5. DEFAULT CORRELATION MODELS

O Credit spreads of different issuers are correlated through time.

O However, a good model for the default correlations across firms is still an open
challenge for credit risk researchers.

O Correlations across equities are considerably higher than observed default
correlations.

O Two patterns are found in time series of spreads:
1) Spreads vary smoothly with general macroeconomic factors in a correlated fashion.

!

Cyclical correlation between defaults

2) Jumps are common on several firm credit spreads. This suggests that the sudden
variation in the credit risk of one issuer, which causes the jump in first place, can
propagate to other issuers as well.
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5. DEFAULT CORRELATION MODELS

Historically, defaults tended to cluster as the following examples from the USA show.

¢ Oil industry: 22 companies defaulted in 1982—-1986.

¢ Railroad conglomerates: | default each year 1970-1977.

e Airlines: 3 defaults in 1970-1971, 5 defaults in 1989-1990.
e Thrifts (savings and loan crisis): 19 defaults in 1989-1990.
¢ Casinos/hotel chains: 10 defaults in 1990.

¢ Retailers: =20 defaults in 1990-1992.

¢ Construction/real estate: 4 defaults in 1992.

If defaults were indeed independent, such clusters of defaults should not occur,

Secondly, there also seems to be serial dependence in the default rates of subsequent years.
A year with high default rates is more likely to be followed by another year with an above
average default rate than to be followed by a low default rate. The same applies to low default
rates.
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5. DEFAULT CORRELATION MODELS

O Conditional probabilities: 0 Correlation coefficient:
_ PAB . PaB o4p — PAB — VAPB
i b pg KA = PA / v pa(l — pa)ps(l — pp)
The joint default probability is given by: COV(A,B)/(c, o)

-~ PaB = paps + 0asy pall = pA)ps(1 — pp)

P,z =P,Ps+COV(A,B
AR AT (A.B) Dividing ppg by Pg
and the conditional default probabilities are:

)J. P , \
PalgB = Pa+ CAB /2—4(1 — paX1l — pg).
B
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5. DEFAULT CORRELATION MODELS

O Calculation of default correlation:

: , nd default events: The obvious source of information on
default Lorrelalmn is Lhe historical incidence of joint defaults of similar firms in a similar
time frame. We used such data in Section 10.1.1 when we analysed the evidence for default
dependency in aggregated historical US default rate data. Such data is objective and directly
addresses the modelling problem. Unfortunately, because joint defaults are rare events,

historical data on joint defaults is very sparse. To gain a statistically useful number of

observations, long time ranges (several decades) have to be considered and the data must be
ageregated across industries and countries. In the majority of cases direct data will therefore
not be available,

e (Credit spreads: Credit spreads contain much information about the default risk of traded
bonds, and changes in credit spreads reflect changes in the markets™ assessment of the
riskiness of these investments, If the credit spreads of two obligors are strongly correlated
it is likely that the defaults of these obligors are also correlated. Credit spreads have the
further advantage that they reflect market information (therefore they already contain risk
premia) and that they can be observed far more frequently than defaults. Disadvantages
are problems with data availability, data quality (liquidity), and the fact that there is no
theoretical justification for the size and strength of the link between credit spread correlation
and default correlation.
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5. DEFAULT CORRELATION MODELS

O Calculation of default correlation:

® [quity correlations: Equity price data is much more readily available and typically of better
quality than credit spread data. Unfortunately, the connection between equity prices and
credit risk is not obvious. This link can only be established by using a theoretical model,
and we saw that these models have difficulties in explaining the credit spreads observed in
the market. Consequently, a lot of pre-processing of the data is necessary until a statement
about default correlations can be made.
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Independent Defaults

If defaults are independent and happen with probability p over the time horizon 1, then the
loss distribution of a portfolio of N loans is described by the binomial distribution function.

Definition 10.1 (binomial distribution) Consider a random experiment with success prob-
ability p which is repeated N times and let X be the number of successes observed. All
repetitions are independent from each other. The binomial frequency function b(n. N, p) gives
the probability of observing n < N successes. The binomial distribution function B(n; N, p)
gives the probability of observing less than or equal to n successes:

b N, p)i= PIX =nl = (" )1 = V" = — (1 — p)¥-
. . i — —_— | = : - J — )
I | n : 1 nT(N—n')!I | !
B(il' N I)) = PlX < }l] = i (‘IV)I}'”(I o I’)N_m
o - m)" | '

n="4

In our credit setting, the probability of exactly X = n (with n < N) defaults until time 7" is
b(n; N, p) and the probability of up to n defaults is B(n; N, p).
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Independent Defaults

Distribution of default losses under independence
(number of obligors =100 and p =0,05)
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Figure 10.5 Distribution of default losses under independence. Parameters: number of obligors

N = 100, individual default probability p = 5%

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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Independent Defaults

0 This example shows that the tail of the distribution is very thin

<

O The Credit-VaR for very high degrees of confidence is achieved at a low number of
defaults:

- 99% VaR = 11 defaults
- 99,9% VaR = 13 defaults
- 99,99% VaR = 15 defaults
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Independent Defaults

O The number of defaults corresponding to a Credit-VaR for very high degrees of
confidence increases with the PD:
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Default probability

Figure 10.6  99.9% VaR levels of a portfolio of 100 independent obligors for different individual default
probabilities

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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Independent Defaults

O The dispersion of the No. defaults distribution also increases with the PD:

Density Function of the No. Defaults in a Portfolio with 100
Exposures
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0,05

0,00
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Perfectly Correlated Defaults

¢ FEither all obligors default (with 5% probability),
¢ Or none of the obligors defaults (with 95% probability).

Perfectly dependent defaults
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Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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BINOMIAL EXPANSION TECHNIQUE (BET)

O Independent defaults:

The binomial expansion technigue (BET) is a method used by the ratings agency Moody's to
assess the default risk in bond and loan portfolios. It was one of the first attempts to quantify the
risk of a portfolio of defaultable bonds. The method is not based upon a formal portfolio default
risk model, it can be inaccurate and it is generally unsuitable for pricing, yet it has become
something of a market standard in risk assessment and portfolio credit risk concentration
terminology.”

The BFT is bd%t,d upon the following observation. Assume we analyse a loan portfolio of
1ze with the same loss L in default and the same default probabﬂny
p = 5%.1f efaults of these obligors are independent, we know from the previous s
that the loss distribution function is given bythe binomial distribution functiog>The probability
of a loss of exactly X = nL (withn < N)until time 7 is (10.8):

et m— ) — ) . J }.I 4 ) .
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BINOMIAL EXPANSION TECHNIQUE (BET)

0 Perfectly dependent defaults:

Let us now consider the other extreme. It all defaults are pertectly dependent (i.e. either all or
none of the obligors default), we have:

PIX>0=p=5%=P[X =NL],
PIX=0=1-p=95%=P[X =0].

The key point to note here is that this can also be represented as a binomial distribution function
with probability p = 5%, but this time only one binomial draw is taken and the stakes are much
higher: a loss of N L if the 5% event occurs,
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BINOMIAL EXPANSION TECHNIQUE (BET)

Thus we have the following results.

e Perfect independence is N = 100 obligors with loss L and loss probability p = 5% each.
The probability of a loss X of less than x is

P[X <x]= B(n:N, p),

where the parameters are:

- N = 100;
—n = |x/L] (“rounding down”, the largest integer less than or equal to x/L);
- p = 5%.

o x = nl, —— Loss (x) = No. of defaults x Loss with each default
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BINOMIAL EXPANSION TECHNIQUE (BET)

e Perfect dependenceis equivalent to N' = 1 obligors with loss L' = N L and loss probability
p = 5%. The probability of a loss X of less than x is

P[X <x])= B(n';N'. p),

where:
— N’ =1, an adjusted number of obligors:
-n'= |x/L']

- p = 5%. ‘

O Independence between defaults => N’ = N with loss amount from each default
eventl' =L

O Perfect dependence between defaults => N’ = 1 with loss amount from each default

event ' =NxL ‘

O It is convenient to calculate intermediate degrees of dependence assuming that we
have N’ = D < N independent debtors with losses L' = LN/D each.
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BINOMIAL EXPANSION TECHNIQUE (BET)

O In a portfolio of N debtors with a total exposure of K and p as the average
individual PD, the BET loss distribution with a diversity score D is:

PPH{(x:N. K, D)= B(|x/L'|; D. p) —— from PIX <x]= BN, pX
with - N’ = [, an adjusted number of obligors;

l -n' = |x/L]
- p = 5%.
O With N =100:
- D =100 <-> we have 100 independent debtors with potential losses of L each
- D =50<->we have 50 independent debtors with potential losses of 2L each

- D = 1 <> we have perfect dependency between all exposures, with a
potential losses of N x L
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BINOMIAL EXPANSION TECHNIQUE (BET)

O Lower diversity scores => less continuous distributions and higher probability
attached to higher losses => more concentrated portfolios are riskier.

(.8 —

0.6 —

]

Figure 10.8 Loss exceedance probabilities for different diversity scores. Parameters: N = 100,
P = 5%, D = 100, 50, 20, 5 (solid, dashed, short dashed, dot dashed)

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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BINOMIAL EXPANSION TECHNIQUE (BET)

O Moody’s starts by assuming perfect diversification (D = N).

O D is adjusted downwards according to:

(i) Exposure sizes:

- Large exposures are penalized (portfolios with identical exposures are not
adjusted).

(ii)) Industry diversification

(iii) Regional diversification
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GAUSSIAN COPULA

0 Defining t; and t, as the time to default of companies 1 and 2, respectively, if these variables

are not normally distributed, we may transform them into new variables x; and x,:

where x; = N"'[Q,(1))]. X = N7'[Qs(1r)]
Q, and Q,— cumulative probability distributions for t, and t,

N1 —inverse of the cumulative normal distribution

O x, and x, - default threshold of each company, determined by the balance sheet structure,

normally distributed, with zero mean and unit standard deviation

O The joint distribution of x; and x, is a bivariate normal.

4

GAUSSIAN COPULA
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GAUSSIAN COPULA

O This assumption is convenient as it allows to characterize the joint distribution of
t, and t, by the cumulative default probability distributions Q, and Q,, with a
single correlation parameter between x, and x, — the copula correlation.

O To avoid defining a different correlation between x; and x; for each pair of
companies i and j, a one-factor model is often used:

xi=a;F++1—a;Z

with
F = the common or systematic risk factor — can be viewed as a business cycle indicator

Z; ~ N(0,1), i.i.d. — can be viewed as an idiosyncratic or firm-specific factor (e.g. quality of
the management, level of innovation)

a, = constant parameters between -1 and +1

a;* a;= correlation between x; and x;
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GAUSSIAN COPULA

0 A default occurs until Twhen N(x) < 0/(T) & i < N7 [Q:(T)]|

!

/ > r—1 |
xi=a;F++1 —ajZ - ; " [Q,"(T)] fa"F

v"'l —a:
a;F +1—a? Z; < N"'[Q(T)]

[}

0 As x; = N[0, x, = N '[Q5(1,)], PD conditional on the factor F is:

N0 - a,-F)

)T F):N(
C | \/]—av;-'2
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GAUSSIAN COPULA

0 With all loans having the same probability distributions of default and the same correlation

— N[O - JpF’
=> a;=J5 EERp or|h=N~2VT)

corresponds to the % defaults in a homogeneous portfolio by time T as a function of F.

0 pdrives the weight of the idiosyncratic and systematic components:

— p=0=>the business cycle is irrelevant to explain credit risk, i.e. the PD will not fluctuate.

— p=1=>the business cycle is the only driver of defaults.
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GAUSSIAN COPULA

0 AsF ~N(0,1), we are X% sure that F>N"'(1 - X) = ~N"'(X)

!

0 We are X% sure that the percentage of losses over T years on a large homogeneous
portfolio will be less than V(X,T) — Worst Case Default Rate (WCDR):

N[O + /P N"(X)')

l N

O Vasicek (1987) (published in Risk Magazine, in 2002, as “Loan Portfolio Value”):

0. Vasicek, “Probability of Loss on a Loan Portfolio,”” Working Paper, KMV, 1987.

V(X,T)= \(

O Credit-VaR = V(X,T) x LGD x EAD
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GAUSSIAN COPULA

0 AsF ~N(0,1), we are X% sure that F>N"'(1 - X) = ~N"'(X)

!

0 We are X% sure that the percentage of losses over T years on a large homogeneous
portfolio will be less than V(X,T):

N[O + /P N"(’X))

vi—p

N

O Vasicek (1987) (published in Risk Magazine, in 2002, as “Loan Portfolio Value”):

0. Vasicek, “Probability of Loss on a Loan Portfolio,”” Working Paper, KMV, 1987.

VIX,T)= \(

0 Xvery close to 1 => Worst Case Default Rate (WCDR)

¥

O Credit-VaR = WCDR x LGD x EAD ———* M. B. Gordy, “A Risk-Factor Model Foundation for Ratings-Based Bank Capital Ra-

tios,” Journal of Financial Intermediation 12 (2003): 199-232.

Jorge Barros Luis | Interest Rate and Credit Risk Models 380



GAUSSIAN COPULA

O Example - Retail loan portfolio:

- Value = 100 M€
- 1yPD=2%

- p=0.1

- RR=60%

N7'o(M) + JpN~'(X) . (N“mm) + V0.1 N“(U.wm) _
(X.T)= N ' V(0.999.1) =N e = 0.128
V(X, T) w( e ) m—) | JT=0.1

.
O 1y Credit-VaR = WCDR x LGD x EAD =0.128 x (1- 0.6) x 100 M€ =5.13 M€
O 1y EL=PD x LGD x EAD =0.02 x (1- 0.6) x 100 M€ = 0.8 M€
0 p=0=>V(X,T) = N(N[Q(T)]) = Q(T) = PD => Credit-VaR = EL
0 p->1=>V(X,T) -> N(cc) -> 1 => Credit-VaR -> LGD x EAD
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GAUSSIAN COPULA

O Portfolio credit loss tends to 1 with the 1y PD, regardless the level of confidence
and the correlation coefficient.

O For very high degrees of confidence (X), credit loss converges to 1 following a
concave curve, at a faster speed and from a higher value with higher correlations.

99.9% Credit-Var for different PDs and Correlations
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GAUSSIAN COPULA

O For lower degrees of confidence, credit loss converges slower to 1, at a faster speed

with higher correlations and degrees of freedom.

EL for different PDs and Correlations Credit Loss for different PDs and Correlations
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GAUSSIAN COPULA

O Basel Il allows banks to calculate their capital requirements for the different
portfolios using internal estimates for PD and LGD, using regulatory formulas based
on the WCDR and assuming different functions for the correlation coefficient.

0 Corporate, Sovereign and Bank Exposures:

1 — exp(—50 x PD | — exp(—50 X PD
eXpOOX D) | 024 |1 - Lo SX0X D)

p=10.12 — —
1 —exp(—50) | —exp(=50)

O Capital Requirement:  FAD x LGD x (WCDR — PD) x MA

1+M-=-235)xb

. . - MA=
O Maturity Adjustment (MA): 1-15xb

0 Where b=0.11852-0.05478 x In(PD)]* and M is the maturity.
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GAUSSIAN COPULA

O Probability of having exactly n defaults (X=n) — average of the conditional

probabilities of n defaults, averaged over the possible realizations of F and weighted
by the probability density function Q(T|f):

PIX =n] = f PIX = nlF = f1Q(TIf)df

O Probability of n defaults, conditional on the realization F = f of the systematic factor:

PIx =niF = 1= (3) ()" (@ -p()" "
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GAUSSIAN COPULA

0 From o(T|F) = N(N_ [Q‘]T’_Ilpw) , we get the probability density function of defaults:

N—n

pox=n= [ () (RN ) (g (DY) i
—eo N 1-p 1—p

O Probability distribution function:

N—n

P[Xﬁm]=;(lx)fj< ( Q(lT)_p ﬂ)) (1‘N< Q(lT)_pw» Q(TIPdf

O These functions are in line with the previous result for independent loans, but

incorporating the copula and the single factor:

bin;N, p) =P[X =n]= N pr =N = v Pl = p)N"
H n' (N —n)!

n ,',V
Bm:N.p) =P|X <=n|= M1 - p)¥ ™,
' I | = Z(W)J /

m=>0
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GAUSSIAN COPULA

Default losses with one-factor model (N=100, N[Q(T)] = 5% for different levels of p:
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0 Increasing asset and default correlation => pdf shift to the left and increase
of the right tail, as very good events (no or very few defaults) become equally
more likely than very bad events (many defaults) => VaR increases with
asset correlation.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models — Models, Pricing and Implementation”, Wiley.
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