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18-2

Prelude

Ensuring equal service

I n 1984, in an effort to open the telecommunications market to
competition, AT&T was split into eight regional companies. To

promote competition, more than one company was now allowed to
offer telecommunications services in a local market. But since it isn’t in
the public interest to have multiple companies digging up local streets to
bury cables, one telephone company in each region is given responsibility
for installing and maintaining all local lines and leasing capacity to other
carriers.

Each state’s Public Utilities Commission (PUC) is responsible for seeing
that there is fair access for all carriers. For example, the primary carrier
should do repairs as quickly for customers of other carriers as for their
own. Significance tests are used to compare the levels of service. If a test
indicates that service levels are not equivalent, the primary carrier pays a
penalty.

PUCs and primary carriers perform many of these tests each day. Given
the large amounts of money at stake, the significance tests described in
earlier chapters are not sufficiently accurate. Instead, primary carriers like
Verizon have turned to resampling methods in an effort to achieve accurate

test results that provide a strong defense in an adversarial hearing
before a PUC.

The resampling methods of this chapter provide
alternatives to the methods of earlier chapters for

finding standard errors and confidence intervals
and for performing significance tests.
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18.1 Why Resampling?

Fewer assumptions.

Greater accuracy.

Generality.

Promote understanding.

This chapter was written by Tim Hesterberg, Shaun Monaghan, David S. Moore, Ashley Clipson,
and Rachel Epstein, with support from the National Science Foundation under grant DMI-0078706.
We thank Bob Thurman, Richard Heiberger, Laura Chihara, Tom Moore, and Gudmund Iversen
for helpful comments.

Statistics is changing. Modern computers and software make it possible to
look at data graphically and numerically in ways previously inconceivable.
They let us do more realistic, accurate, and informative analyses than can
be done with pencil and paper.

The bootstrap, permutation tests, and other resampling methods are part
of this revolution. Resampling methods allow us to quantify uncertainty
by calculating standard errors and confidence intervals and performing
significance tests. They require fewer assumptions than traditional methods
and generally give more accurate answers (sometimes very much more
accurate). Moreover, resampling lets us tackle new inference settings easily.
For example, Chapter 7 presented methods for inference about the difference
between two population means. But suppose you are really interested in a

of means, such as the ratio of average men’s salary to average women’s
salary. There is no simple traditional method for inference in this new setting.
Resampling not only works, but works in the same way as for the difference
in means. We don’t need to learn new formulas for every new problem.

Resampling also helps us understand the concepts of statistical inference.
The sampling distribution is an abstract idea. The bootstrap analog (the
“bootstrap distribution”) is a concrete set of numbers that we analyze using
familiar tools like histograms. The standard deviation of that distribution
is a concrete analog to the abstract concept of a standard error. Resam-
pling methods for significance tests have the same advantage; permutation
tests produce a concrete set of numbers whose “permutation distribution”
approximates the sampling distribution under the null hypothesis. Compar-
ing our statistic to these numbers helps us understand -values. Here is a
summary of the advantages of these new methods:

For example, resampling methods do not require that
distributions be Normal or that sample sizes be large.

Permutation tests, and some bootstrap methods, are
more accurate in practice than classical methods.

Resampling methods are remarkably similar for a wide range
of statistics and do not require new formulas for every statistic. You do
not need to memorize or look up special formulas for each procedure.

Bootstrap procedures build intuition by provid-
ing concrete analogies to theoretical concepts.

Resampling has revolutionized the range of problems accessible to busi-
ness people, statisticians, and students. It is beginning to revolutionize our

ratio

P
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18.2 Introduction to Bootstrapping

Note on software

TELECOMMUNICATION REPAIR TIMES

elms03.e-academy.com/splus/

www.insightful.com/Hesterberg/
bootstrap www.whfreeman.com

www.whfreeman.com

�

�
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standards of what is acceptable accuracy in high-stakes situations such as
legal cases, business decisions, and clinical trials.

Bootstrapping and permutation tests are feasible only with the use of
software to automate the heavy computation that these resampling methods
require. If you are sufficiently expert in programming or with a spreadsheet,
you can program basic resampling methods yourself. But it is easier to use
software with resampling methods built in.

This chapter uses S-PLUS, the software choice of most statisticians do-
ing research on resampling methods. A free student version of this software
is available to students and faculty at .
In addition, a student library containing data sets specifically for your book,
menu-driven access to capabilities you’ll need, and a manual that accom-
panies this chapter can be found at

or at . You may also order an S-PLUS
manual to supplement this book from .

Let’s get a feel for bootstrapping by seeing how it works in a specific
example. We’ll begin by showing how to bootstrap and then relate the
results to ideas you’ve already encountered, such as standard errors and
sampling distributions.

Verizon is the primary local telephone company (the legal term is Incumbent
Local Exchange Carrier, ILEC) for a large area in the eastern United States.
As such, it is responsible for providing repair service for the customers of
other telephone companies (known as Competing Local Exchange Carriers,
CLECs) in this region. Verizon is subject to fines if the repair times (the
time it takes to fix a problem) for CLEC customers are substantially worse
than those for Verizon’s own customers. This is determined using hypothesis
tests, negotiated with the local Public Utilities Commission (PUC).

Webeginouranalysisby focusingonVerizon’sowncustomers. Figure18.1
shows the distribution of a random sample of 1664 repair times. The data
file is . A quick glance at the distribution reveals that the data are
far from Normal. The distribution has a long right tail (skewness to the right).

The mean repair time for Verizon customers in this sample is 8 41
hours. This is a statistic from just one random sample (albeit a fairly large
one). The statistic will vary if we take more samples, and its trustworthiness
as an estimator of the population mean depends on how much it varies
from sample to sample.

verizon.dat

x .

x
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FIGURE 18.1 (a)
(b)

�

The distribution of 1664 repair times for Verizon
customers. Normal quantile plot of the repair times. The distribution is
clearly right-skewed rather than Normal.



1.57 0.22 19.67 0.00 0.22 3.12
mean = 4.13

0.00 2.20 2.20 2.20 19.67 1.57
mean = 4.64

3.12 0.00 1.57 19.67 0.22 2.20
  mean = 4.46

0.22 3.12 1.57 3.12 2.20 0.22
mean = 1.74
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FIGURE 18.2

Procedure for bootstrapping

The resampling idea. The top box is a sample of size 6 from the Verizon data. The three
lower boxes are three resamples from this original sample. Some values from the original sample occur more than
once in the resamples because each resample is formed by sampling with replacement. We calculate the statistic of
interest—the sample mean in this example—for the original sample and each resample.

n

Step 1: Resample. bootstrap
samples resamples,

Sampling with replacement

Step 2: Calculate the bootstrap distribution.

bootstrap distribution

Step 3: Use the bootstrap distribution.

THE BOOTSTRAP IDEA

�

�

resamples

sampling with
replacement

bootstrap
distribution

Statistical inference is based on the sampling distributions of sample statistics.
The bootstrap is first of all a way of finding the sampling distribution, at
least approximately, from just one sample. Here is the procedure:

Create hundreds of new samples, called
or by sampling from the original

random sample. Each resample is the same size as the original random
sample.

means that after we randomly draw an
observation from the original sample, we put it back before drawing the
next observation. This is like drawing a number from a hat, then putting
it back before drawing again. As a result, any number can be drawn once,
more than once, or not at all. If we sampled replacement, we’d
get the same set of numbers we started with, though in a different order.
Figure 18.2 illustrates the bootstrap resampling process on a small scale.
In practice, we would start with the entire original sample, not just six
observations, and draw hundreds of resamples, not just three.

Calculate the statistic for
each resample. The distribution of these resample statistics is called a

. In Case 18.1, we want to estimate the population
mean repair time , so the statistic is the sample mean .

The bootstrap distribution gives
information about the shape, center, and spread of the sampling distribution
of the statistic.

The original sample represents the population from which it was
drawn. So resamples from this sample represent what we would
get if we took many samples from the population. The bootstrap
distribution of a statistic, based on many resamples, represents the
sampling distribution of the statistic, based on many samples.

with replacement

without

x
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Bootstrap distribution for mean repair time

Bootstrap standard error for mean repair time

EXAMPLE 18.1

EXAMPLE 18.2

�

BOOTSTRAP STANDARD ERROR

bootstrap standard error

, x

Shape:

Center:

Spread:

�
�, x � �� �� � �

�

� �

�
2

boot

�boot

The of a statistic is the standard deviation
of the bootstrap distribution of that statistic.

If the statistic of interest is the sample mean , the bootstrap standard
error based on resamples is

1 1
SE

1

In this expression, is the mean value of an individual resample. The
bootstrap standard error is just the ordinary standard deviation of the
values of . The asterisk in distinguishes the mean of a resample from
the mean of the original sample.

x
n

x x

x

.
x

x
B

x x
B B

x
B

x x
x

Figure 18.3 displays the bootstrap distribution of 1000 resample means for the
Verizon repair time data, using a histogram and a density curve on the top and
a Normal quantile plot on the bottom. The solid vertical line in the top panel
marks the mean of the original sample, and the dashed line marks the mean of the
bootstrap means.

We see that the bootstrap distribution is nearly Normal. The central
limit theorem says that the sampling distribution of the sample mean is
approximately Normal if is large. So the bootstrap distribution shape is close to
the shape we expect the sampling distribution to have.

The bootstrap distribution is centered close to the mean of the
original sample. That is, the mean of the bootstrap distribution has little bias
as an estimator of the mean of the original sample. We know that the sampling
distribution of is centered at the population mean , that is, that is an unbiased
estimate of . So the resampling distribution again behaves (starting from the
original sample) as we expect the sampling distribution to behave (starting from
the population).

Figure 18.3 gives a rough idea of the variation among the resample
means. We can get a more precise idea by computing the standard deviation of the
bootstrap distribution. Applying the bootstrap idea, we use this standard deviation
to estimate the standard deviation of the sampling distribution of .

The bootstrap standard error for the 1000 resample means displayed in Figure
18.3 case is SE 0 367. This estimates the standard deviation of the
sampling distribution of .

�

�
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FIGURE 18.3 The bootstrap distribution for 1000 resample
means from the Verizon ILEC sample. The solid line in the top
panel marks the original sample mean, and the dashed line marks
the average of the bootstrap means. The Normal quantile plot
confirms that the bootstrap distribution is nearly Normal in shape.
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Using software

APPLY YOUR
KNOWLEDGE

Repeat 1000 times {
Draw a resample with replacement from the data.
Calculate the resample mean.
Save the resample mean into a vector (a variable).

}
Make a histogram and Normal quantile plot of the 1000 means.
Calculate the standard deviation of the 1000 means.

18.1 Bootstrap a small data set by hand.

�

�

� �

�

�

� �

�

We know a great deal about the behavior of the sample mean in large
samples. Examples 18.1 and 18.2 verify the bootstrap idea for the mean of
a sample of size 1664. The examples show that the shape, bias, and spread
of the bootstrap distribution are close to the shape, bias, and spread of the
sampling distribution.

. This fact is the basis of the usefulness of
bootstrap methods.

Software is essential for bootstrapping in practice. Here is an outline of the
program you would write if your software will choose random samples from
a set of data but does not have bootstrap functions:

x n

x s n
s

s .
.

n

with replacement

n

x

This is also true in many situations where we do not
know the sampling distribution

In fact, we know that the standard deviation of is , where is the
standard deviation of individual observations in the population. Our usual
estimate of this quantity is the standard error of , , based on the standard
deviation of the original sample. In this example,

14 69
0 360

1664

The bootstrap standard error agrees quite closely with this formula-based
estimate.

To illustrate the bootstrap
procedure, let’s bootstrap a small random subset of the Verizon
data:

3.12 0.00 1.57 19.67 0.22 2.20

(a) Sample from this initial SRS by rolling a die. Rolling
a 1 means select the first member of the SRS, a 2 means select the
second member, and so on. (You can also use Table B of random
digits, responding only to digits 1 to 6.) Create 20 resamples of
size 6.

(b) Calculate the sample mean for each of the resamples.

(c) Make a stemplot of the means of the 20 resamples. This is the bootstrap
distribution.

(d) Calculate the bootstrap standard error.

� �

C
A

SE
1

8
.1

APPLY YOUR
KNOWLEDGE



Number of Replications: 1000

Percentiles:
            2.5%   5.0%   95.0%   97.5%
mean   7.717  7.814    9.028    9.114

Summary Statistics:

mean
Observed

8.412
Mean
8.395

SE
0.3672

Bias
–0.01698
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FIGURE 18.4

Using S-PLUSEXAMPLE 18.3

Why does bootstrapping work?

S-PLUS
output for the Verizon data
bootstrap, Case 18.1.

APPLY YOUR
KNOWLEDGE

bootILEC = bootstrap(data = ILEC, statistic = mean)
plot(bootILEC)
qqnorm(bootILEC)
summary(bootILEC)

bootILEC

summary Observed
Mean

Bias Mean
Observed SE

Percentiles

Observed

18.2 Earnings for white female hourly workers.

�

It might seem that the bootstrap creates data out of nothing. This seems
suspicious. But we are not using the resampled observations as if they were
real data—the bootstrap is not a substitute for gathering more data to

readdata.ssc

x .

Suppose that we save the 1664 Verizon repair times as the variable ILEC in S-PLUS
(commands to do this are in the file ). We can make 1000 resamples
and analyze their means using these commands:

The same functions are available in menus, but it is a bit easier to discuss the
typed commands. The first command resamples from the ILEC data set, calculates
the means of the resamples, and saves the bootstrap results as the object named

. By default, S-PLUS takes 1000 resamples. The remaining three
commands make a histogram (with a density curve) and a Normal quantile plot
and calculate numerical summaries. The summaries include the bootstrap standard
error.

Figure 18.4 is part of the output of the command. The
column gives the mean 8 412 of the original sample. is the mean of
the resample means. The column shows the difference between the
and the values. The bootstrap standard error is displayed in the
column. The are percentiles of the bootstrap distribution, that
is, of the means of the 1000 resamples pictured in Figure 18.3. All of these values
except will differ a bit if you repeat 1000 resamples, because resamples
are drawn at random.

Bootstrap the mean of
the white female hourly workers data from Table 1.8 (page 31).

(a) Plot the bootstrap distribution (histogram or density plot and
Normal quantile plot). Is it approximately Normal?

(b) Find the bootstrap standard error.

(c) Find the 2.5th and 97.5th percentiles of the bootstrap distribution.

APPLY YOUR
KNOWLEDGE

C
A

SE
1

.2

C
A

SE
18

.1



Bootstrap Methods and Permutation Tests18-12 CHAPTER 18 �

Sampling distribution and bootstrap distribution

THE PLUG-IN PRINCIPLE

�
�

�

�

�

� �

�

�

� �

improve accuracy. Instead, the bootstrap idea is to use the resample means to
estimate how the sample mean of a sample of size 1664 from this population
varies because of random sampling.

Using the data twice—once to estimate the population mean, and again
to estimate the variation in the sample mean—is perfectly legitimate. Indeed,
we’ve done this many times before: for example, when we calculated both
and from the same data. What is different is that

1. we compute a standard error by using resampling rather than the formula
, and

2. we use the bootstrap distribution to see whether the sampling distribution
is approximately Normal, rather than just hoping that our sample is large
enough for the central limit theorem to apply.

The bootstrap idea applies to statistics other than sample means. To use
the bootstrap more generally, we appeal to another principle—one that we
have often applied without thinking about it.

To estimate a parameter, a quantity that describes the population,
use the statistic that is the corresponding quantity for the sample.

The plug-in principle suggests that we estimate a population mean
by the sample mean and a population standard deviation by the
sample standard deviation . Estimate a population median by the sample
median. To estimate the standard deviation of the sample mean for an SRS,

, plug in to get . The bootstrap idea itself is a form of the
plug-in principle: substitute the distribution of the data for the population
distribution, then draw samples (resamples) to mimic the process of building
a sampling distribution. Let’s look at this more closely.

Confidence intervals, hypothesis tests, and standard errors are all based on
the idea of the of a statistic—the distribution of values
taken by the statistic in all possible samples of the same size from the same
population. Figure 18.5(a) shows the idea of the sampling distribution of the
sample mean . In practice, we can’t take a large number of random samples
in order to construct this sampling distribution. Instead, we have used a
shortcut: if we start with a model for the distribution of the population, the
laws of probability tell us (in some situations) what the sampling distribution
is. Figure 18.5(b) illustrates an important situation in which this approach
works. If the population has a Normal distribution, then the sampling
distribution of is also Normal.

In many settings, we have no model for the population. We then can’t
appeal to probability theory, and we also can’t afford to actually take many
samples. The bootstrap rescues us. Use the one sample we have as though
it were the population, taking many resamples from it to construct the

x
s n

s n

x
s

n s s n

sampling distribution

x

x
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Theory

Sampling distribution NORMAL POPULATION
unknown mean �

�

�

�

n/�

Resample of size n

Resample of size n

Resample of size n

(c)

One SRS of size n

Bootstrap distribution
POPULATION

unknown mean �

x–

x–

x–

·
·
·

·
·
·

SRS of size n

(a)

SRS of size n

SRS of size n

Sampling distribution
POPULATION

unknown mean �
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x–

x–

·
·
·

·
·
·
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FIGURE 18.5 (a)
(b)

(c)

The idea of the sampling distribution of the sample mean : take very many samples, collect the value of
from each, and look at the distribution of these values. The probability theory shortcut: if we know that the population

values follow a Normal distribution, theory tells us that the sampling distribution of is also Normal. The bootstrap idea:
when theory fails and we can afford only one sample, that sample stands in for the population and the distribution of in
many resamples stands in for the sampling distribution.

x
x

x
x
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�

�

�

�

�

�

S

S

18.2 S

18.2 E

resamples
bootstrap distribution

plug-in principle

bootstrap standard error

bootstrap distribution. Figure 18.5(c) outlines the process. Then use
the bootstrap distribution in place of the sampling distribution.

In practice, it is usually impractical to actually draw all possible resam-
ples. We carry out the bootstrap idea by using 1000 or so randomly chosen
resamples. We could directly estimate the sampling distribution by choosing
1000 samples of the same size from the original population, as Figure 18.5(a)
illustrates. But it is very much faster and cheaper to let software resample
from the original sample than to select many samples from the population.
Even if we have a large budget, we would prefer to spend it on obtaining
a single larger sample rather than many smaller samples. A larger sample
gives a more precise estimate.

In most cases, the bootstrap distribution has approximately the same
shape and spread as the sampling distribution, but it is centered at the original
statistic value rather than the parameter value. The bootstrap allows us to
calculate standard errors for statistics for which we don’t have formulas and
to check Normality for statistics that theory doesn’t easily handle. We’ll do
this in the next section.

To bootstrap a statistic (for example, the sample mean), draw hundreds
of with replacement from the original sample data, calculate the
statistic for each resample, and inspect the of the
resampled statistics.

The bootstrap distribution approximates the sampling distribution of the
statistic. This is an example of the : use a quantity based
on the sample to approximate a similar quantity from the population.

Bootstrap distributions usually have approximately the same shape
and spread as the sampling distribution but are centered at the statistic
(from the original data) when the sampling distribution is centered at the
parameter (of the population).

Use graphs and numerical summaries to determine whether the bootstrap
distribution is approximately Normal and centered at the original statistic
and to get an idea of its spread. The is the
standard deviation of the bootstrap distribution.

The bootstrap does not replace or add to the original data. We use the
bootstrap distribution as a way to estimate the variation in a statistic based
on the original data.

Unless an exercise instructs you otherwise, use 1000 resamples for all bootstrap
exercises. S-PLUS uses 1000 resamples unless you ask for a different number. Always
save your bootstrap results in a file or S-PLUS object, as in Example 8.3, so that
you can use them again later.



18.2 Introduction to Bootstrapping 18-15

18.3 Spending by shoppers.

18.4 Guinea pig survival times.

18.5 More on supermarket shoppers.

�

�

4

x
n

x
n

x

Here are the dollar amounts spent by 50 consecutive
shoppers at a supermarket. We are willing to regard this as an SRS of all
shoppers at this market.

3.11 8.88 9.26 10.81 12.69 13.78 15.23 15.62 17.00 17.39
18.36 18.43 19.27 19.50 19.54 20.16 20.59 22.22 23.04 24.47
24.58 25.13 26.24 26.26 27.65 28.06 28.08 28.38 32.03 34.98
36.37 38.64 39.16 41.02 42.97 44.08 44.67 45.40 46.69 48.65
50.39 52.75 54.80 59.07 61.22 70.32 82.70 85.76 86.37 93.34

(a) Make a histogram of the data. The distribution is slightly skewed.

(b) The central limit theorem says that the sampling distribution of the sam-
ple mean becomes Normal as the sample size increases. Is the sampling
distribution roughly Normal for 50? To find out, bootstrap these
data and inspect the bootstrap distribution of the mean.

The lifetimes of machines before a breakdown
and the survival times of cancer patients after treatment are typically strongly
right-skewed. Here are the survival times (in days) of 72 guinea pigs in a
medical trial:

43 45 53 56 56 57 58 66 67 73
74 79 80 80 81 81 81 82 83 83
84 88 89 91 91 92 92 97 99 99

100 100 101 102 102 102 103 104 107 108
109 113 114 118 121 123 126 128 137 138
139 144 145 147 156 162 174 178 179 184
191 198 211 214 243 249 329 380 403 511
522 598

(a) Make a histogram of the survival times. The distribution is strongly
skewed.

(b) The central limit theorem says that the sampling distribution of the sam-
ple mean becomes Normal as the sample size increases. Is the sampling
distribution roughly Normal for 72? To find out, bootstrap these
data and inspect the bootstrap distribution of the mean (use a Normal
quantile plot). How does the distribution differ from Normality? Is the
bootstrap distribution more or less skewed than the data distribution?

Here is an SRS of 10 of the amounts spent
from Exercise 18.3:

18.43 52.75 50.39 34.98 19.27 19.54 15.23 17.39 12.69 93.34

We expect the sampling distribution of to be less close to Normal for
samples of size 10 than for samples of size 50 from a skewed distribution.
This sample includes a high outlier.

(a) Create and inspect the bootstrap distribution of the sample mean from
these data. Is it less close to Normal than your distribution from Exercise
18.3?
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18.3 Bootstrap Distributions
and Standard Errors

BIAS

biased

18.6 More on survival times.

18.7 Comparing standard errors.
�

�

�

�

In this section we’ll use the bootstrap procedure to find bootstrap distribu-
tions and standard errors for statistics other than the mean. The shape of the
bootstrap distribution approximates the shape of the sampling distribution,
so we can use the bootstrap distribution to check Normality of the sampling
distribution. If the sampling distribution appears to be Normal and centered
at the true parameter value, we can use the bootstrap standard error to
calculate a confidence interval. So we need to use the bootstrap to check
the center of the sampling distribution as well as the shape and spread. It
turns out that the bootstrap does not reveal the center directly, but rather
reveals the .

A statistic used to estimate a parameter is when its sampling
distribution is not centered at the true value of the parameter. The
bias of a statistic is the mean of the sampling distribution minus the
parameter.

The bootstrap method allows us to check for bias by seeing whether
the bootstrap distribution of a statistic is centered at the statistic of
the original random sample. The bootstrap estimate of bias is the
mean of the bootstrap distribution minus the statistic for the original
data.

x

x s n
s

s n

t

bias

(b) Compare the bootstrap standard errors for your two runs. What ac-
counts for the larger standard error for the smaller sample?

Here is an SRS of 20 of the guinea pig survival
times from Exercise 18.4:

92 123 88 598 100 114 89 522 58 191
137 100 403 144 184 102 83 126 53 79

We expect the sampling distribution of to be less close to Normal for
samples of size 20 than for samples of size 72 from a skewed distribution.
These data include some extreme high outliers.

(a) Create and inspect the bootstrap distribution of the sample mean for
these data. Is it less close to Normal than your distribution from Exercise
18.4?

(b) Compare the bootstrap standard errors for your two runs. What ac-
counts for the larger standard error for the smaller sample?

We have two ways to estimate the standard
deviation of a sample mean : use the formula for the standard error
or use the bootstrap standard error. Find the sample standard deviation
for the 50 amounts spent in Exercise 18.3 and use it to find the standard
error of the sample mean. How closely does your result agree with the
bootstrap standard error from your resampling in Exercise 18.3?
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Bootstrapping the mean selling priceEXAMPLE 18.4

REAL ESTATE SALE PRICES

5

We are interested in the sales prices of residential property in Seattle. Un-
fortunately, the data available from the county assessor’s office do not
distinguish residential property from commercial property. Most of the sales
in the assessor’s records are residential, but a few large commercial
sales in a sample can greatly increase the mean selling price. We prefer
to use a measure of center that is more resistant than the mean. When we do
this, we know less about the sampling distribution than if we used the mean
to measure center. The bootstrap is very handy in such settings.

Table 18.1 gives the selling prices for a random sample (SRS of size 50)
from the population of all 2002 Seattle real estate sales, as recorded by the
county assessor. The sales include houses, condominiums, and commercial
real estate but exclude plots of undeveloped land.

Figure 18.6 describes these data with a histogram and Normal quantile
plot. As we expect, the distribution is strongly skewed to the right. There
are several high outliers, which may be commercial sales.

x

x

x

142 232 132.5 200 362 244.95 335 324.5 222 225
175 50 215 260 307 210.95 1370 215.5 179.8 217
197.5 146.5 116.7 449.9 266 265 256 684.5 257 570
149.4 155 244.9 66.407 166 296 148.5 270 252.95 507
705 1850 290 164.95 375 335 987.5 330 149.95 190

The skewness of the distribution of real estate prices affects the sampling
distribution of the sample mean. We cannot see the sampling distribution directly
without taking many samples, but the bootstrap distribution gives us a clue.
Figure 18.7 shows the bootstrap distribution of the sample mean based on
1000 resamples from the data in Table 18.1. The distribution is skewed to the
right—that is, a sample of size 50 is not large enough to allow us to act as if has
a Normal distribution.

There is some good news as well. The bootstrap distribution shows that
the outliers do not cause large bias—the mean of the bootstrap distribution is
approximately equal to the sample mean of the data in Table 18.1 (the solid
and dotted lines nearly coincide). We conclude that the sampling distribution is
skewed but has small bias. This isn’t surprising: we know that is an unbiased
estimator of the population mean , whether or not the population has a Normal
distribution.
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TABLE 18.1 Selling prices (in $1000) for an SRS of 50 Seattle real estate
sales in 2002
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FIGURE 18.6

�

Graphical displays of the 50 selling prices in Table 18.1.
The distribution is strongly skewed, with high outliers.
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FIGURE 18.7 The bootstrap distribution of the sample means
of 1000 resamples from the data in Table 18.1. The bootstrap
distribution is right-skewed, so we conclude that the sampling
distribution of is right-skewed as well.x

BOOTSTRAP DISTRIBUTIONS AND SAMPLING DISTRIBUTIONS

The conclusion of Example 18.4 is based on the following principle.

For most statistics, bootstrap distributions approximate the shape,
spread, and bias of the actual sampling distribution.

Bootstrap distributions differ from the actual sampling distributions in
the location of their centers. The sampling distribution of a statistic used
to estimate a parameter is centered at the actual value of the parameter
in the population, plus any bias. The bootstrap distribution, generated by
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25% trimmed mean for the real estate dataEXAMPLE 18.5

�

Bootstrap distributions of other statistics

APPLY YOUR
KNOWLEDGE

TRIMMED MEAN

trimmed mean

18.8 Supermarket shoppers.

18.9 Guinea pig survival.

25%

resampling from a single sample, is centered at the value of the statistic for
the original sample, plus any bias. The two biases are similar even though
the two centers are not.

In estimating the center of Seattle real estate prices, we cannot act as if
the sampling distribution of were Normal. We have two alternatives: use
a confidence interval not based on Normality or choose a measure of center
whose distribution is closer to Normal. We will see that advanced bootstrap
methods do produce confidence intervals not based on Normality. For now,
however, we choose to bootstrap a different statistic that is more resistant
to skewness and outliers.

One statistic we might consider in place of the mean is the median. Here,
instead, we’ll use a .

A is the mean of only the center observations in a
data set. In particular, the 25% trimmed mean ignores the
smallest 25% and the largest 25% of the observations. It is the mean
of the middle 50% of the observations.

Recall that the median is the mean of the 1 or 2 middle observations.
The trimmed mean often does a better job of representing the average of
typical observations than does the median. Bootstrapping trimmed means
also works better than bootstrapping medians, because the bootstrap doesn’t
work well for statistics that depend on only 1 or 2 observations.

x

x

x

25% trimmed mean

x

What is the bootstrap estimate of the bias from
your resamples in Exercise 18.3? What does this tell you about the bias
encountered in using to estimate the mean spending for all shoppers at this
market?

What is the bootstrap estimate of the bias from your
resamples in Exercise 18.4? What does this tell you about the bias encoun-
tered in using to estimate the mean survival time for all guinea pigs that
receive the same experimental treatment?

We don’t need any distribution facts about the trimmed mean to use the bootstrap.
We bootstrap the 25% trimmed mean just as we bootstrapped the sample mean:
draw 1000 resamples, calculate the 25% trimmed mean for each resample, and
form the bootstrap distribution from these 1000 values. Figure 18.8 shows the
result.

Comparing Figures 18.7 and 18.8 shows that the bootstrap distribution of the
trimmed mean is less skewed than the bootstrap distribution of the mean and is
closer to Normal. It is close enough that we will calculate a confidence interval for
the population trimmed mean based on Normality. (If high accuracy were
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FIGURE 18.8 The bootstrap distribution of the 25% trimmed
means of 1000 resamples from the data in Table 18.1. The
bootstrap distribution is roughly Normal.

Number of Replications: 1000

Summary Statistics:
Observed Mean Bias SE

TrimMean 244 244.7 0.7171 16.83

important, we would prefer one of the more accurate confidence interval
procedures we discuss later.)

The distribution of the trimmed mean is also narrower than that of the mean.
For a long-tailed distribution such as this, the 25% trimmed mean is a less variable
estimate of the center of the population than is the ordinary mean. Here is the
summary output from S-PLUS:
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Bootstrap confidence interval for the trimmed meanEXAMPLE 18.6
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Bootstrap confidence intervalst
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There is another “bootstrap confidence interval” in common use. It estimates the value of that
is appropriate for the data rather than using a value from a table.

boot statistic
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25%

25%

boot

25% boot

Recall the familiar one-sample confidence interval (page 435) for the mean
of a Normal population,

This interval is based on the Normal sampling distribution of the sample
mean and the formula for the standard error of .

When a bootstrap distribution is approximately Normal and has small
bias, we can use essentially the same recipe with the bootstrap standard
error to get a confidence interval for any parameter.

Suppose that the bootstrap distribution of a statistic from an SRS
of size is approximately Normal and that the bias is small. An
approximate level confidence interval for the parameter that
corresponds to this statistic by the plug-in principle is

statistic SE

where is the critical value of the ( 1) distribution with area
between and .
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The trimmed mean for the sample is 244, the mean of the 1000 trimmed
means of the resamples is 244.7, and the bootstrap standard error is 16.83.

We want to estimate the 25% trimmed mean of the population of all 2002
Seattle real estate selling prices. Table 18.1 gives an SRS of size 50.
The software output in Example 18.5 shows that the trimmed mean of this
sample is 244 and that the bootstrap standard error of this statistic is
SE 16 83. A 95% confidence interval for the population trimmed mean
is therefore

SE 244 (2 009)(16 83)

244 33 81

(210 19 277 81)

Because Table D does not have entries for 1 49 degrees of freedom, we used
2 009, the entry for 50 degrees of freedom.

We are 95% confident that the 25% trimmed mean (the mean of the middle
50%) for the population of real estate sales in Seattle in 2002 is between $210,190
and $277,810.
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Bootstrapping to compare two groups

APPLY YOUR
KNOWLEDGE

BOOTSTRAP FOR COMPARING TWO POPULATIONS

18.10 Confidence interval for shoppers’ mean spending.

18.11 Trimmed mean for shoppers’ spending.

18.12 Median for shoppers’ spending.

Two-sample problems (Section 7.2) are among the most common statistical
settings. In a two-sample problem, we wish to compare two populations,
such as male and female customers, based on separate samples from each
population. When both populations are roughly Normal, the two-sample

procedures compare the two population means. The bootstrap can also
compare two populations, without the Normality condition and without
the restriction to comparison of means. The most important new idea is
that bootstrap resampling must mimic the “separate samples” design that
produced the original data.

Given independent SRSs of sizes and from two populations:

1. Draw a resample of size with replacement from the first sample
and a separate resample of size from the second sample.
Compute a statistic that compares the two groups, such as the
difference between the two sample means.

2. Repeat this resampling process hundreds of times.

3. Construct the bootstrap distribution of the statistic. Inspect its
shape, bias, and bootstrap standard error in the usual way.
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Your investigation in
Exercise 18.3 found that the bootstrap distribution of the mean is reasonably
Normal and has small bias.

(a) What is the bootstrap 95% confidence interval for the population
mean , based on your resamples from Exercise 18.3?

(b) Also find the standard one-sample confidence interval. The two in-
tervals differ only in the standard errors used. How similar are the
intervals?

Because the distribution of amounts
spent by supermarket shoppers (Exercise 18.3) is strongly skewed, we might
choose to use a measure of center more resistant than the mean.

(a) Find the 25% trimmed mean for this sample of 50 shoppers. Why is the
trimmed mean smaller than the mean?

(b) Use the bootstrap method to give a 95% confidence interval for the
25% trimmed mean spending in the population of all shoppers.

We remarked that bootstrap methods often
work poorly for the median. Construct and inspect the bootstrap distribution
of the median for resamples from the shopper spending data (Exercise 18.3).
Present a plot of the distribution and explain carefully why you would not
use the bootstrap confidence interval for the population median.

�
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Service times in telecommunicationsEXAMPLE 18.7

�

Number of Replications: 1000

Summary Statistics:
Observed Mean Bias SE

meanDiff -8.098 -8.251 -0.1534 4.052

Service provider

�

�

�

� �

n x s

1 2

1 2

1 2

In the setting of Example 18.7 we want to estimate the difference of
population means, , but we are reluctant to use the two-sample

confidence interval because one of the samples is both quite small and
very skewed. To compute the bootstrap standard error for the difference in
sample means , resample separately from the two samples. Each of our
1000 resamples consists of two group resamples, one of size 1664 drawn
with replacement from the Verizon data and one of size 23 drawn with
replacement from the CLEC data. For each combined resample, compute
the statistic . The 1000 differences form the bootstrap distribution.
The bootstrap standard error is the standard deviation of the bootstrap
distribution. Here is the S-PLUS output:

The bootstrap distribution and Normal quantile plot are shown in Figure
18.10. The bootstrap distribution is not close to Normal. It has a short right
tail and a long left tail, so that it is skewed to the left. We are unwilling to use
a bootstrap confidence interval. That is, no method based on Normality
is safe. In Section 18.5, we will see that there are other ways of using the
bootstrap to get confidence intervals that can be safely used in this and
similar examples.

t

x x

x x

t

Incumbent local exchange carriers (ILECs), such as Verizon, install and maintain
local telephone lines, lease capacity, and perform repairs for the competing local
exchange carriers (CLECs). Figure 18.9 shows density curves and Normal quantile
plots for the repair times (in hours) of 1664 service requests from customers of
Verizon and 23 requests from customers of a CLEC during the same time period.
The distributions are both far from Normal. Here are some summary
statistics:

Verizon 1664 8.4 14.7
CLEC 23 16.5 19.5
Difference 8.1

The data suggest that repair times may be longer for the CLEC. The mean repair
time, for example, is almost twice as long for CLEC customers as for Verizon
customers.
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FIGURE 18.9 Comparing the distributions of repair times
(in hours) for 1664 requests from Verizon customers and
23 requests for customers of a CLEC. The top panel shows
density curves and the bottom panel shows Normal quantile
plots. (The density curves appear to show negative repair
times—this is due to how the density curves are calculated
from data, not because any times are negative.)
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FIGURE 18.10

�

The
bootstrap distribution of the
difference in means for the
Verizon and CLEC repair
time data.

APPLY YOUR
KNOWLEDGE

18.13 Compare standard errors.

18.14 An experiment in education.

� �2 2
1 2 1 21 2x x s n s n

The formula for the standard error of
is / / (see page 464). This formula does not

depend on Normality. How does this formula-based standard error
for the data of Example 18.7 compare with the bootstrap standard error?

Table 7.3 (page 465) gives the scores on a
test of reading ability for two groups of third-grade students. The treatment
group used “directed reading activities” and the control group followed the
same curriculum without the activities.

�

C
A

SE
1

8
.1

APPLY YOUR
KNOWLEDGE



18.3 Bootstrap Distributions and Standard Errors 18-27

EYOND THE ASICS: HE OOTSTRAP FOR
A CATTERPLOT MOOTHER

Do some lottery numbers pay more?EXAMPLE 18.8

B B T B
S S

18.15 Healthy versus failed companies.

1 2

1 2

6

The bootstrap idea can be applied to quite complicated statistical methods,
such as the scatterplot smooth illustrated in Chapter 2 (page 126).

The straight line in Figure 18.11 is the least-squares regression line. The
line shows a general trend of higher payoffs for larger winning numbers. The
curve in the figure was fitted to the plot by a scatterplot smoother that follows
local patterns in the data rather than being constrained to a straight line.
The curve suggests that there were larger payoffs for numbers in the intervals
000 to 100, 400 to 500, 600 to 700, and 800 to 999. When people pick
“random” numbers, they tend to choose numbers starting with 2, 3, 5, or 7,
so these numbers have lower payoffs. This pattern disappeared after 1976—it
appears that players noticed the pattern and changed their number choices.

Are the patterns displayed by the scatterplot smooth just chance? We can
use the bootstrap distribution of the smoother’s curve to get an idea of how

x x

t

t

x x
t

t

t

(a) Bootstrap the difference in means and report the bootstrap
standard error.

(b) Inspect the bootstrap distribution. Is a bootstrap confidence interval
appropriate? If so, give the interval.

(c) Compare the bootstrap results with the two-sample confidence interval
reported on page 478.

Table 7.4 (page 476) contains
the ratio of current assets to current liabilities for random samples
of healthy firms and failed firms. Find the difference in means
(healthy minus failed).

(a) Bootstrap the difference in means and look at the bootstrap
distribution. Does it meet the conditions for a bootstrap confidence
interval?

(b) Report the bootstrap standard error and the bootstrap confidence
interval.

(c) Compare the bootstrap results with the two-sample confidence interval
reported on page 479.

The New Jersey Pick-It Lottery is a daily numbers game run by the state of New
Jersey. We’ll analyze the first 254 drawings after the lottery was started in 1975.
Buying a ticket entitles a player to pick a number between 000 and 999. Half of
the money bet each day goes into the prize pool. (The state takes the other half.)
The state picks a winning number at random, and the prize pool is shared equally
among all winning tickets.

Although all numbers are equally likely to win, numbers chosen by fewer
people have bigger payoffs if they win because the prize is shared among fewer
tickets. Figure 18.11 is a scatterplot of the first 254 winning numbers and their
payoffs. What patterns can we see?
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FIGURE 18.11

FIGURE 18.12

�

The first 254 winning numbers in the New Jersey Pick-It
Lottery and the payoffs for each. To see patterns we use least-squares
regression ( ) and a scatterplot smoother ( ).

The curves produced by the scatterplot smoother for
20 resamples from the data displayed in Figure 18.11. The curve for the
original sample is the heavy line.

line curve

much random variability there is in the curve. Each resample “statistic” is
now a curve rather than a single number. Figure 18.12 shows the curves
that result from applying the smoother to 20 resamples from the 254 data
points in Figure 18.11. The original curve is the thick line. The spread of the
resample curves about the original curve shows the sampling variability of
the output of the scatterplot smoother.
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ECTION UMMARY

ECTION XERCISES
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18.3 S

18.3 E

bootstrap standard error

bias

trimmed mean

bootstrap confidence interval

18.16 Standard error.

18.17 Seattle real estate sales: the mean.

� �

Nearly all the bootstrap curves mimic the general pattern of the original
smooth curve, showing, for example, the same low average payoffs for
numbers in the 200s and 300s. This suggests that these patterns are real, not
just chance.

Bootstrap distributions mimic the shape, spread, and bias of sampling
distributions.

The is the standard deviation of the bootstrap
distribution. It measures how much a statistic varies under random
sampling.

The bootstrap estimate of is the mean of the bootstrap distribution
minus the statistic for the original data. Small bias means that the
bootstrap distribution is centered at the statistic of the original sample and
suggests that the sampling distribution of the statistic is centered at the
population parameter.

The bootstrap can estimate the sampling distribution, bias, and standard
error of a wide variety of statistics, such as the .

If the bootstrap distribution is approximately Normal and the bias is
small, we can give a , statistic SE, for the
parameter. Do not use this interval if the bootstrap distribution is not
Normal or shows substantial bias.

To bootstrap a statistic that compares two samples, such as the
difference in sample means, we draw separate resamples from the two
original samples.

not t

t
t

What is the difference between the standard deviation of a
sample and the standard error of a statistic such as the sample mean?

Figure 18.7 shows one bootstrap
distribution of the mean selling price for Seattle real estate in 2002.
Repeat the resampling of the data in Table 18.1 to get another
bootstrap distribution for the mean.

(a) Plot the bootstrap distribution and compare it with Figure 18.7. Al-
though resamples are random, we expect 1000 resamples to always
produce similar results. Are the two bootstrap distributions similar?

(b) Compare the bootstrap standard error of the mean to the bootstrap
standard error of the 25% trimmed mean for the same data in Example
18.5. How do the two bootstrap distributions (Figures 18.7 and 18.8)
reflect this comparison?

(c) Why should we report a bootstrap confidence interval for the
mean?
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18.18 Seattle real estate sales: the median.

18.19 Really Normal data.

18.20 CEO salaries.

18.21 Clothing for runners.
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Bootstrap the median for the
Seattle real estate sales data in Table 18.1.

(a) What is the bootstrap standard error of the median?

(b) Look at the bootstrap distribution of the median. Despite the small
standard error, why might we not want to report a confidence interval
for the median?

The following data are an SRS from the standard Nor-
mal distribution (0 1), produced by a software Normal random number
generator:

0.01 0.04 1.02 0.13 0.36 0.03 1.88 0.34 0.00 1.21
0.02 1.01 0.58 0.92 1.38 0.47 0.80 0.90 1.16 0.11
0.23 2.40 0.08 0.03 0.75 2.29 1.11 2.23 1.23 1.56
0.52 0.42 0.31 0.56 2.69 1.09 0.10 0.92 0.07 1.76
0.30 0.53 1.47 0.45 0.41 0.54 0.08 0.32 1.35 2.42
0.34 0.51 2.47 2.99 1.56 1.27 1.55 0.80 0.59 0.89
2.36 1.27 1.11 0.56 1.12 0.25 0.29 0.99 0.10 0.30
0.05 1.44 2.46 0.91 0.51 0.48 0.02 0.54

(a) Make a histogram and Normal quantile plot. Do the data appear to
follow the (0 1) distribution?

(b) Bootstrap the mean and report the bootstrap standard error.

(c) Why do your bootstrap results suggest that a confidence interval is
appropriate? Give the 95% bootstrap interval.

The following data are the salaries, including bonuses (in
millions of dollars), for the chief executive officers (CEOs) of small companies
in 1993. Small companies are defined as those with annual sales greater
than $5 million and less than $350 million.

145 621 262 208 362 424 339 736 291 58 498 643 390 332 750
368 659 234 396 300 343 536 543 217 298 198 406 254 862 204
206 250 21 298 350 800 726 370 536 291 808 543 149 350 242

1103 213 296 317 482 155 802 200 282 573 388 250 396 572

(a) Display the data using a histogram and Normal quantile plot. Describe
the shape, center, and spread of the distribution.

(b) Create the bootstrap distribution for the 25% trimmed mean or, if your
software won’t calculate trimmed means, the median.

(c) Is a bootstrap confidence interval appropriate? If so, calculate the 95%
interval.

Your company sells exercise clothing and equipment
on the Internet. To design clothing, you collect data on the physical charac-
teristics of your customers. Here are the weights in kilograms for a sample
of 25 male runners. Assume these runners are a random sample of your
potential male customers.

67.8 61.9 63.0 53.1 62.3 59.7 55.4 58.9 60.9
69.2 63.7 68.3 92.3 64.7 65.6 56.0 57.8 66.0
62.9 53.6 65.0 55.8 60.4 69.3 61.7
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18.22 Clothing for runners, interquartile range.

18.23 Mortgage refusal rates.

Bank Minority White Bank Minority White

18.24 Billionaires.
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Forbes

Since your products are aimed toward the “average male,” you are interested
in seeing how much the subjects in your sample vary from the average weight.

(a) Calculate the sample standard deviation for these weights.

(b) We have no formula for the standard error of . Find the bootstrap
standard error for .

(c) What does the standard error indicate about how accurate the sam-
ple standard deviation is as an estimate of the population standard
deviation?

(d) Would it be appropriate to give a bootstrap interval for the population
standard deviation? Why or why not?

If your software will calculate the
interquartile range, repeat the previous exercise using the interquartile range
in place of the standard deviation to measure spread.

The Association of Community Organizations for
Reform Now (ACORN) did a study on refusal rates in mortgage lending by
20 banks in major cities. They recorded the percent of mortgage applications
refused for both white and minority applicants. Here are the results for the
20 banks:

Harris Trust 20.9 3.7 Provident National 49.7 20.1
NCNB Texas 23.2 5.5 Worthen 44.6 19.1
Crestar 23.1 6.7 Hibernia National 36.4 16.0
Mercantile 30.4 9.0 Sovron 32.0 16.0
First NB Commerce 42.7 13.9 Bell Federal 10.6 5.6
Texas Commerce 62.2 20.6 Security Pacific Arizona 34.3 18.4
Comerica 39.5 13.4 Core States 42.3 23.3
First of America 38.4 13.2 Citibank Arizona 26.5 15.6
Boatman’s National 26.2 9.3 Manufacturers Hanover 51.5 32.4
First Commercial 55.9 21.0 Chemical 47.2 29.7

ACORN is concerned that minority applicants are refused more often than
are white applicants.

(a) Display the data by making separate histograms and Normal quantile
plots for the minority and white refusal rates. Is there anything in the
displays to indicate that the sampling distribution of the difference in
means might be non-Normal?

(b) Give a two-sample paired 95% confidence interval for the difference
in the population means. What do your results show?

(c) Bootstrap the difference in means . (You should resample banks
rather than resampling the minority and white refusal rates separately.
Or you could compute the difference in refusal rates for each bank, and
resample the differences.) Does the bootstrap distribution indicate that
a confidence interval is appropriate? If yes, give a 95% confidence
interval using the bootstrap standard error. How does your result
compare with the traditional interval in (b)?

Each year, the business magazine publishes a list of the
world’s billionaires. In 2002, the magazine found 497 billionaires. Here is

�
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18.4 How Accurate Is a Bootstrap
Distribution?

SOURCES OF VARIATION IN A BOOTSTRAP DISTRIBUTION

�

18.25 Seeking the source of the skew.

�This section is optional.

9

1 2

The sampling distribution of a statistic displays the variation in the statistic
due to selecting samples at random from the population. We understand
that the statistic will vary from sample to sample, so that inference about
the population must take this random variation into account. For example,
the margin of error in a confidence interval expresses the uncertainty due
to sampling variation. Now we have used the bootstrap distribution as a
substitute for the sampling distribution. We thus introduce another source of
random variation: resamples are chosen at random from the original sample.

Bootstrap distributions and conclusions based on them include two
sources of random variation:

1. The original sample is chosen at random from the population.

2. Bootstrap resamples are chosen at random from the original
sample.

Figure 18.13 shows the entire process. The population distribution (top
left) has two peaks and is clearly not close to Normal. Below the figure
are histograms of five random samples from this population, each of size
50. The sample means are marked on each histogram. These vary from
sample to sample. The distribution of the -values from all possible samples

Forbes

x x

x
x

the wealth, as estimated by and rounded to the nearest $100 million,
of an SRS of 20 of these billionaires:

8.6 1.3 5.2 1.0 2.5 1.8 2.7 2.4 1.4 3.0
5.0 1.7 1.1 5.0 2.0 1.4 2.1 1.2 1.5 1.0

You are interested in (vaguely) “the wealth of typical billionaires.” Boot-
strap an appropriate statistic, inspect the bootstrap distribution, and draw
conclusions based on this sample.

Why is the bootstrap distribution
of the difference in mean Verizon and CLEC repair times in Figure
18.10 so skewed? Let’s investigate by bootstrapping the mean of
the CLEC data and comparing it with the bootstrap distribution for the
mean for Verizon customers.

(a) Bootstrap the mean for the CLEC data. Compare the bootstrap distri-
bution with the bootstrap distribution of the Verizon repair times in
Figure 18.3.

(b) Given what you see in part (a), what is the source of the skew in the
bootstrap distribution of the difference in means ?�
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FIGURE 18.13 Five random samples ( 50) from the same population, with a bootstrap
distribution for the sample mean formed by resampling from each of the five samples. At the
right are five more bootstrap distributions from the first sample. In all cases, the mean of the
bootstrap distribution is nearly indistinguishable from , so is not shown separately.
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�

�

�

Bootstrapping small samples

�

� �

is the sampling distribution. This sampling distribution appears to the right of
the population distribution. It is close to Normal, as we expect because
of the central limit theorem.

Now draw 1000 resamples from an original sample, calculate for
each resample, and present the 1000 ’s in a histogram. This is a bootstrap
distribution for . The middle column in Figure 18.13 displays boot-
strap distributions based on 1000 resamples from each of the five samples.
The right column shows the results of repeating the resampling from the
first sample five more times. Comparing the five bootstrap distributions in
the middle column shows the effect of the random choice of the original
samples. Comparing the six bootstrap distributions drawn from the first
sample shows the effect of the random resampling. Here’s what we see:

Each bootstrap distribution is centered close to the value of from its
original sample, whereas the sampling distribution is centered at the
population mean .

The shape and spread of the bootstrap distributions in the middle column
also vary a bit. That is, shape and spread also depend on the original
sample, but the variation from sample to sample is not great. The shape
and spread of all of the bootstrap distributions resemble those of the
sampling distribution.

The six bootstrap distributions from the same sample are very similar in
shape, center, and spread. That is, random resampling adds little variation
to the variation due to the random choice of the original sample from the
population.

Figure 18.13 reinforces facts that we have already relied on. If a bootstrap
distribution is based on a moderately large sample from the population, its
shape and spread don’t depend heavily on the original sample and do inform
us about the shape and spread of the sampling distribution. Bootstrap
distributions do not have the same center as the sampling distribution; they
mimic bias, not the actual center. The figure also illustrates an important
new fact: the bootstrap resampling process (using 1000 or more resamples)
introduces little additional variation.

We now know that almost all of the variation among bootstrap distributions
for a statistic such as the mean comes from the random selection of
the original sample from the population. We also know that in general
statisticians prefer large samples because small samples give more variable
results. This general fact is also true for bootstrap procedures.

Figure 18.14 repeats Figure 18.13, with two important differences. The
five original samples are only of size 9, rather than the 50 of
Figure 18.13. The population distribution (top left) is Normal, so that the
sampling distribution of is Normal despite the small sample size. The
bootstrap distributions in the middle column show more variation in shape
and spread than those for larger samples in Figure 18.13. Notice, for exam-
ple, how the skewness of the fourth sample produces a skewed bootstrap

x
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FIGURE 18.14 Five random samples ( 9) from the same population, with a bootstrap
distribution for the sample mean formed by resampling from each of the five samples. At the right
are five more bootstrap distributions from the first sample. In all cases, the mean of the bootstrap
distribution is nearly indistinguishable from , so is not shown separately.

n

x

�



Bootstrap Methods and Permutation Tests18-36 CHAPTER 18 �

Bootstrapping a sample median

DEALING WITH VARIATION IN BOOTSTRAP DISTRIBUTIONS

�

distribution. The bootstrap distributions are no longer all similar to the
sampling distribution at the top of the column. We can’t trust that a
bootstrap distribution from so small a sample will closely mimic the shape
and spread of the sampling distribution. Bootstrap confidence intervals will
sometimes be too long or too short, or too long in one direction and too
short in the other. In most cases these errors tend to balance out, but they
may not with very small samples. The six bootstrap distributions based on
the first sample are again very similar. Because we used 1000 resamples,
resampling still adds little variation. There are subtle effects that can’t be
seen from a few pictures, but the main conclusions are clear.

For most statistics, almost all the variation in bootstrap distributions
comes from the selection of the original sample from the population.
You can reduce this variation by using a larger original sample.

Bootstrapping does not overcome the weakness of small samples as a
basis for inference. Some bootstrap procedures (we will discuss BCa
and tilting later) are usually more accurate than standard methods,
but even they may not be accurate for very small samples. Use
caution in any inference—including bootstrap inference—from a
small sample.

The bootstrap resampling process using 1000 or more resamples
introduces little additional variation.

In Section 18.3 we chose to bootstrap the 25% trimmed mean rather than
the median. We did this in part because the usual bootstrapping procedure
doesn’t work well for the median unless the original sample is quite large.
Now we will try bootstrapping the median in order to understand the
difficulties.

Figure 18.15 follows the format of Figures 18.13 and 18.14. The popu-
lation distribution appears at top left, with the population median marked.
Below in the left column are five samples of size 15 from this population,
with their sample medians marked. Bootstrap distributions for the median
based on resampling from each of the five samples appear in the middle
column. The right column again displays five more bootstrap distributions
from resampling the first sample. The six bootstrap distributions from the
same sample are once again very similar to each other, so we concentrate on
the middle column in the figure.

Bootstrap distributions from the five samples differ markedly from each
other and from the sampling distribution at the top of the column. The
median of a resample can only be one of the 15 observations in the
original sample and is usually one of the few in the middle. Each bootstrap
distribution repeats the same few values. The sampling distribution, on
the other hand, contains the medians of all possible samples and is not

n
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FIGURE 18.15 Five random samples ( 15) from the same population, with a bootstrap distribu-
tion for the sample median formed by resampling from each of the five samples. At the right are five
more bootstrap distributions from the first sample.
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ECTION UMMARY

ECTION XERCISES

�

�

�

�

S

S

18.4 S

18.4 E
18.26 The effect of sample size: Normal population.

18.27 The effect of sample size: non-Normal population.

�

�

� �

confined to a few values. The difficulty is somewhat less when is even,
because the median is then the average of 2 observations. It is much less for
moderately large samples, say, 100 or more. Bootstrap standard errors
and confidence intervals from such samples are reasonably accurate, though
the shapes of the bootstrap distributions may still appear odd. You can see
that the same difficulty will occur for small samples with other statistics,
such as the quartiles, that are calculated from just 1 or 2 observations from
a sample.

There are more advanced variations of the bootstrap idea that improve
performance for small samples and for statistics such as the median and
quartiles. In particular, your software may offer the “smoothed bootstrap”
for use with medians and quartiles. Unless you have expert advice or
undertake further study, avoid bootstrapping the median and quartiles
unless your sample is rather large.

Almost all of the variation in a bootstrap distribution is due to the
selection of the original random sample from the population. The
resampling process introduces little additional variation.

Bootstrap distributions based on small samples can be quite variable.
Their shape and spread reflect the characteristics of the sample and may
not accurately estimate the shape and spread of the sampling distribution.

Bootstrapping is unreliable for statistics like the median and quartiles
when the sample size is small. The bootstrap distributions tend to be
broken up (discrete) and highly variable in shape.

N . , .

x
n

n
x

n n

n

n

Your statistical software no
doubt includes a function to generate samples from Normal distributions.
Set the mean to 8.4 and the standard deviation to 14.7. You can think of
all the numbers produced by this function if it ran forever as a population
that has very close to the (8 4 14 7) distribution. Samples produced by the
function are samples from this population.
(a) What is the exact sampling distribution of the sample mean for a

sample of size from this population?
(b) Draw an SRS of size 10 from this population. Bootstrap the sample

mean using 1000 resamples from your sample. Give a histogram and
Normal quantile plot of the bootstrap distribution and the bootstrap
standard error.

(c) Repeat the same process for samples of sizes 40 and 160.
(d) Write a careful description comparing the three bootstrap distributions

and also comparing them with the exact sampling distribution. What
are the effects of increasing the sample size?

The data
for Example 18.7 include 1664 repair times for customers of
Verizon, the local telephone company in their area. In that
example these observations formed a sample. Now we will treat these
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18.5 Bootstrap Confidence Intervals

Bootstrap percentiles as a check

18.28 Normal versus non-Normal populations.

�

�

�

� �

To this point, we have met just one type of inference procedure based on
resampling: bootstrap confidence intervals. We can calculate a bootstrap
confidence interval for any parameter by bootstrapping the corresponding
statistic (the plug-in principle). We don’t need conditions on the population
or special knowledge about the sampling distribution of the statistic. The
flexible and almost automatic nature of bootstrap intervals is wonderful—
but there is a catch. These intervals work well only when the bootstrap
distribution tells us that the sampling distribution is approximately Normal
and has small bias. How can we know whether these conditions are met well
enough to trust the confidence interval? And what can we do if we don’t trust
the bootstrap interval? This section deals with these important questions.
We’ll learn a quick way to check confidence intervals for accuracy and
learn alternative ways to calculate confidence intervals when intervals
aren’t accurate.

Confidence intervals are based on the sampling distribution of a statistic.
A 95% confidence interval starts by marking off the central 95% of the
sampling distribution. The critical values in any confidence interval are
a shortcut to marking off this central 95%. The shortcut requires special
conditions that are not always met, so intervals are not always appropriate.
One way to check whether intervals (using either bootstrap or formula

.
.
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n n

x

x

t t

t

t
t

t

t t

t
t

1664 observations as a population. The population distribution appears in
Figure 18.9. The population mean is 8 4, and the population standard
deviation is 14 7.

(a) Although we don’t know the shape of the sampling distribution of the
sample mean for a sample of size from this population, we do know
the mean and standard deviation of this distribution. What are they?

(b) Draw an SRS of size 10 from this population. Bootstrap the sample
mean using 1000 resamples from your sample. Give a histogram and
Normal quantile plot of the bootstrap distribution and the bootstrap
standard error.

(c) Repeat the same process for samples of sizes 40 and 160.

(d) Write a careful description comparing the three bootstrap distributions.
What are the effects of increasing the sample size?

The populations in the
two previous exercises have the same mean and standard deviation,
but one is very close to Normal and the other is strongly non-
Normal. Based on your work in these exercises, how does non-Normality of
the population affect the bootstrap distribution of ? How does it affect the
bootstrap standard error? Do either of these effects diminish when we start
with a larger sample? Explain what you have observed based on what you
know about the sampling distribution of and the way in which bootstrap
distributions mimic the sampling distribution.
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Seattle real estate sales: the trimmed meanEXAMPLE 18.9

�

APPLY YOUR
KNOWLEDGE

BOOTSTRAP PERCENTILE CONFIDENCE INTERVALS

bootstrap percentile
confidence interval

18.29 Percentile confidence intervals.

18.30 IQ scores of seventh-grade students.

� �

�

, x
� �

�

�

25% boot

25%

10

standard errors) are reasonable is therefore to compare them with the central
95% of the bootstrap distribution. The 2.5th and 97.5th percentiles mark
off the central 95%. The interval between the 2.5th and 97.5th percentiles
of the bootstrap distribution is often used as a confidence interval in its own
right. It is known as a .

The interval between the 2.5th and 97.5th percentiles of the
bootstrap distribution of a statistic is a 95%

for the corresponding parameter.

If the bias of the bootstrap distribution is small and the distribution
is close to Normal, the bootstrap and percentile confidence
intervals will agree closely. If they do not agree, this is evidence
that the Normality and bias conditions are not met. Neither type of
interval should be used if this is the case.

The bootstrap interval for the trimmed mean of real estate sales is

SE 244 33 81

We can learn something by also writing the percentile interval starting at the
statistic 244. In this form, it is

244 0 30 9 244 0 35 4

Unlike the interval, the percentile interval is not symmetric—its endpoints
are different distances from the statistic. The slightly greater distance to
the 97.5th percentile reflects the slight right-skewness of the bootstrap
distribution.

25%

t

t

t

bootstrap percentile confidence interval

t

t

x t .

x

. . , . .

t

In Examples 18.5 and 18.6 we found a 95% bootstrap confidence interval for
the 25% trimmed mean, but we also noted that the bootstrap distribution was a
bit skewed. We’d like to know how that affects the accuracy of the confidence
interval.

The S-PLUS bootstrap output includes the 2.5th and 97.5th percentiles of the
bootstrap distribution. Using these, the percentile interval for the trimmed mean of
the Seattle real estate sales is 213.1 to 279.4. This is quite close to the bootstrap
interval 210.2 to 277.8 found in Example 18.6. This suggests that both intervals
are reasonably accurate.

What percentiles of the bootstrap distribu-
tion are the endpoints of a 90% bootstrap percentile confidence interval?

The following data are the IQ scores
for 78 seventh-grade students at a middle school. We will treat these data
as a random sample of all seventh-grade IQ scores in the region.

APPLY YOUR
KNOWLEDGE
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Confidence intervals for the correlation coefficient

BASEBALL SALARIES AND PERFORMANCE

�

11

��

The bootstrap allows us to find standard errors and confidence intervals for
a wide variety of statistics. We have to this point done this for the mean, the
trimmed mean, the difference of means, and (with less success) the median.
Now we will bootstrap the correlation coefficient. This is our first use of the
bootstrap for a statistic that depends on two related variables.

Major League Baseball (MLB) owners claim they need direct or indirect
limitations on player salaries to maintain competitiveness among richer and
poorer teams. This argument assumes that higher salaries are needed to
attract better players. Is there a relationship between an MLB player’s salary
and his performance?

Table 18.2 contains the names, 2002 salaries, and career batting averages
of 50 randomly selected MLB players (excluding pitchers). The scatterplot
in Figure 18.16 suggests that the relationship between salary and batting
average is weak to nonexistent. The correlation is positive but small,
0 107. We wonder if this is significantly greater than 0. To find out, we can
calculate a 95% confidence interval and see whether or not it covers 0.

s n
t

t

r
.

111 102 128 123 93 105 107 91 118 124 72 110
100 114 113 126 111 107 107 114 120 116 103 103
114 103 132 127 123 77 115 106 111 119 79 98
111 105 124 97 119 90 97 113 127 86 110 96
100 109 128 102 110 112 112 108 136 110 107 112
104 113 106 120 74 114 89 130 118 103 105 93
104 128 119 115 112 106

We expect the distribution of IQ scores to be approximately Normal.
The sample size is reasonably large, so the sampling distribution of the mean
should be close to Normal.

(a) Make a Normal quantile plot of the data. Is the distribution approxi-
mately Normal?

(b) Use the formula to find the standard error of the mean. Give the
95% confidence interval based on this standard error.

(c) Bootstrap the mean of the IQ scores. Make a histogram and Normal
quantile plot of the bootstrap distribution. Does the bootstrap distribu-
tion appear Normal? What is the bootstrap standard error? Give the
bootstrap 95% confidence interval.

(d) Give the 95% percentile confidence interval. How well do your three
confidence intervals agree? Was bootstrapping needed to find a reason-
able confidence interval, or was the formula confidence interval good
enough?
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FIGURE 18.16

�

Batting average and salary for a random sample of 50
Major League Baseball players.

Name Salary Average Name Salary Average
Matt Williams $9,500,000 .269 Greg Colbrunn $1,800,000 .307
Jim Thome 8,000,000 .282 Dave Martinez 1,500,000 .276
Jim Edmonds 7,333,333 .327 Einar Diaz 1,087,500 .216
Fred McGriff 7,250,000 .259 Brian L. Hunter 1,000,000 .289
Jermaine Dye 7,166,667 .240 David Ortiz 950,000 .237
Edgar Martinez 7,086,668 .270 Luis Alicea 800,000 .202
Jeff Cirillo 6,375,000 .253 Ron Coomer 750,000 .344
Rey Ordonez 6,250,000 .238 Enrique Wilson 720,000 .185
Edgardo Alfonzo 6,200,000 .300 Dave Hansen 675,000 .234
Moises Alou 6,000,000 .247 Alfonso Soriano 630,000 .324
Travis Fryman 5,825,000 .213 Keith Lockhart 600,000 .200
Kevin Young 5,625,000 .238 Mike Mordecai 500,000 .214
M. Grudzielanek 5,000,000 .245 Julio Lugo 325,000 .262
Tony Batista 4,900,000 .276 Mark L. Johnson 320,000 .207
Fernando Tatis 4,500,000 .268 Jason LaRue 305,000 .233
Doug Glanville 4,000,000 .221 Doug Mientkiewicz 285,000 .259
Miguel Tejada 3,625,000 .301 Jay Gibbons 232,500 .250
Bill Mueller 3,450,000 .242 Corey Patterson 227,500 .278
Mark McLemore 3,150,000 .273 Felipe Lopez 221,000 .237
Vinny Castilla 3,000,000 .250 Nick Johnson 220,650 .235
Brook Fordyce 2,500,000 .208 Thomas Wilson 220,000 .243
Torii Hunter 2,400,000 .306 Dave Roberts 217,500 .297
Michael Tucker 2,250,000 .235 Pablo Ozuna 202,000 .333
Eric Chavez 2,125,000 .277 Alexis Sanchez 202,000 .301
Aaron Boone 2,100,000 .227 Abraham Nunez 200,000 .224

TABLE 18.2 Major League Baseball salaries and batting averages
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FIGURE 18.17

Bootstrapping the correlationEXAMPLE18.10

The bootstrap distribution and Normal quantile
plot for the correlation for 1000 resamples from the baseball
player data in Table 18.2. The solid double-ended arrow below the
distribution is the interval, and the dashed arrow is the percentile
interval.
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We use the same bootstrap procedures to find a confidence interval for the
correlation coefficient as for other statistics. There is one point to note: because
each observation consists of the batting average and salary for one player, we
resample players (that is, observations). Resampling batting averages and salaries
separately would lose the tie between a player’s batting average and his salary.

Figure 18.17 shows the bootstrap distribution and Normal quantile plot for
the sample correlation for 1000 resamples from the 50 players in our sample.
The bootstrap distribution is reasonably Normal and has small bias, so a 95%
bootstrap confidence interval appears reasonable.
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More accurate bootstrap confidence intervals

APPLY YOUR
KNOWLEDGE
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18.31 Percentiles as an aid in detecting non-Normality.

18.32 Wages and length of service.

�
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The confidence intervals give a wide range for the population correlation,
and both include zero. These data do not provide significant evidence that
there is a relationship between salary and batting average. There may be
a relationship that could be found with a larger data set, but the evidence
from this data set suggests that any relationship is fairly weak. Of course,
batting average is only one facet of a player’s performance. It is possible
that we would discover a significant salary-performance relationship if we
included several measures of performance.

No method for obtaining confidence intervals produces exactly the intended
confidence level in practice. When we compute what is supposed to be a
95% confidence interval, our method may give intervals that in fact capture
the true parameter value less often, say, 92% or 85% of the time. Or instead
of missing 2.5% of the time on each side, the method may in some settings
miss 1% of the time on one side and 4% of the time on the other, giving a
biased picture of where the parameter is.

We say that a method for obtaining 95% confidence intervals is
in a particular setting if 95% of the time it produces intervals that capture
the parameter and if the 5% misses are shared equally between high and
low misses. Confidence intervals are never exactly accurate because the
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The bootstrap standard error is SE 0 125. The interval using the
bootstrap standard error is

SE 0 107 (2 01)(0 125)

0 107 0 251

( 0 144 0 358)

The bootstrap percentile interval is

(2 5th percentile 97 5th percentile) (0 107 0 235 0 107 0 249)

( 0 128 0 356)

The two confidence intervals are in reasonable agreement.

It is difficult to
see any significant asymmetry in the bootstrap distribution of the
correlation of Example 18.10. Compare the percentiles and the
interval; does the difference between these suggest any skewness?

Table 10.1 (page 587) reports the
wages and length of service for a random sample of 59 women
who hold customer service jobs in Indiana banks. In Example 10.4,
using a test that assumes a jointly Normal distribution for these variables,
we found a highly significant relationship between wages and length of
service. We may prefer inference that is not based on a Normal model.
Bootstrap the correlation for these data. Give the bootstrap and bootstrap
percentile confidence intervals for the population correlation. Are these
intervals trustworthy here? What do you conclude about the population?
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Seattle real estate sales: the meanEXAMPLE18.11

�

�

�

Bootstrap tilting and BCa intervals

bootstrap bias-corrected accelerated (BCa) bootstrap tiltingBCa
bootstrap tilting

conditions under which they work are never exactly satisfied in practice.
The traditional intervals, although reasonably robust, are affected by lack
of Normality in the sampling distribution of the sample mean, especially
skewness. Although the central limit theorem tells us that the sampling
distribution of the mean becomes nearly Normal as the size of the sample
increases, the effect of a skewed population can persist in the sampling
distribution even for quite large samples.

One advantage of the bootstrap is that it allows us to check for skewness
in a sampling distribution by inspecting the bootstrap distribution. We can
also compare the bootstrap and bootstrap percentile confidence intervals.
When the sampling distribution is skewed, the percentile interval is shifted
in the direction of the skewness, relative to the interval. The intervals in
both Example 18.9 and Example 18.10 reveal some right-skewness, though
not enough to invalidate inference. The and percentile intervals may not
be sufficiently accurate when

the statistic is strongly biased, as indicated by the bias estimate from the
bootstrap,

the sampling distribution of the statistic is clearly skewed, as indicated by
the bootstrap distribution and by comparing the and percentile intervals,
or

high accuracy is needed because the stakes are high (large sums of money
or public welfare).

Most confidence interval procedures are more accurate for larger sample
sizes. The problem with and percentile procedures is that they improve
only slowly—they require 100 times more data to improve accuracy by a
factor of 10—and so tend not to be very accurate except for quite large
sample sizes. There are several bootstrap procedures that improve faster,
requiring only 10 times more data to improve accuracy by a factor of 10.
These procedures are quite accurate unless the sample size is very small. The

and methods
are accurate in a wide variety of settings, have reasonable computation
requirements (by modern standards), and do not produce excessively wide
intervals.

These procedures are not as intuitively clear as the and percentile
methods, which is why we did not meet them earlier. Now that you
understand the bootstrap, however, you should always use one of these
more accurate methods if your software offers them.

t

t

t

t

t

t

t

The 2002 Seattle real estate sales data are strongly skewed (Figure 18.6), and the
skewness persists in the sampling distribution of the mean (Figure 18.7). Generally,
we prefer resistant measures of center such as the trimmed mean or median for
skewed data. However, the mean is easily understood by the public and is needed
for some purposes, such as projecting taxes based on total sales value.
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Number of Replications: 1000

Summary Statistics:
Observed Mean Bias SE

mean 329.3 326.9 –2.383 43.9

Percentiles:
2.5% 5.0% 95.0% 97.5%

mean 252.5 261.7 408.3 433.1

BCa Confidence Limits:
2.5% 5% 95% 97.5%

mean 270 279.6 442.7 455.7

Tilting Confidence Limits (maximum-likelihood tilting):
2.5% 5% 95% 97.5%

mean 265 274.4 434.2 458.7

Bootstrap Methods and Permutation Tests18-46 CHAPTER 18

FIGURE 18.18

�

S-PLUS output for bootstrapping the mean
of the Seattle real estate sales price data. From this output
you can obtain the bootstrap and percentile intervals, which
are not accurate for these data. You can also obtain the BCa
and tilting intervals, the recommended methods.

t

APPLY YOUR
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18.33 Comparing intervals.
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The bootstrap and percentile intervals aren’t reliable when the sampling
distribution of the statistic is skewed. Figure 18.18 shows software output that
allows us to obtain more accurate confidence intervals. The BCa interval is

(329 3 59 2 329 3 126 4) (270 0 455 7)

and the tilting interval is

(329 3 64 3 329 3 129 5) (265 0 458 7)

The intervals agree closely (we usually find only small differences between highly
accurate procedures). Both are strongly asymmetrical—the upper endpoint is about
twice as far from the sample mean as the lower endpoint—reflecting the strong
right-skewness of the data.

In this example, both endpoints of the less-accurate procedures— , bootstrap ,
and percentile intervals—are too low. These intervals are too likely (greater than
2.5%) to fall below the population mean and are not likely enough to fall above
the population mean. They give a biased picture of where the true mean is likely
to be. If you use these intervals to budget how much you would need to be 95%
confident of affording an average home, your estimate would be too low.

Use the software output in Figure 18.18 to
give the bootstrap and percentile 95% confidence intervals for
the mean of all 2002 real estate sales in Seattle. Also give the
traditional one-sample interval, . Example 18.11 reports the
BCa and tilting intervals. Make a picture that compares all five confidence
intervals by drawing a vertical line at and placing the intervals one
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How the BCa and tilting intervals work

18.34 Comparing intervals.

18.35 Wages and length of service.

25%

The BCa confidence interval endpoints are percentiles of the bootstrap
distribution that are adjusted to correct for bias and skewness in the
distribution. For example, the endpoints of the BCa 95% confidence interval
for the mean of the 2002 Seattle real estate data are the 4.3th and 98.8th
percentiles of the bootstrap distribution, rather than 2.5th and 97.5th
percentiles. If the statistic is biased upward (that is, if it tends to be too large),
the BCa bias correction moves the endpoints to the left. If the bootstrap
distribution is skewed to the right, the BCa incorporates a correction to
move the endpoints even farther to the right; this may seem counterintuitive,
but it is the correct action. Details of the computations are a bit advanced,
so we rely on software to calculate these intervals.

The tilting interval, in contrast, works by adjusting the process of
randomly forming resamples. To calculate the left endpoint of the interval,
it starts by finding a pseudopopulation that is similar to the sample except
that the bootstrap distribution from this population has its 97.5th percentile
equal to the observed statistic from our SRS. Then the left endpoint of the
tilting interval is the parameter of that pseudo-population. Similarly, the
right endpoint of the interval is the parameter of a pseudo-population whose
bootstrap distribution has its 2.5th percentile equal to the observed statistic
of the SRS. We again rely on software to handle the calculations.

Bootstrap tilting is more efficient than other bootstrap intervals, requiring
only about 1/37 as many resamples as BCa intervals for similarly accurate
results. If we require high accuracy, 1000 resamples is often not enough for
the BCa interval; 5000 resamples would be better.

t

t

t
x

t

t
t

above the other on this line. Describe how the intervals compare. In practical
terms, what kind of errors would you make by using a interval or percentile
interval instead of a tilting or BCa interval?

The bootstrap distribution of the 25%
trimmed mean for the Seattle real estate sales (Figure 18.8) is
not strongly skewed. We were willing in Example 18.6 to give the
95% bootstrap confidence interval for the trimmed mean of the population.
Was that wise? Bootstrap the trimmed mean and give all of the bootstrap
95% confidence intervals: , percentile, BCa, and tilting. Make a picture
that compares these intervals by drawing a vertical line at and placing
the intervals one above the other on this line. Describe how the intervals
compare. Is the interval reasonably accurate?

Table 10.1 (page 587) reports the
wages and length of service for a random sample of 59 women who
hold customer service jobs in Indiana banks. Exercise 18.32 asked
you to give a bootstrap confidence interval for the population correlation
between these variables. In practice, you would use the BCa or tilting method.
Bootstrap the correlation from the sample in Table 10.1 and compare the
BCa and tilting intervals with the bootstrap and percentile intervals. If
you did Exercise 18.32, explain why the and percentile intervals you now
obtain differ slightly from those you found in the earlier exercise.
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ECTION UMMARY

ECTION XERCISES

�

�
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18.5 S

18.5 E

bootstrap percentile confidence interval

bootstrap tilting BCa

18.36 CLEC repair times.

While the BCa and tilting calculations are radically different, the results
tend to be about the same, except for random variation in the BCa if the
number of resamples is less than about 5000. Both procedures are accurate,
so we expect them to produce about the same results. Even BCa and tilting
confidence intervals should be used cautiously when sample sizes are small,
because there won’t be enough data to accurately determine the necessary
corrections for bias and skewness.

Both bootstrap and (when they exist) traditional and confidence
intervals require statistics with small bias and sampling distributions close
to Normal. We can check these conditions by examining the bootstrap
distribution for bias and lack of Normality.

The for 95% confidence is the
interval from the 2.5th percentile to the 97.5th percentile of the bootstrap
distribution. Agreement between the bootstrap and percentile intervals is
an added check on the conditions needed by the interval. Do not use or
percentile intervals if these conditions are not met.

When bias or skewness is present in the bootstrap distribution, use
either a or interval. The and percentile intervals are
inaccurate under these circumstances unless the sample sizes are very large.
The tilting and BCa confidence intervals adjust for bias and skewness and
are generally accurate except for small samples.

t

t

t z t

t
t t

t

The CLEC data of Example 18.7 are strongly
skewed to the right. The 23 CLEC repair times (in hours) are

26.62 8.60 0 21.15 8.33 20.28 96.32 17.97
3.42 0.07 24.38 19.88 14.33 5.45 5.40 2.68
0 24.20 22.13 18.57 20.00 14.13 5.80

(a) Make a histogram and Normal quantile plot of the sample data, and
find the sample mean.

(b) Bootstrap the mean of the data. Plot the bootstrap distribution. Is it
Normal? Do you expect any of the confidence intervals to be inaccurate?
Why or why not?

(c) Find the bootstrap standard error and use it to create a 95% confidence
interval.

(d) Find the 95% percentile, BCa, and tilting intervals.

(e) How do the intervals compare? Briefly explain the reasons for any
differences.

(f) Suppose you were using these data and confidence intervals to determine
staffing levels for the coming year that you are confident would match
the demand. What kind of errors would you make by using a interval
or percentile interval instead of a tilting or BCa interval?
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18.37 Mean difference in repair times.

18.38 Really Normal data.

18.39 Clothing for runners.

18.40 Earnings of black male bank workers.

18.41 Bootstrap to check traditional inference.

��
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In Example 18.7 we looked
at the mean difference between repair times for Verizon (ILEC)
customers and customers of competing carriers (CLECs). The
bootstrap distribution was non-Normal with strong right-skewness, making
a confidence interval inappropriate.
(a) Bootstrap the difference in means for the repair time data.
(b) Find the BCa and bootstrap tilting 95% confidence intervals. Do they

agree closely? What do you conclude about mean repair times for all
customers?

(c) In practical terms, what kind of errors would you make by using a
interval or percentile interval instead of a tilting or BCa interval?

In Exercise 18.19 you bootstrapped the mean of a
simulated SRS from the standard Normal distribution (0 1) and found
the standard error for the mean.
(a) Create the 95% bootstrap percentile confidence interval for the mean

of the population. We know that the population mean is in fact 0. Does
the confidence interval capture this mean?

(b) Compare the bootstrap percentile and bootstrap intervals. Do these
agree closely enough to indicate that these intervals are accurate?

In Exercise 18.21 you found the bootstrap standard
error of the standard deviation of the weights of male runners. Your company
is also interested in the average weight of its customers.
(a) Give the 95% confidence interval for the mean weight of runners using

the standard error computed by formula.
(b) Are there any data points that might strongly influence this confidence

interval?
(c) Give a 95% bootstrap percentile confidence interval for the mean.

Compare your interval with your work in (a).
(d) What conclusions can you draw about the population?

Table 1.8 (page 31) gives
the earnings for a random sample of black male hourly workers
at National Bank.
(a) Make a histogram and Normal quantile plot of the data. Choose a

statistic to measure the center of the distribution. Justify your choice in
terms of the shape of the distribution and the size of the sample.

(b) Bootstrap your statistic and report its standard error.
(c) Choose a confidence interval based on the shape and bias of the

bootstrap distribution, and calculate it. What do you conclude about
the typical salary of black male hourly workers at National Bank?

Bootstrapping is a good way to
check whether traditional inference methods are accurate for a given sample.
Consider the following data:

109 123 118 99 121 134 126 114 129 123 171 124 111 125 128
154 121 123 118 106 108 112 103 125 137 121 102 135 109 115
125 132 134 126 116 105 133 111 112 118 117 105 107

(a) Examine the data graphically. Do they appear to violate any of the
conditions needed to use the one-sample confidence interval for the
population mean?
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18.42 More on checking traditional inference.

18.43 Iowa housing prices.

18.44 Iowa housing prices.

18.45 Weight as a predictor of car mileage.

18.46 Baseball salaries.
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(b) Calculate the 95% one-sample confidence interval for this sample.

(c) Bootstrap the mean, and inspect the bootstrap distribution. Does it
suggest that a interval should be reasonably accurate?

(d) Find the 95% bootstrap percentile interval. Does it agree with the one-
sample interval? What do you conclude about the accuracy of the
one-sample interval here?

Continue to work with the data
given in the previous exercise.

(a) Find the bootstrap BCa or tilting 95% confidence interval. We believe
that either interval is quite accurate.

(b) Does your opinion of the robustness of the confidence interval change
when you compare it with the BCa or tilting interval?

(c) To check the accuracy of the one-sample confidence interval,
would you generally use the bootstrap percentile or BCa (or tilting)
interval?

Table 2.13 (page 165) gives the selling price, square
footage, and age for a sample of 50 houses sold in Ames, Iowa.

(a) Make a histogram and Normal quantile plot of the prices. Based on
these plots, decide which statistic—mean, trimmed mean, or median—
would be the most useful measure of the price of typical houses sold in
Ames.

(b) Bootstrap that statistic and find its standard error.

(c) Plot the bootstrap distribution and describe its shape and bias. Choose
an appropriate 95% confidence interval for this sampling distribution,
and calculate it. Why did you choose this type of interval?

(d) What conclusion do you draw about Ames houses?

Bootstrap the correlation between selling price and
square footage in the Ames, Iowa, housing data from Table 2.13 (page 165).
Describe the bootstrap distribution, and give a 95% confidence interval that
is appropriate for these data. Explain your choice of interval. State your
conclusions from your analysis.

Table 18.3 gives weight in pounds and
gas mileage in miles per gallon for a sample of cars from the 1990 model
year.

(a) Make a scatterplot of the data. Characterize the relationship. Calculate
the sample correlation between weight and mileage.

(b) Bootstrap the correlation. Report an accurate confidence interval for the
correlation and tell what it means.

(c) Calculate the least-squares regression line to predict mileage from
weight. What is the traditional confidence interval (page 596) for
the slope of the population regression line?

(d) Bootstrap the regression model. Give a 95% percentile confidence
interval for the regression slope using the bootstrap.

Table 18.2 gives data on a sample of 50 baseball
players.

(a) Find the least-squares regression line for predicting batting
average from salary.
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18.6 Significance Testing Using
Permutation Tests

Weight Mileage Weight Mileage Weight Mileage

18.47 The influence of outliers.

We use significance tests to determine whether an observed effect, such as
a difference between two means or the correlation between two variables,
could reasonably be ascribed to the randomness introduced in selecting the
sample. If not, we have evidence that the effect observed in the sample

2560 33 2840 26 3450 22
2345 33 2485 28 3145 22
1845 37 2670 27 3190 22
2260 32 2640 23 3610 23
2440 32 2655 26 2885 23
2285 26 3065 25 3480 21
2275 33 2750 24 3200 22
2350 28 2920 26 2765 21
2295 25 2780 24 3220 21
1900 34 2745 25 3480 23
2390 29 3110 21 3325 23
2075 35 2920 21 3855 18
2330 26 2645 23 3850 20
3320 20 2575 24 3195 18
2885 27 2935 23 3735 18
3310 19 2920 27 3665 18
2695 30 2985 23 3735 19
2170 33 3265 20 3415 20
2710 27 2880 21 3185 20
2775 24 2975 22 3690 19

(b) Bootstrap the regression line, and give a 95% confidence interval for the
slope of the population regression line.

(c) In Example 18.10 we found bootstrap confidence intervals for the
correlation between salary and batting average. Does your interval
for the slope of the population line agree with the conclusion of that
example that there may be no relation between salary and batting
average? Explain.

We know that outliers can strongly
influence statistics such as the mean and the least-squares line. The
black female hourly worker data in Table 1.8 (page 31) contain a
low outlier.

(a) Bootstrap the mean with and without the outlier. How does the outlier
influence the shape and bias of the bootstrap distribution?

(b) Find 95% BCa intervals for the population mean from both bootstrap
distributions. Discuss the differences.
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Sampling
distribution

when H0 is true

P-value

Observed statistic
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FIGURE 18.19

�

The -value of a statistical test is found from the
sampling distribution the statistic would have if the null hypothesis
were true. It is the probability of a result at least as extreme as the
value we actually observed.

P

null hypothesis,

-value.

RESAMPLING RULE FOR SIGNIFICANCE TESTS

P

null hypothesis

-value

0

reflects an effect that is present in the population. The reasoning of tests
goes like this:

1. Choose a statistic that measures the effect we are looking for.

2. Construct the sampling distribution that this statistic would have if the
effect were present in the population.

3. Locate the observed statistic on this distribution. A value in the main
body of the distribution could easily occur just by chance. A value in
the tail would rarely occur by chance, and so is evidence that something
other than chance is operating.

The statement that the effect we seek is present in the population is the
. The probability, calculated taking the null hypothesis to

be true, that we would observe a statistic value as extreme or more extreme
than the one we did observe is the Figure 18.19 illustrates the idea of
a -value. Small -values are evidence against the null hypothesis and in favor
of a real effect in the population. The reasoning of statistical tests is indirect
and a bit subtle but is by now familiar. Tests based on resampling don’t change
this reasoning. They find -values by resampling calculations rather than from
formulas and so can be used in settings where traditional tests don’t apply.

Because -values are calculated by
we cannot resample from the observed sample as we did earlier. In

the absence of bias, resampling from the original sample creates a bootstrap
distribution centered at the observed value of the statistic. We must create
a distribution centered at the parameter value stated by the null hypothesis.
We must obey this rule:

Resample in a manner that is consistent with the null hypothesis.

not

not
H

P P

P

P assuming that the null hypothesis is
true,

P
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Do reading activities increase DRP scores?EXAMPLE18.12

�

�

permutation resample.

permutation distribution.

permutation tests,

Treatment group Control group

permutation test

permutation
resample

permutation
distribution

0

treatment control

0

Here is an outline of the permutation test procedure for comparing the
mean DRP scores in Example 18.12:

Choose 21 of the 44 students at random to be the treatment group; the
other 23 are the control group. This is an ordinary SRS, chosen

. It is called a Calculate the mean DRP
score in each group, using the individual DRP scores in Table 18.4. The
difference between these means is our statistic.

Repeat this resampling from the 44 students hundreds of times. The
distribution of the statistic from these resamples forms the sam-
pling distribution under the condition that is true. It is called a

t

x x

H

without
replacement

H

In Example 7.11 (page 464) we did a test to determine whether new “directed
reading activities” improved the reading ability of elementary school students,
as measured by their Degree of Reading Power (DRP) score. The study assigned
students at random to either the new method (treatment group, 21 students) or
traditional teaching methods (control group, 23 students). Their DRP scores at the
end of the study appear in Table 18.4. The statistic that measures the success of the
new method is the difference in mean DRP scores,

The null hypothesis is “no difference” between the two methods. If this
is true, the DRP scores in Table 18.4 do not depend on the teaching method.
Each student has a DRP score that describes that child and is the same no matter
which group the child is assigned to. The observed difference in group means just
reflects the accident of random assignment to the two groups. Now we can see
how to resample in a way that is consistent with the null hypothesis: imitate many
repetitions of the random assignment, with each student always keeping his or her
DRP score unchanged. Because resampling in this way scrambles the assignment of
students to groups, tests based on resampling are called from
the mathematical name for scrambling a group of things.

24 61 59 46 42 33 46 37
43 44 52 43 43 41 10 42
58 67 62 57 55 19 17 55
71 49 54 26 54 60 28
43 53 57 62 20 53 48
49 56 33 37 85 42

�

TABLE 18.4 DRP scores for third-graders



24, 61   |   42, 33, 46, 37
x1 – x2 = 42.5 – 39.5 = 3.0

33, 61   |   24, 42, 46, 37
x1 – x2 = 47 – 37.25 = 9.75

37, 42   |   24, 61, 33, 46
x1 – x2 = 39.5 – 41 = –1.5

33, 46   |   24, 61, 42, 37
x1 – x2 = 39.5 – 41 = –1.5
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FIGURE 18.20

The permutation test for DRP scoresEXAMPLE18.13

�

�

The idea of permutation resampling. The top box shows the outcomes of a study with four
subjects in one group and two in the other. The boxes below show three permutation resamples. The values
of the statistic for many such resamples form the permutation distribution.

a

� �� �treatment control

�0 treatment control

treatment control

The value of the statistic actually observed in the study was

51 476 41 522 9 954

Locate this value on the permutation distribution to get the -value.

Figure 18.20 illustrates permutation resampling on a small scale. The
top box shows the results of a study with 4 subjects in the treatment group
and 2 subjects in the control group. A permutation resample chooses an SRS
of 4 of the 6 subjects to form the treatment group. The remaining 2 are the
control group. The results of three permutation resamples appear below
the original results, along with the statistic (difference in group means)
for each.

H

H

P

P

P

x x . . .

P

Figure 18.21 shows the permutation distribution of the difference in means based
on 999 permutation resamples from the DRP data in Table 18.4. The solid line in
the figure marks the value of the statistic for the original sample, 9.954.

We seek evidence that the treatment increases DRP scores, so the hypotheses are

: 0

: 0

The -value for the one-sided test is the probability that the difference in
means is 9.954 or greater, calculated taking the null hypothesis to be true. The
permutation distribution in Figure 18.21 shows how the statistic would vary if the
null hypothesis were true. So the proportion of observations greater than 9.954
estimates the -value. A look at the resampling results finds that 14 of the 999
resamples gave a value of 9.954 or larger.

The proportion of samples that exceed the observed value 9.954 is 14/999, or
0.014. Here is a last refinement. Recall from Chapter 8 that we can improve the
estimate of a population proportion by adding two successes and two failures to
the sample. It turns out that we can similarly improve the estimate of the -value

�

� �

� �

� �
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FIGURE 18.21

Using software

The permutation distribution of the statistic
based on the DRP scores of 44 students. The

observed difference in means, 9.954, is in the right tail.
treatment controlx x

permDRP = permutationTestMeans
(data = DRP, treatment = group, alternative="greater")

plot(permDRP)
permDRP

�

�

�
� �

�

Figure 18.21 shows that the permutation distribution has a roughly Nor-
mal shape. Because the permutation distribution approximates the sampling
distribution, we now know that the sampling distribution is close to Normal.
When the sampling distribution is close to Normal, we can use the usual
two-sample test. Example 7.11 shows that the test gives 0 013, very
close to the -value from the permutation test.

In principle, you can program almost any statistical software to do a
permutation test. It is much more convenient to use software that automates
the process of resampling, calculating the statistic, forming the resampling
distribution, and finding the -value.

The commands that do this in S-PLUS are

P

.

t t P .
P

P

by adding one sample result above the observed statistic. The final permutation test
estimate of the -value is

14 1 15
0 015

999 1 1000

The data give good evidence that the new method beats the standard method.
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plot

Number of Replications: 999

Summary Statistics:
Observed Mean SE alternative p.value

score 9.954 0.07153 4.421 greater 0.015

18.48 Permutation test by hand.

18.49 Have Seattle real estate prices increased?

�

treatment control

The first command uses the “group” variable from the DRP data
set to determine groups, calculates the difference in means for each re-
maining variable (in this case, only “score”), creates the permutation
distribution, and calculates the one-sided -value for the specified alterna-
tive hypothesis (if the alternative is omitted, then two-sided -values are
computed). The command produces the permutation distribution in
Figure 18.21 from the DRP data. The final command prints this summary of
results:

The output makes it clear, by giving “greater” as the alternative hypothesis,
that 0.015 is the one-sided -value. For a two-sided test, double the one-sided

-value to get 0 030.

x x

P

t P

P
P

P
P P .

To illustrate the process, let’s perform a per-
mutation test for a small random subset of the DRP data. Here are the
data:

Treatment group 24 61
Control group 42 33 46 37

(a) Calculate the difference in means between the two
groups. This is the observed value of the statistic.

(b) Resample: Start with the 6 scores and choose an SRS of 2 scores to form
the treatment group for the first resample. You can do this by labeling
the scores 1 to 6 and using consecutive random digits from Table B, or
by rolling a die to choose from 1 to 6 at random. Using either method,
be sure to skip repeated digits. A resample is an ordinary SRS, without
replacement. The remaining 4 scores are the control group. What is the
difference in group means for this resample?

(c) Repeat step (b) 20 times to get 20 resamples and 20 values of the
statistic. Make a histogram of the distribution of these 20 values. This
is the permutation distribution for your resamples.

(d) What proportion of the 20 statistic values were equal to or greater than
the original value in part (a)? You have just estimated the one-sided

-value for the original 6 observations.

Table 18.1 contains
the selling prices for a random sample of 50 Seattle real estate
transactions in 2002. Table 18.5 contains a similar random sample
of sales in 2001. Test whether the means of two random samples of the 2001
and 2002 Seattle real estate sales data are significantly different.

(a) State the null and alternative hypotheses.

(b) Perform a two-sample test. What is the -value?

�
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Advantages of Permutation Tests

�

�

Permutation tests in practice

18.50 Assets to liabilities ratio.

In Example 18.13, the permutation test and the two-sample test gave very
similar -values. Permutation tests have these advantages over tests:

The test gives accurate -values if the sampling distribution of the
difference in means is at least roughly Normal. The permutation test gives
accurate -values even when the sampling distribution is not close to
Normal.

We can directly check the Normality of the sampling distribution by
looking at the permutation distribution.

Permutation tests provide a “gold standard” for assessing two-sample
tests. If the two -values differ considerably, it usually indicates that

the conditions for the two-sample don’t hold for these data. Because
permutation tests give accurate -values even when the sampling distribution
is skewed, they are often used when accuracy is very important. Here is an
example.

P P

t
P

P P

t
P t

t P

P

t P
t

P

419 55.268 65 210 510.728 212.2 152.720 266.6 69.427 125
191 451 469 310 325 50 675 140 105.5 285
320 305 255 95.179 346 199 450 280 205.5 135
190 452.5 335 455 291.905 239.9 369.95 569 481 475
495 195 237.5 143 218.95 239 710 172 228.5 270

(c) Perform a permutation test on the difference in means. What is the
-value? Compare it with the -value you found in part (b). What do

you conclude based on the tests?

(d) Find a bootstrap tilting or BCa 95% confidence interval for the difference
in means. How is the interval related to your conclusion in (c)?

Case 7.2 (page 476) compared the ratio
of current assets to current liabilities for samples of 68 healthy
firms and 33 failed firms. We conjecture that the mean ratio is
higher in the population of healthy firms than among failed firms.

(a) State null and alternative hypotheses.

(b) Perform a two-sample test using the data in Table 7.4. What is the
-value?

(c) Perform a permutation test on the difference in means. What is the
-value? Compare it with the -value found in part (b). What do you

conclude based on the tests?

(d) Find a bootstrap tilting or BCa 95% confidence interval for the difference
in means. How is the interval related to the test result in (c)?
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TABLE 18.5 Selling prices (in $1000) for an SRS of 50 Seattle real estate sales
in 2001
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Telecommunications data: test of difference in meansEXAMPLE18.14

�

Test statistic test -value Permutation test -value

�1 2

1 2

Here are the -values for the three tests on the Verizon data, using
500,000 permutations. The corresponding test -values, obtained by
comparing the statistic with critical values, are shown for comparison.

0.0183
Pooled statistic 0.0045 0.0183
Modified statistic 0.0044 0.0195

The test results are off by a factor of more than 4 because they do not take
skewness into account. The test suggests that the differences are significant
at the 1% level, but the more accurate -values from the permutation test
indicate otherwise. Figure 18.22 shows the permutation distribution of the
first statistic, the difference in sample means. The strong skewness implies
that tests will be inaccurate.

Other data sets Verizon encounters are similar to this one in being
strongly skewed with imbalanced sample sizes. If Verizon and the PUCs used

tests instead of the more accurate permutation tests, there would be about
four times too many false-positives (cases where a significance test indicates

t

x x
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x x
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t

t
t
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t

t

In Example 18.7, we looked at the difference in means between repair times
for 1664 Verizon (ILEC) customers and 23 customers of competing companies
(CLECs). Figure 18.9 shows both distributions. Penalties are assessed if a
significance test concludes at the 1% significance level that CLEC customers
are receiving inferior service. A one-sided test is used, because the alternative
of interest to the public utilities commission (PUC) is that CLEC customers are
disadvantaged.

Because the distributions are strongly skewed and the sample sizes are very
different, two-sample tests are inaccurate. An inaccurate testing procedure might
declare 3% of tests significant at the 1% level when in fact the two groups of
customers are treated identically, so that only 1% of tests should in the long run be
significant. Errors like this would cost Verizon substantial sums of money.

Verizon uses permutation tests with 500,000 resamples for high accuracy,
using custom software based on S-PLUS. Depending on the preferences of the
state PUC, one of three statistics is chosen: the difference in means, ; the
pooled-variance statistic, or a modified statistic in which only the standard
deviation of the larger group is used to determine the standard error. The last
statistic prevents the large variation in the small group from inflating the standard
error.

To perform the permutation test, we randomly redistribute the repair times
into two groups that are the same sizes as the two original samples. Each repair
time appears once in the data in each resample, but some repair times from the
ILEC group move to CLEC, and vice versa. We calculate the test statistics for
each resample and create the permutation distribution for each test statistic.
The -values are the proportions of the resamples with statistics that exceed the
observed statistics.

t P P
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FIGURE 18.22

Data from an Entire Population

When Are Permutation Tests Valid?

The permutation distribution of the difference of
means for the Verizon repair time data. The distribution is
skewed left. The observed difference in means, 8 098, is in the left
tail.

1 2x x
.

�1 2

�
�

a significant difference even though the corresponding populations are the
same), which would result in substantial financial penalties.

A subtle difference between confidence intervals and significance tests is that
confidence intervals require the distinction between sample and population
but tests do not. If we have data on an entire population—say, all employees
of a large corporation—we don’t need a confidence interval to estimate the
difference between the mean salaries of male and female employees. We can
calculate the means for all men and for all women and get an exact answer.
But it still makes sense to ask, “Is the difference in means so large that
it would rarely occur just by chance?” A test and its -value answer that
question.

Permutation tests are a convenient way to answer such questions. In
carrying out the test we pay no attention to whether the data are a sample or
an entire population. The resampling assigns the full set of observed salaries
at random to men and women and builds a permutation distribution from
repeated random assignments. We can then see if the observed difference
in mean salaries is so large that it would rarely occur if gender did not
matter.

The two-sample test starts from the condition that the sampling distribution
of is Normal. This is the case if both populations have Normal
distributions, and it is approximately true for large samples from non-
Normal populations because of the central limit theorem. The central limit
theorem helps explain the robustness of the two-sample test. The two-
sample test works well when both populations are symmetric, or when the

P

t
x x

t
t
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Sources of Variation
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18.51 Choosing the number of resamples.

18.52 Validity of test methods.

��

1 2

populations have mild skewness in the same direction and the two sample
sizes are similar.

The permutation test completely removes the Normality condition. The
tradeoff is that it requires the two populations to have identical distributions
when the null hypothesis is true—not only the same means, but also the same
spreads and shapes. It needs this to be able to move observations randomly
between groups. In practice it is robust against different distributions, except
for different spreads when the sample sizes are not similar. Our preferred
version of the two-sample allows different standard deviations in the two
populations.

However, this is rarely a reason to choose the test over the permutation
test, for two reasons. First, even if you notice that the two samples have
different standard deviations, this does not necessarily mean that the pop-
ulation standard deviations differ. Particularly for skewed populations, the
sample standard deviations may be very different even when the population
standard deviations are the same. Second, it is usually reasonable to assume
that the distributions are approximately the same if the null hypothesis
is true. In practice robustness against unequal standard deviations is less
important for hypothesis testing than for confidence intervals.

In Example 18.14, the distributions are strongly skewed, ruling out the
test. The permutation test is valid if the repair time distributions for

Verizon customers and CLEC customers are the same if the null hypothesis
is true—in other words, that all customers are treated the same.

Just as in the case of bootstrap confidence intervals, permutation tests are
subject to two sources of random variability: the original sample is chosen at
random from the population, and the resamples are chosen at random from
the sample. Again as in the case of the bootstrap, the added variation due to
resampling is usually small and can be made as small as we like by increasing
the number of resamples. For example, Verizon uses 500,000 resamples.

For most purposes, 999 resamples are sufficient. If stakes are high or
-values are near a critical value (for example, near 0.01 in the Verizon

example), increase the number of resamples. Here is a helpful guideline: If
the true (one-sided) -value is , the standard deviation of the estimated

-value is approximately (1 )/ , where is the number of resamples.
You can choose to obtain a desired level of accuracy.
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The estimated -value for the DRP
study (Example 18.13) based on 999 resamples is 0.015. For the Verizon
study (Example 18.14) the estimated -value for the test based on
is 0.0183 based on 500,000 resamples. What is the approximate standard
deviation of each of these estimated -values? (Use each as an estimate of
the unknown true -value .)

You want to test the equality of the means of two
populations. Sketch density curves for two populations for which

(a) a permutation test is valid but a test is not.

(b) both permutation and tests are valid.

(c) a test is valid but a permutation test is not.
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Permutation Test for Matched Pairs

Effects of language instructionEXAMPLE18.15

Permutation tests in other settings

GENERAL PROCEDURE FOR PERMUTATION TESTS

�

��
�

�
1 2

2 2
1 2 1 21 2

The bootstrap procedure can replace many different formula-based confi-
dence intervals, provided that we resample in a way that matches the setting.
The permutation test is also a general method that can be adapted to various
settings.

To carry out a permutation test based on a statistic that measures the
size of an effect of interest:

1. Compute the statistic for the original data.

2. Choose permutation resamples from the data without
replacement in a way that is consistent with the null hypothesis
of the test and with the study design. Construct the permutation
distribution of the statistic from its values in a large number of
resamples.

3. Find the -value by locating the original statistic on the
permutation distribution.

Formula methods generally obtain -values from a standard distribution
such as or , using either tables or software algorithms. The test statistic
must be standardized so that it has the required distribution when the null
hypothesis is true. This is why the two-sample test uses ( )/

( / ) ( / ) rather than the simpler . Permutation tests, in
contrast, generate a sampling distribution on the fly from the data and the
chosen statistic. This allows greater flexibility in the choice of statistic in
Step 1 of the procedure.

The key step in the general procedure for permutation tests is to form
permutation resamples in a way that is consistent with the study design
and with the null hypothesis. Our examples and exercises to this point have
concerned two-sample settings. How must we modify our procedure for a
matched pairs design?

P

P
t F

t t x x
s n s n x x

Example 7.7 (page 443) looked at scores of 20 executives on a French language
listening test taken both before and after a language course. The “before” and
“after” data are not two independent samples, because each executive’s scores
reflect his or her previous knowledge of French and other individual factors. The
scores appear in Table 7.2. How shall we carry out a permutation test?

The null hypothesis says that the language course has no effect on test scores. If
this is true, each executive’s before and after scores are just two measurements of that
person’s understanding of French. The “before” and “after” have no meaning because
the course has no effect. Resampling randomly assigns one of each executive’s two
scores to “before” and the other to “after.” We do not mix scores from different
people because that isn’t consistent with the pairing in the study design.
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FIGURE 18.23

Permutation Test for the Significance of a Relationship

When Can We Use Permutation Tests?

�

�

The permutation distribution for the mean difference (score
after instruction minus score before instruction) from 9999 paired resamples
from the data in Table 7.2. The observed difference in means, 2.5, is in the
right tail.

Two-sample problems

�

Permutation testing can be used to test the significance of a relationship be-
tween two variables. For example, in Case 18.3 we looked at the relationship
between baseball players’ batting averages and salaries.

The null hypothesis is that there is no relationship. In that case, salaries
are assigned to players for reasons that have nothing to do with batting
averages. We can resample in a way consistent with the null hypothesis by
permuting the observed salaries among the players at random.

Take the correlation as the test statistic. For every resample, calculate the
correlation between the batting averages (in their original order) and salaries
(in the reshuffled order). The -value is the proportion of the resamples with
correlation larger than the original correlation.

We can use a permutation test only when we can see how to resample in a
way that is consistent with the study design and with the null hypothesis.
We now know how to do this for the following types of problems:

when the null hypothesis says that the two pop-
ulations are identical. We may wish to compare population means,

P .

P

After forming the “before” and “after” scores by randomly permuting each
matched pair separately, calculate the difference (after before) and the mean
difference for the 20 pairs of scores. This statistic measures the effect of the course.
Figure 18.23 shows the permutation distribution for 9999 resamples from the data
in Table 7.2. The observed difference is far out in the right tail, -value 0 0015.
There is very strong evidence that the course increases French listening ability.

�
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Matched pairs designs

Relationships between two quantitative variables

18.53 Comparing proportions: exclusive franchise territories.

Firms Successes Proportion
ˆ ==========n X p ===== X n

0

�

proportions, standard deviations, or other statistics. You may recall from
Section 7.3 that traditional tests for comparing population standard
deviations work very poorly. Permutation tests help satisfy this need.

when the null hypothesis says that there are
only random differences within pairs. A variety of comparisons is again
possible.

when the null hypothesis
says that the variables are not related. The correlation is the most common
measure, but not the only one.

These settings share the characteristic that the null hypothesis specifies
a simple situation such as two identical populations or two unrelated vari-
ables. We can see how to resample in a way that matches these situations.
Permutation tests can’t be used for testing hypotheses about a single popu-
lation, comparing populations that differ even under the null hypothesis, or
testing general relationships. In these settings, we don’t know how to resam-
ple in a way that matches the null hypothesis. Researchers are developing
resampling methods for these and other settings, so stay tuned.

When we can’t do a permutation test, we can often calculate a bootstrap
confidence interval instead. If the confidence interval fails to include the null
hypothesis value, then we reject at the corresponding significance level.
This is not as accurate as doing a permutation test, but a confidence interval
estimates the size of an effect as well as giving some information about its
statistical significance. Even when a test is possible, it is often helpful to
report a confidence interval along with the test result. Confidence intervals
don’t assume that a null hypothesis is true, so we use bootstrap resampling
with replacement rather than permutation resampling without replacement.

z

H

Case 9.1
(page 549) looked at the relationship between the presence of an
exclusive-territory clause and the survival of new franchise firms.
Exclusive-territory clauses allow the local franchise outlet to be the sole
representative of the franchise in a specified territory. Firms were classified
as successful or not based on whether or not they were still franchising as of
a certain date. Here is a summary of the findings for firms with and without
an exclusive-territory clause in their contract with local franchises:

Exclusive-territory clause 142 108 0.761
No exclusive-territory clause 28 15 0.536

Total 170 123 0.7235

(a) We conjecture that exclusive-territory clauses increase the chance of
success. State appropriate null and alternative hypotheses in terms of
population proportions.

(b) Perform the test (page 527) for your hypotheses.
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ECTION UMMARY

�
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�
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S 18.6 S
Permutation tests permutation resamples

without replacement

two-sample design

matched
pairs

no relationship

permutation distribution

18.54 Matched pairs: designing controls.

18.55 Correlation: salary and batting average.

1 2

are significance tests based on
drawn at random from the original data. Permutation resamples are drawn

, in contrast to bootstrap samples, which are drawn
with replacement.

Permutation resamples must be drawn in a way that is consistent with
the null hypothesis and with the study design. In a , the
null hypothesis says that the two populations are identical. Resampling
randomly reassigns observations to the two groups. In a

design, randomly permute the two observations within each pair
separately. To test the hypothesis of between two variables,
randomly reassign values of one of the two variables.

The of a suitable statistic is formed by the
values of the statistic in a large number of resamples. Find the -value of
the test by locating the original value of the statistic on the permutation
distribution.

When they can be used, permutation tests have great advantages. They
do not require specific population shapes such as Normality. They apply to
a variety of statistics, not just to statistics that have a simple distribution

p p

P

P

P

P

P

(c) Perform a permutation test based on the difference in the sample
ˆ ˆproportions . Explain carefully how the resampling is consistent

with the null hypothesis. Compare your result with part (b).

(d) Based on your permutation test -value, what do you conclude about
the effect of exclusive-territory clauses?

(e) Give a bootstrap tilting or BCa interval for the difference between the
two population proportions. Explain how the interval is consistent with
the permutation test.

Exercise 7.40 (page 458) describes a
study in which 25 right-handed subjects were asked to turn a knob clockwise
and counterclockwise (in random order). The response variable is the time
needed to move an indicator a fixed distance. We conjecture that clockwise
movement is easier for right-handed people.

(a) State null and alternative hypotheses in terms of mean times. Carefully
identify the parameters in your hypotheses.

(b) Perform a matched pairs permutation test. What is the -value? What
do you conclude about designing controls?

(c) Graph the permutation distribution and indicate the region that corre-
sponds to the -value.

Table 18.2 contains the
salaries and batting averages of a random sample of 50 major
league baseball players. We wonder if these variables are correlated
in the population of all players.

(a) State the null and alternative hypotheses.

(b) Perform a permutation test based on the sample correlation. Report the
-value and draw a conclusion.
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ECTION XERCISES

�

S 18.6 E
18.56 Female basketball players.

Forwards

Centers

18.57 Reaction time.

18.58 One- or two-sided?

under the null hypothesis. They can give very accurate -values, regardless
of the shape and size of the population (if enough permutations are used).

It is often useful to give a confidence interval along with a test. To create
a confidence interval, we no longer assume the null hypothesis is true, so
we use bootstrap resampling rather than permutation resampling.

P

P

P

Here are heights (inches) of professional female
basketball players who are centers and forwards. We wonder if the two
positions differ in average height.

69 72 71 66 76 74 71 66 68 67 70 65 72
70 68 73 66 68 67 64 71 70 74 70 75 75
69 72 71 70 71 68 70 75 72 66 72 70 69

72 70 72 69 73 71 72 68 68 71 66 68 71
73 73 70 68 70 75 68

(a) Make a back-to-back stemplot of the data. How do the two distributions
compare?

(b) State null and alternative hypotheses. Do a permutation test for the
difference in means of the two groups. Give the -value and draw a
conclusion.

Table 2.12 (page 163) gives reaction times for a person
playing a computer game. The data contain outliers, so we will measure
center by the median or trimmed mean rather than the mean.

(a) State null and alternative hypotheses.

(b) Perform a permutation test for the difference in medians. Describe the
permutation distribution.

(c) Perform a permutation test for the difference in 25% trimmed means.
Examine the permutation distribution. How does it compare with the
permutation distribution for the median?

(d) Draw a conclusion, using the -value(s) as evidence.

A customer complains to the owner of an independent
fast-food restaurant that the restaurant is discriminating against the elderly.
The customer claims that people 60 years old and older are given fewer
french fries than people under 60. The owner responds by gathering data,
collected without the knowledge of the employees so as not to affect their
behavior. Here are data on the weight of french fries (grams) for the two
groups of customers:

Age 60: 75 77 80 69 73 76 78 74 75 81
Age 60: 68 74 77 71 73 75 80 77 78 72

(a) Display the two data sets in a back-to-back stemplot. Do they appear
substantially different?

�
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18.59 “No Sweat” labels.

18.60 Real estate sales prices.

18.61 Size and age of houses.

18.62 Calcium and blood pressure.

Treatment Subjects Successes Proportion

18.63 More on calcium and blood pressure.

18.64 Another Verizon data set.

�

13

P

z

P P

r .

z

(b) If we perform a permutation test using the mean for “ 60” minus
the mean for “ 60,” should the alternative hypothesis be two-sided,
greater, or less? Explain.

(c) Perform a permutation test using the chosen alternative hypothesis and
give the -value. What should the owner report to the customer?

Example 8.6 (page 527) presents a significance test
comparing the proportion of men and women who pay attention to a “No
Sweat” label when buying a garment.

(a) State the null and alternative hypotheses.

(b) Perform a permutation test based on the difference in sample propor-
tions.

(c) Based on the shape of the permutation distribution, why does the
permutation test agree closely with the test in Example 8.6?

We would like to test the null hypothesis
that the two samples of Seattle real estate sales prices in 2001 and
2002 have equal medians. Data for these years appear in Tables
18.1 and 18.5. Carry out a permutation test for the difference in medians,
find the -value, and explain what the -value tells us.

Table 2.13 (page 165) gives data for houses sold
in Ames, Iowa, in 2000. The sample correlation between square footage
and age is approximately 0 41, suggesting that the newer houses were
smaller than the older houses. Test the hypothesis that there is no correlation
between square footage and age. What do you conclude?

Does added calcium intake reduce the
blood pressure of African American men? In a randomized comparative
double-blind trial, 10 men were given a calcium supplement for twelve
weeks and 11 others received a placebo. For each subject the researchers
recorded whether or not blood pressure dropped. Here are the data:

Calcium 10 6 0.60
Placebo 11 4 0.36

Total 21 10 0.48

Is there evidence that calcium reduces blood pressure? Use a permutation
test.

The previous exercise asks for a
permutation test for the difference in proportions. Now bootstrap the
difference in proportions. Use the observed difference in proportions and
the bootstrap standard error to create a 95% interval for the difference in
population proportions.

Verizon uses permutation testing for
hundreds of comparisons, comparing ILEC and CLEC distribu-
tions in different locations, for different time periods and different
measures of service quality. Here is a sample from another Verizon data set,
containing repair times in hours for Verizon (ILEC) and CLEC customers.
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ILEC

CLEC

18.65 Comparing Verizon standard deviations.

18.66 Testing equality of variances.

18.67 Executives learn Spanish.

t
P

t P

P

F
P

P

P
F

F

t F

F

P
F

P

P

1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1
2 2 1 1 1 1 2 3 1 1 1 1 2 3 1 1
1 1 2 3 1 1 1 1 2 3 1 1 1 1 2 3
1 1 1 1 2 3 1 1 1 1 2 4 1 1 1 1
2 5 1 1 1 1 2 5 1 1 1 1 2 6 1 1
1 1 2 8 1 1 1 1 2 15 1 1 1 2 2

1 1 5 5 5 1 5 5 5 5

(a) Choose and make data displays. Describe the shapes of the samples and
how they differ.

(b) Perform a test to compare the population mean repair times. Give
hypotheses, the test statistic, and the -value.

(c) Perform a permutation test for the same hypotheses using the pooled
variance statistic. Why do the two -values differ?

(d) What does the permutation test -value tell you?

We might also wish to
compare the variability of repair times for ILEC and CLEC cus-
tomers. For the data in the previous exercise, the statistic for
comparing sample variances is 0.869 and the corresponding -value is 0.67.
We know that this test is very sensitive to lack of Normality.

(a) Perform a two-sided permutation test on the ratio of standard deviations.
What is the -value and what does it tell you?

(b) What does a comparison of the two -values say about the validity of
the test for these data?

The test for equality of variances
(Section 7.3) is unreliable because it is sensitive to non-Normality
in the data sets. The permutation test does not suffer from this
drawback. It is therefore possible to use a permutation test to check the
equal-variances condition before using the pooled version of the two-sample

test. Example 7.18 (page 490) illustrates the test for comparing the
variability of the asset-to-liability ratio in samples of healthy firms and failed
firms. Do a permutation test for this comparison.

(a) State the null and alternative hypotheses.

(b) Perform a permutation test on the statistic (ratio of sample variances).
What do you conclude?

(c) Compare the permutation test -value to that in Example 7.18. What do
you conclude about the test for equality of variances for these data?

Exercise 7.42 (page 459) gives the scores of 20
executives on a test of Spanish comprehension before and after a language
course. We think that the course should improve comprehension scores.

(a) State the null and alternative hypotheses.

(b) Perform a paired-sample permutation test. Give the -value and your
conclusion about the effectiveness of the course.

(c) Graph the permutation distribution and indicate the region that corre-
sponds to the -value.
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TATISTICS IN UMMARY

HAPTER EVIEW XERCISES
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A. BOOTSTRAP

B. PERMUTATION TESTS

18.68 Piano lessons.

Fast and inexpensive computing power allows the use of statistical proce-
dures that require large-scale computation. Bootstrap confidence intervals
and permutation tests are based on large numbers of “resamples” drawn
from the data. These resampling computations replace the formulas derived
from probability theory that we use in traditional confidence intervals and
tests. Resampling procedures can often be used in settings that do not meet
the conditions for use of formula-based procedures. These resampling pro-
cedures are becoming ever more common in statistical practice. It is possible
that in the future they will largely replace some traditional procedures.
Reading this chapter should enable you to do the following:

1. Explain the bootstrap resampling idea in the context of a particular
data set used to estimate a particular population parameter.

2. Use software such as S-PLUS to bootstrap a statistic of your choice
from a set of data. Plot the bootstrap distribution and obtain the
bootstrap standard error and the bootstrap estimate of bias.

3. Based on bootstrap software output, judge whether formula-based
confidence intervals that require Normal sampling distributions can
be used and whether the simple bootstrap and percentile confidence
intervals can be used.

4. Obtain from bootstrap software output any of the four types of
bootstrap confidence intervals for a parameter: , percentile, BCa, and
tilting. By comparing these intervals judge which are safe to use.

1. Recognize the settings in which we can use permutation tests. In
such a setting, explain how to choose permutation resamples that are
consistent with the null hypothesis and with the design of the study.

2. Use software to obtain the permutation distribution of a test statistic of
your choice in settings that allow permutation tests. Give the -value
of the test.

3. Based on permutation test software output, judge whether a traditional
formula-based test can be used.

t

t

P

Exercise 7.34 (page 456) reports the changes in reasoning
scores of 34 preschool children after six months of piano lessons. Here are
the changes:

2 5 7 2 2 7 4 1 0 7 3 4 3 4 9 4 5
2 9 6 0 3 6 1 3 4 6 7 2 7 3 3 4 4

(a) Make a histogram and Normal quantile plot of the data. Is the distribu-
tion approximately Normal?
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18.69 Uniform distribution.

18.70 Age of personal trainers.

18.71 Stock returns.

18.72 Blockbuster stock.

Date Close Change Date Close Change

14

t

t

t P .

t

t

(b) Find the sample mean and its standard error using formulas.

(c) Bootstrap the mean and find the bootstrap standard error. Does the
bootstrap give comparable results to theoretical methods?

Your software can generate “uniform random num-
bers” that have the Uniform distribution on 0 to 1. See Figure 4.5 (page
247) for the density curve. Generate a sample of 50 observations from this
distribution.

(a) What is the population median? Bootstrap the sample median and
describe the bootstrap distribution.

(b) What is the bootstrap standard error? Compute a bootstrap 95%
confidence interval.

(c) Find the BCa or tilting 95% confidence interval. Compare with the
interval in (b). Is the bootstrap interval reliable here?

A fitness center employs 20 personal trainers. Here
are the ages in years of the female and male personal trainers working at this
center:

Male: 25 26 23 32 35 29 30 28 31 32 29
Female: 21 23 22 23 20 29 24 19 22

(a) Make a back-to-back stemplot. Do you think the difference in mean
ages will be significant?

(b) A two-sample test gives 0 001 for the null hypothesis that the
mean age of female personal trainers is equal to the mean age of male
personal trainers. Do a two-sided permutation test to check the answer.

(c) What do you conclude about using the test? What do you conclude
about the mean ages of the trainers?

Table 2.6 (page 130) gives annual total returns for overseas
and U.S. stocks over a 30-year period.

(a) Bootstrap the correlation between overseas and U.S. stocks and describe
its bootstrap distribution. What is the bootstrap standard error?

(b) Is a bootstrap confidence interval appropriate? Why or why not?

(c) Find the 95% BCa or tilting confidence interval.

Here are data on the price of Blockbuster stock for the
month of June 2002:

6.03 27.31 0.19 6.17 27.36 0.41
6.04 27.49 0.18 6.18 27.02 0.34
6.05 28.41 0.92 6.19 26.63 0.39
6.06 28.38 0.03 6.20 26.85 0.22
6.07 27.77 0.61 6.21 25.97 0.88
6.10 28.02 0.25 6.24 26.39 0.42
6.11 27.84 0.18 6.25 25.87 0.52
6.12 27.38 0.46 6.26 25.59 0.28
6.13 26.20 1.18 6.27 26.75 1.16
6.14 26.95 0.75 6.28 26.90 0.15
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18.73 Real estate sales prices.

18.74 Radon detectors.

18.75 Use a permutation test?

18.76 Do nurses use gloves?

volatil-
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(a) Compute the percent change for each trading day. The standard de-
viation of the daily percent change is one measure of the

of the stock. Find the sample standard deviation of the percent
changes.

(b) Bootstrap the standard deviation. What is its bootstrap standard
error?

(c) Find the 95% bootstrap confidence interval for the population standard
deviation.

(d) Find the 95% tilting or BCa confidence interval for the standard
deviation. Compare the confidence intervals and give your conclusions
about the appropriateness of the bootstrap interval.

We have compared the selling prices of
Seattle real estate in 2002 (Table 18.1) and 2001 (Table 18.5).
Let’s compare 2001 and 2000. Here are the prices (thousands of
dollars) for 20 random sales in Seattle in the year 2000:

333 126.5 207.5 199.5 1836 360 175 133 1100 203
194.5 140 280 475 185 390 242 276 359 163.95

(a) Plot both the 2000 and the 2001 data. Explain what conditions needed
for a two-sample test are violated.

(b) Perform a permutation test to find the -value for the difference in
means. What do you conclude about selling prices in 2000 versus 2001?

Exercise 7.38 (page 457) gives the following readings
for 12 home radon detectors when exposed to 105 picocuries per liter of
radon:

9.19 97.8 111.4 122.3 105.4 95.0
103.8 99.6 96.6 119.3 104.8 101.7

Part (a) of Exercise 7.38 judges that a confidence interval can be used
despite the skewness of the data.

(a) Give a formula-based 95% interval for the population mean.

(b) Find the bootstrap 95% tilting interval for the mean.

(c) Look at the bootstrap distribution. Is it approximately Normal in
appearance?

(d) Do you agree that the interval is robust enough in this case? Why or
why not? Keep in mind that whether the confidence interval covers 105
is important for the study’s purposes.

The study described in the previous exercise used
a one-sample test to see if the mean reading of all detectors of this type
differs from the true value 105. Can you replace this test by a permu-
tation test? If so, carry out the test and compare results. If not, explain
why not.

Nurses in an inner-city hospital were unknowingly
observed on their use of latex gloves during procedures for which glove

C
A

SE
1

8
.2
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Nurse Before After Nurse Before After

18.77 Glove use by nurses, continued.

18.78 Changes in urban unemployment.

Area 2001 2002 Area 2001 2002

15
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use is recommended. The nurses then attended a presentation on the
importance of glove use. One month after the presentation, the same nurses
were observed again. Here are the proportions of procedures for which each
nurse wore gloves:

1 0.500 0.857 8 0.000 1.000
2 0.500 0.833 9 0.000 0.667
3 1.000 1.000 10 0.167 1.000
4 0.000 1.000 11 0.000 0.750
5 0.000 1.000 12 0.000 1.000
6 0.000 1.000 13 0.000 1.000
7 1.000 1.000 14 1.000 1.000

(a) Why is a one-sided alternative proper here? Why must matched pairs
methods be used?

(b) Do a permutation test for the difference in means. Does the test indicate
that the presentation was helpful?

In the previous exercise, you did a one-sided
permutation test to compare means before and after an intervention. If you
are mainly interested in whether or not the effect of the intervention is
significant at the 5% level, an alternative approach is to give a bootstrap
confidence interval for the mean difference within pairs. If zero (no difference)
falls outside the interval, the result is significant. Do this and report your
conclusion.

Here are the unemployment rates (percent
of the labor force) in July of 2001 and 2002 for a random sample of 19 of the
331 metropolitan areas for which the Bureau of Labor Statistics publishes
data:

1 4.7 6.0 11 2.6 2.3
2 4.1 4.0 12 5.2 5.2
3 3.9 4.1 13 2.6 2.9
4 5.0 5.3 14 3.2 3.7
5 5.0 5.6 15 4.6 5.5
6 4.3 5.2 16 3.5 4.6
7 4.4 5.6 17 4.6 5.8
8 5.6 6.9 18 4.1 5.9
9 5.3 7.2 19 5.6 7.7

10 6.3 8.7

(a) Plot the data for each year and compare the two graphs.

(b) Do a paired test for the difference in means, and find the -value.

(c) Do a paired-sample permutation test, and find the -value. Compare
this with your result in part (b).
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18.79 Ice cream preferences.

Girls Boys Total

18.80 Word counts in magazine ads.

Education level Word count

18.81 More on magazine ad word counts.

18.82 Hyde Park burglaries.

17
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A random sample of children who came into an ice
cream shop in a certain month were asked, “Do you like chocolate ice
cream?” The results were:

Yes 40 30 70
No 10 15 25

Total 50 45 95

(a) Find the proportions of girls and boys who like chocolate ice cream.

(b) Perform a permutation test on the proportions, and use the -value to
determine if there is a statistically significant difference in the proportions
of girls and boys who like chocolate ice cream.

Is there a difference in the readability of
advertisements in magazines aimed at people with varying educational
levels? Here are word counts in 6 randomly selected ads from each of 3
randomly selected magazines aimed at people with high education level and
3 magazines aimed at people with middle education level:

High 205 203 229 208 146 230 215 153 205
80 208 89 49 93 46 34 39 88

Medium 191 219 205 57 105 109 82 88 39
94 206 197 68 44 203 139 72 67

(a) Make histograms and Normal quantile plots for both data sets. Do the
distributions appear approximately Normal? Find the means.

(b) Bootstrap the means of both data sets and find their bootstrap standard
errors.

(c) Make histograms and Normal quantile plots of the bootstrap distribu-
tions. What do the plots show?

(d) Find the 95% percentile and tilting intervals for both data sets. Do the
intervals for high and medium education level overlap? What does this
indicate?

(e) Bootstrap the difference in means and find a 95% percentile confidence
interval. Does it contain 0? What conclusions can you draw from your
confidence intervals?

The researchers in the study described
in the previous exercise expected higher word counts in magazines aimed at
people with high education levels. Do a permutation test to see if the data
support this expectation. State hypotheses, give a -value, and state your
conclusions. How do your conclusions here relate to those from the previous
exercise?

The following table gives the number of burglaries
per month in the Hyde Park neighborhood of Chicago for a period before
and after the commencement of a citizen-police program.
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18.83 Hyde Park burglaries, continued.

1. S-PLUS is a registered trademark of the Insightful Corporation.

2. G. Snow and L. C. Chihara,
W. H. Freeman, 2003 (ISBN 0-7167-9619-8). (This is

a supplement for a different book, but can be used with this book.)

3. Verizon repair time data used with the permission of Verizon.

4. T. Bjerkedal, “Acquisition of resistance in guinea pigs infected with different doses
of virulent tubercle bacilli,” 72 (1960), pp. 130–148.

5. Seattle real estate sales data provided by Stan Roe of the King County Assessor’s
Office.

6. The 254 winning numbers and their payoffs are the data set in S-PLUS and
are originally from the New Jersey State Lottery Commission.

7. “America’s Best Small Companies,” November 8, 1993.

S-PLUS for Moore and McCabe’s Introduction to the
Practice of Statistics 4th ed.,

American Journal of Hygiene,

lottery

Forbes,

t
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60 44 37 54 59 69 108 89 82 61 47
72 87 60 64 50 79 78 62 72 57 57
61 55 56 62 40 44 38 37 52 59 58
69 73 92 77 75 71 68 102

88 44 60 56 70 91 54 60 48 35 49
44 61 68 82 71 50

(a) Plot both sets of data. Are the distributions skewed or roughly Normal?

(b) Perform a one-sided (which side?) test on the data. Is there statistically
significant evidence of a decrease in burglaries after the program began?

(c) Perform a permutation test for the difference in means, using the same
alternative hypothesis as in part (b). What is the -value? Is there a
substantial difference between this -value and the one in part (b)? Use
the shapes of the distributions to explain why or why not. What do you
conclude from your tests?

(d) Now do a permutation test using the opposite one-sided alternative
hypothesis. Explain what this is testing, why it is not of interest to us,
and why the -value is so large.

The previous exercise applied significance
tests to the Hyde Park burglary data. We might also apply confidence
intervals.

(a) Bootstrap the difference in mean monthly burglary counts. Make a
histogram and a Normal quantile plot of the bootstrap distribution and
describe the distribution.

(b) Find the bootstrap standard error, and use it to create a 95% bootstrap
confidence interval.

(c) Find the 95% percentile confidence interval. Compare this with the
interval. Does the comparison suggest that these intervals are accurate?
How do the intervals relate to the results of the tests in the previous
exercise?
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www.forbes.com

www.espn.com

www.nasdaq.com

www.bls.gov

8. ACORN, “Banking on discrimination: executive summary,” October 1991, in

102nd Congress, 2nd Session, Serial 102-120, May 7 and May 14,
1992, pp. 236–246.

9. From the Web site, .

10. Data provided by Darlene Gordon, Purdue University, for David S. Moore and
George P. McCabe, 4th ed., W. H. Freeman
and Company, 2003.

11. From , July 2, 2002.

12. April 1990, pp. 235–288. These data are part of the
data set in S-PLUS.

13. Roseann M. Lyle et al., “Blood pressure and metabolic effects of calcium supple-
mentation in normotensive white and black men,”

257 (1987), pp. 1772–1776.

14. Data from .

15. L. Friedland et al., “Effect of educational program on compliance with glove use in a
pediatric emergency department,” 146
(1992), pp. 1355–1358.

16. From the Web site of the Bureau of Labor Statistics, .

17. F. K. Shuptrine and D. D. McVicker, “Readability levels of magazine ads,”
21, No. 5 (1981), p. 47.

18. G. V. Glass, V. L. Wilson, and J. M. Gottman,
Colorado Associated University Press, 1975.

Joint
Hearings before the Committee on Banking, Finance, and Urban Affairs, House of
Representatives,

Forbes

Introduction to the Practice of Statistics,

Consumer Reports, fuel.frame

Journal of the American Medical
Association,

American Journal of Diseases of Childhood,

Journal
of Advertising Research,

Design and Analysis of Time Series
Experiments,



S-18-1

SOLUTIONS TO ODD-NUMBERED EXERCISES

Chapter 18

(a) (b)

(c) (d)

(a) (b)

(a)

(b)
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(b)

(a)
(b)
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In questions in this chapter for which the answers are obtained by resampling,
your answers may differ slightly from those we give because your random samples
may differ from ours.

18.1 and The means of our 20 resamples are 6.86, 1.64, 7.00, 4.27, 4.83,
4.24, 1.03, 2.30, 7.38, 4.54, 4.21, 0.70, 1.19, 2.04, 1.45, 6.86, 10.28, 0.78,
4.35, 4.32. Make a stemplot of your means. Bootstrap standard error

2.658.

18.3 The histogram is right-skewed. The distribution is symmetric and bell-
shaped, and the quantile plot shows positive skewness; while this amount
of positive skewness would not be a concern in raw data, here it occurs in
a bootstrap distribution, after the central limit theorem has had a chance to
work. Later in the chapter we learn ways to get more accurate confidence
intervals in cases like this.

18.5 The distribution is roughly bell-shaped but is less so than the bootstrap
distribution in Exercise 18.3. The distribution here looks slightly right-
skewed, and the points plotted on a quantile plot don’t lie as close to a
straight line as those in the quantile plot in Exercise 18.3. The bootstrap
standard error for Exercise 18.3 is 3.07, and for the data in this exercise
the bootstrap standard error is 7.45. For a sample of size , the standard
error of the sample mean is / , where is the sample standard deviation.
A smaller sample size results in a larger standard error.

18.7 21 7, so / 50 3 07. The bootstrap standard error in Exercise 18.3
is 3.07, which agrees closely with / 50 3 07.

18.9 The bias is 0 448. This is small compared to the observed mean of 141.8.
The bootstrap distribution of most statistics mimics the shape, spread, and
bias of the actual sampling distribution. Thus, we expect that the bias
encountered in using to estimate the mean survival time for all guinea pigs
that receive the same experimental treatment is also small.

18.11 The 25% trimmed mean is 30.1, which is smaller than the sample mean
of 34.7. If we examine the histogram of the data for the 50 shoppers we
see that the data are right-skewed. The trimmed mean eliminates much
of the large right tail (that is, the very large values that cause the sample
mean to be large), and hence the trimmed mean is smaller than the sam-
ple mean. The 95% confidence interval for the 25% trimmed mean
spending in the population of all shoppers is (23.74, 36.46).

18.13 The formula-based standard error is 4.08. The bootstrap standard error in
Example 18.7 is 4.052, which is close to the formula-based value.

18.15 The distribution looks approximately Normal and the bias is small.
Thus, it meets the conditions for a bootstrap confidence interval. The
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bootstrap mean is .902, and the standard error is 0.114. The bootstrap
confidence interval is (0.6903, 1.1265). The two-sample confidence
interval reported on page 479 is (0.65, 1.15). This interval is wider than the
bootstrap confidence interval in part .

18.17 The two bootstrap distributions look similar. The bootstrap standard
error of the mean is 45.0. In Example 18.5, the bootstrap standard error
of the 25% trimmed mean is 16.83. We see that the bootstrap standard
error of the mean is almost three times as large as the bootstrap stan-
dard error of the 25% trimmed mean. The bootstrap distribution for the
mean has greater spread (the histogram covers a range from about 225 to
475) than the bootstrap distribution for the 25% trimmed mean (the his-
togram covers a range from about 200 to 300). Examining the bootstrap
distribution of the mean in Figure 18.7 and in part of this solution, we
see that the bootstrap distribution is right-skewed and hence non-Normal.
We should not use the bootstrap interval if the bootstrap distribution is
not Normal.

18.19 There do not appear to be any significant departures from Normality.
The histogram is centered at about 0, and the spread is approximately what
we would expect for the (0, 1) distribution. The standard error of the
bootstrap mean is 0.128. The bias is small ( 0.00147), and the histogram
of the data looks approximately Normal, so the bootstrap distribution
of the mean will also look Normal. When the bootstrap distribution is
approximately Normal and the bias is small, it is safe to use the bootstrap
confidence interval. The interval is ( 0.129, 0.379).

18.21 7.71. The bootstrap standard error for is 2.23. The
bootstrap standard error is a little less than one-third the value of the
sample standard deviation. This suggests that the sample standard deviation
is only moderately accurate as an estimate of the population standard
deviation. Plots show that the bootstrap distribution is not Normal.
Thus, it would be appropriate to give a bootstrap interval for the
population standard deviation.

18.23 The plots do not show any significant departures from Normality, so
there is nothing in the plots to suggest that the difference in means might
be non-Normal. A 95% paired confidence interval for the difference
in population means is (17.4, 25.1). The interval does not contain 0 and
includes only positive values. This is evidence that the minority refusal
rate is larger than the white refusal rate. The bootstrap distribution
looks reasonably Normal. The bias is small. Thus, a bootstrap confidence
interval is appropriate here. A 95% bootstrap confidence interval is (17.6,
24.9). This is very close to the traditional interval that we calculated in .

18.25 This bootstrap distribution is right-skewed. The bootstrap distribution
of the Verizon repair times appears to be approximately Normal. The
source of the skew in the bootstrap distribution of the difference in means
appears to be due to the skew in the CLEC data.

18.27 Mean of the sampling distribution of is 8 4. Standard deviation
of the sampling distribution of is / 14 7/ . Use S-PLUS to
make the plots. The bootstrap standard error is 2.24. Use S-PLUS
to make the plots. For 40, SE 1 49. For 160, SE 0 970.
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If we look at the distributions, and especially the Normal quantile plots,
we see that as increases, the bootstrap distributions look more and more
Normal. We also see that the standard errors decrease roughly by a factor
of 2 as increases by a factor of 4.

18.29 For a 90% bootstrap confidence interval, we would use the 5% and 95%
percentiles as the endpoints.

18.31 The 95% bootstrap interval is ( 0.144, 0.358), and the bootstrap per-
centile interval is ( 0.128, 0.356). There is very close agreement between
the upper endpoints of both intervals. However, the lower endpoints differ
somewhat, and this may indicate skewness.

18.33 A 95% bootstrap confidence interval is (238.7, 415.1). The 95% percentile
confidence interval is (252.5, 433.2). A 95% traditional one-sample
confidence interval is (239.3, 419.3). The BCa 95% confidence interval is
(270.0, 455.7), and the tilting 95% confidence interval is (265.0, 458.7).
Now make the plot requested. The bootstrap and traditional intervals
are centered approximately on the sample mean. The bootstrap percentile
interval is shifted to the right of these two. The BCa and tilting intervals
are shifted even farther to the right. The latter two better reflect the skewed
nature of the data. Using a interval or the bootstrap percentile interval, we
get a biased picture of what the value of the population mean is likely to be.
In particular, we would underestimate its value. Any policy decisions based
on these data, such as tax rates, would reflect this underestimate.

18.35 The 95% bootstrap confidence interval is (0.122, 0.585). The 95%
bootstrap percentile interval is (0.110, 0.573). The 95% BCa interval
is (0.133, 0.594). S-PLUS gives two possible tilting intervals. The 95%
exponential tilting interval is (0.1163, 0.5542) and the 95% maximum-
likelihood tilting interval is (0.118, 0.555). The BCa and tilting intervals
have larger lower endpoints and are narrower than the bootstrap and
percentile intervals. If you did Exercise 18.32, the bootstrap and percentile
intervals here will differ slightly from those in Exercise 18.32 because they
are based on a different bootstrap sample.

18.37 and The 95% BCa confidence interval is ( 18 89 2 48). This
interval does not include 0, so we would conclude that the mean repair
times for all Verizon customers are lower than the mean repair times for
all CLEC customers. Using a or percentile interval, we would tend to
understate the difference in mean repair times and perhaps fail to recognize
that the mean repair times for Verizon customers are significantly shorter
than for CLEC customers.

18.39 A traditional 95% one-sample confidence interval is (59.83, 66.19).
The value 92.3 is an outlier and might strongly influence the traditional

confidence interval. The 95% percentile interval is (60.43, 66.32). Both
ends are to the right of the interval in due to the skewness in the sampling
distribution. This is also slightly narrower. A 95% confidence interval
for the mean weights of male runners (in kilograms) is (60.43, 66.32).

18.41 Two large outliers are present. The procedures can be used even
for clearly skewed distributions when the sample size is large, roughly

40. In this example, 43, so one-sample procedures may be safe.
A traditional 95% one-sample confidence interval is (116.3, 124.8).
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The bootstrap distribution shows moderate skewness to the right; a
bootstrap interval should be moderately accurate. The 95% percentile
interval is (116.9, 124.4). This agrees closely with the interval found in ,
so we conclude that the one-sample interval is reasonably accurate here.

18.43 The data are clearly right-skewed. The mean would not be a useful
measure of the price of a typical house in Ames. The trimmed mean or
the median might be more useful. We examine the trimmed mean. The
standard error of our bootstrap statistic is 6743. The distribution looks
approximately Normal, and the bias is relatively small. The 95% bootstrap

interval and the 95% bootstrap percentile interval are reasonable choices.
The 95% percentile interval is (119,677, 144,161). For comparison, the 95%
BCa interval is (120,484, 147,562), the 95% tilting interval is (120,496,
146,665), and the 95% bootstrap interval is (119,709, 146,753). We
are 95% confident that the mean selling price of all homes sold in Ames for
the period represented by these data is in the interval ($119,677, $144,161).

18.45 The relationship appears linear and the association is negative:
0848. The 95% BCa interval is ( 0 898, 0 769), and the 95%

tilting interval is ( 0 900 0 776). All should be accurate intervals. They
provide a 95% confidence interval for the population correlation between
weight and gas mileage in miles per gallon for all 1990 model year cars.

The least-squares regression line to predict gas mileage from weight
is mileage 48 35 (0 0082)(weight). The traditional 95% confidence
interval for the slope is ( 0 0096 0 0068). The bootstrap interval is
( 0 00954 0 00676).

18.47 Examining the plots, we see that the bootstrap distribution with the
outlier included is shifted significantly to the left (centered at a smaller
value) of the bootstrap distribution with the outlier excluded. Also, the
bootstrap distribution with the outlier included appears to be slightly left-
skewed. There is little bias in either case (in fact, any apparent bias is due to
random resampling, because the sample mean has no true bias). A 95%
BCa interval for the mean with the outlier included is (16,504, 18,322).
A 95% BCa interval for the mean with the outlier removed is (17,241,
18,614). The lower confidence limit for the interval based on the data that
include the outlier is much smaller than the lower confidence limit for the
interval based on the data with the outlier excluded. The outlier was an
unusually small value, so it appears that the effect of the outlier is to pull
the lower limit down. The upper confidence limits for both intervals are
more nearly equal, but the upper confidence limit for the interval based on
the data that include the outlier is smaller than the upper confidence limit
for the interval based on the data with the outlier excluded. Thus, the small
value of the outlier also pulls the upper confidence limit down.

18.49 : , : . The -value is 0.423. The -value is
0.444. This is consistent with the -value we computed in . We conclude
that there is little evidence that the population means and differ.

A 95% BCa confidence interval for the change from 2001 to 2002 is
( 39.3, 156.7). This interval includes 0 and suggests that the two means
are not significantly different at the 0.05 level. This is consistent with the
conclusions in .
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18.51 The standard deviation for the estimated -value of 0.015 for the DRP study
based on 999 resamples is 0.00385. The standard deviation for the
estimated -value of 0.0183 based on the 500,000 resamples in the Verizon
study is 0.000190.

18.53 : , : . The statistic is 2 43. The -value
for the test is 0.0075. Under the null hypothesis, all 170 firms are
equally likely to be successful. That is, successes occur for reasons that have
nothing to do with whether the firm has an exclusive-territory clause. We
can resample in a way consistent with the null hypothesis by choosing an
ordinary SRS of 142 of the firms without replacement and assigning them to
the exclusive-territory clause group. The -value for the permutation test is
0.018. This -value is larger than that found in part , largely because the

test fails to take ties into account. There is evidence at the 0.05 level
that exclusive-territory clauses increase the chance of success. There is not
evidence that exclusive-territory clauses increase the chance of success at the
0.01 level. A 95% BCa confidence interval for the difference between the
two population proportions is (0.033, 0.426). This interval does not include
0 and lies to the positive side of 0. This is consistent with the results of the
permutation test in part , which rejected the null hypothesis at the 0.05
level.

18.55 Let denote the correlation between the salaries and batting averages
of all Major League Baseball players. We test the hypotheses : 0,

: 0. The -value is 0.257. We conclude that there is not strong
evidence that salaries and batting averages are correlated in the population
of all Major League Baseball players.

18.57 For the median we test the hypotheses : median time for right hand
median time for left hand, : median time for right hand median time
for left hand. For the 25% trimmed mean we test the hypotheses :
25% trimmed mean time for right hand 25% trimmed mean time for
left hand, : 25% trimmed mean time for right hand 25% trimmed
mean time for left hand. The permutation distribution is clearly not
Normal. The -value for the permutation test for the difference in medians
is 0.002. The permutation distribution looks much more like a Normal
distribution than the permutation distribution in for the difference in
medians. For the permutation test for the difference in 25% trimmed means,

-value 0 002. There is strong evidence that there is a difference in the
population median times when using the right hand versus when using the
left hand. There is strong evidence that there is a difference in the population
25% trimmed mean times when using the right hand versus when using the
left hand.

18.59 Let denote the proportion of women in the population who pay
attention to a “No Sweat” label when buying a garment and denote
the proportion of men in the population who pay attention to a “No
Sweat” label when buying a garment. We test the hypotheses : ,

: . The -value for the permutation test is 0.002. The
permutation distribution is approximately Normal (except that it is discrete;
you can see this using a Normal quantile plot or by observing spikes in the
histogram).
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Solutions to Odd-Numbered ExercisesS-18-6
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18.61 A two-sided permutation test of the hypothesis has -value 0.004, and
we conclude that there is strong evidence that there is a correlation between
square footage and age of a house in Ames, Iowa.

18.63 A 95% interval using the observed difference in proportions (0.2364) and
the bootstrap standard error (SE 0.215) is ( 0.185, 0.657).

18.65 We performed a two-sided permutation test on the ratio of standard
deviations. Some of the ratios were infinite because the permutation test
produced a standard deviation of 0 in the denominator. The mean and
SE were not given, but we were still able to give -value 0.386 based
on the permutation distribution. This -value tells us that there is not
strong evidence that the variability in the repair times for ILEC and CLEC
customers differ. The -value for the permutation test differs from that
obtained by the statistic. This suggests that the test based on the statistic
is not very accurate.

18.67 We test the hypotheses : 0, : 0. Note that negative values
of indicate that mean posttest scores are higher than mean pretest scores,
and hence that test scores have improved. The -value is 0.036, so there
is evidence (significant at the 0.05 level but not at the 0.01 level) that the
mean change (pretest–posttest) is negative and hence that posttest scores are
higher, on average, than pretest scores. The area to the left of 1.45 in
your graph is the -value.

18.69 For a Uniform distribution on 0 to 1, the population median is 0.5. The
bootstrap distribution appears to be bimodal, not Normal (you may get
a different picture, depending on the random data you generate). The
bootstrap standard error is 0.072. A 95% bootstrap confidence interval is
(0.373, 0.572). The bootstrap 95% BCa confidence interval is (0.369,
0.620). The 95% bootstrap confidence interval is somewhat wider than
the 95% BCa interval. This, and the fact that the bootstrap distribution for
the median is not Normal, show that the bootstrap interval is not reliable
here.

18.71 The bootstrap distribution is left-skewed and does not appear to be
approximately Normal. The bootstrap standard error is 0.139. The
bootstrap confidence interval is not appropriate here because the bootstrap
distribution is not approximately Normal. A 95% BCa confidence
interval is (0.179, 0.710).

18.73 The histogram of the 2000 data is strongly right-skewed with two
outliers, one of which is extreme. This violates the guideline for using the

procedures given in Section 17.1; namely,

. The histogram of the 2001 data is right-skewed, but less strongly
than that of the 2000 data. The -value for the permutation test for the
difference in means is 0.302. We conclude that there is not strong evidence
that the mean selling prices for all Seattle real estate in 2000 and in 2001
are different.

18.75 The study described in Exercise 18.74 is a one-sample problem. We have no
methods for carrying out a permutation test in such one-sample problems
(there is no obvious way to resample that is consistent with a one-sample
test for a mean).
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18.77 A 95% bootstrap confidence interval for the mean change (After Before)
is (0.412, 0.865). Zero is outside this interval, so the result is significant
at the 0.05 level. We conclude that there is strong evidence that the mean
difference is different from 0.

18.79 The proportion of girls who like chocolate ice cream is 0.80. The
proportion of boys who like chocolate ice cream is 0.667. The -value
for a two-sided permutation test is 0.222. There is not strong evidence that
there is a difference in the proportion of boys and girls who like chocolate
ice cream.

18.81 We test the hypotheses : , : . The -value is 0.209.
Thus, there is not strong evidence that the mean word count is higher for
ads placed in magazines aimed at people with high education levels than
for ads placed in magazines aimed at people with medium education levels.
The 95% confidence interval in Exercise 18.80(d) for the difference in means
contained 0. This suggests that there is not strong evidence of a in
mean word counts. Here we conclude that there is not strong evidence that
the mean word count is for ads placed in magazines aimed at peo-
ple with high education levels than for ads placed in magazines aimed at
people with medium education levels.

18.83 The bootstrap distribution appears to be approximately Normal. The
bootstrap standard error is 4.603. A 95% bootstrap confidence interval
using the conservative method for degrees of freedom is ( 13.43, 6.09).
Using degrees of freedom, the interval becomes ( 12 89 5 55).

A 95% percentile interval is ( 12.48, 5.56). This agrees closely with
the second interval found in , so we conclude that the intervals are
reasonably accurate. These intervals include 0, and so we would conclude
that there is not strong evidence (at the 0.05 level) of a in the
mean monthly burglary counts. The tests in Exercise 18.82 were one-sided
tests and showed no evidence of a in mean monthly burglaries (or
of an in the case of part (d) of Exercise 18.82).
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