error correction
form with β = (1, b)0 we have

∆Xt = ΠXt�1 + εt

=

�
�0.2
0.4

� �
1 �1

�
Xt�1 + εt
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The system equation approach
Example:

∆X1t = �0.2(X1,t�1 �X2,t�1) + ε1t,
∆X2t = 0.4(X1,t�1 �X2,t�1) + ε2t,

Interpretation:

If X1,t�1 = X2t�1, ∆X1t and ∆X2t does not change much
If X1,t�1 > X2t�1, ∆X1t # and ∆X2t "
If X1,t�1 < X2t�1, ∆X1t " and ∆X2t #
Deviation from the equilibrium level should be (partially)
corrected in the next period, by X1t and X2t.
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The system equation approach
Johansen’s cointegration test

General VECM for a vector Xt = (X1t, X2t, . . . , Xkt)
0 of k time

series:
∆Xt = ΠXt�1 +∑p�1

i=1 Φ�
i ∆Xt�i + εt

where εt is vector white noise (mean zero, constant
variance-covariance matrix, no (cross-)autocorrelation), and
where Π and Γi are k� k matrices.
Cointegration occurs if

rank Π = r < k, Π = αβ0 = α1β01 + . . .+ αrβ0r,
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The system equation approach
Johansen’s cointegration test

Johansen derived the likelihood ratio test for Hr : rank Π = r
against the alternative r < rank Π � k, in the VECM model with
normally distributed errors εt.
The test is known as the trace test (this is a LR test). The test
statistics λtrace(r) can be expressed in terms of eigenvalues λ̂i of a
particular matrix. Its asymptotic distribution under the null
hypothesis is a multivariate version of the Dickey-Fuller
distribution.
We reject for large positive values of the test statistic.
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The system equation approach
Johansen’s cointegration test

These tests may be used to estimate the cointegrating rank r in the
following way:

1 Start with r = 0;
2 Test Hr with λtrace(r) (We reject Hr if the observed valued of

λtrace(r) is larger than the critical value);
3 If Hr is not rejected, then r̂ = r; if it is rejected, replace r by r+ 1

and go back to step 2;
4 If Hr is rejected for all r = 0, 1, . . . , k� 1, then conclude r̂ = k (this

corresponds to a stationary system).

Remark: Just like with Dickey-Fuller test, we can to allow for
deterministic terms (a constant and possibly a linear trend) in the
VECM. The critical values of the test depend on the deterministic
terms considered.
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The system equation approach
Hypothesis test on the cointegrating vectors

Lag- Length (p) chosen using the BIC criterion for the VAR
model in levels estimated by Maximum Likelihood.
The estimators of the parameters of the VECM are obtained
using Maximum Likelihood after identifying the number of
cointegrating relationships.
To construct the log-likelihood function it is assumed normality
of the errors, though the asymptotic distributions of the test
statistics do not depend on this assumption.
Under the restriction β0 = [Ir,�B0], the MLE for B̂ is obtained
from the unrestricted estimator.
The asymptotic distribution of B̂ is not asymptotically normal.
However, resulting t-statistics for the individual elements of B
are asymptotically N(0,1) under null hypothesis.
and LR tests for restrictions on B have asymptotic χ2 null
distribution.
Note that this approach is valid if the restriction β0 = [Ir,�B0]
makes sense.
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