
Jorge Barros Luís |  Interest Rate and Credit Risk Models

o Credit spreads of different issuers are correlated through time.

o However, a good model for the default correlations across firms is still an open
challenge for credit risk researchers.

o Correlations across equities are considerably higher than observed default
correlations.

o Two patterns are found in time series of spreads:

1) Spreads vary smoothly with general macroeconomic factors in a correlated fashion.

Cyclical correlation between defaults

2) Jumps are common on several firm credit spreads. This suggests that the sudden
variation in the credit risk of one issuer, which causes the jump in first place, can
propagate to other issuers as well.

5. DEFAULT CORRELATION MODELS

357



Jorge Barros Luís |  Interest Rate and Credit Risk Models

5. DEFAULT CORRELATION MODELS

358



Jorge Barros Luís |  Interest Rate and Credit Risk Models

5. DEFAULT CORRELATION MODELS

o Conditional probabilities: o Correlation coefficient:
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Dividing pA|B by pB

COV(A,B)/( )

P=PP+COV(A,B)
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5. DEFAULT CORRELATION MODELS

o Calculation of default correlation:
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o Calculation of default correlation:
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Independent Defaults
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Independent Defaults

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

Distribution of default losses under independence
(number of obligors =100 and p =0,05)
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o This example shows that the tail of the distribution is very thin

o The Credit‐VaR for very high degrees of confidence is achieved at a low number of
defaults:

‐ 99% VaR = 11 defaults

‐ 99,9% VaR = 13 defaults

‐ 99,99% VaR = 15 defaults
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o The number of defaults corresponding to a Credit‐VaR for very high degrees of
confidence increases with the PD:
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Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

Independent Defaults
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o The dispersion of the No. defaults distribution also increases with the PD:
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Perfectly Correlated Defaults

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.

Perfectly dependent defaults
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BINOMIAL EXPANSION TECHNIQUE (BET)
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o Independent defaults:
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o Perfectly dependent defaults:
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BINOMIAL EXPANSION TECHNIQUE (BET)
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↔ Loss (x) = No. of defaults x Loss with each default
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BINOMIAL EXPANSION TECHNIQUE (BET)
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o Independence between defaults => N’ = N with loss amount from each default
event L’ = L

o Perfect dependence between defaults => N’ = 1 with loss amount from each default
event L’ = N x L

o It is convenient to calculate intermediate degrees of dependence assuming that we
have N’ = D < N independent debtors with losses L’ = LN/D each.
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BINOMIAL EXPANSION TECHNIQUE (BET)

372

o In a portfolio of N debtors with a total exposure of K and p as the average
individual PD, the BET loss distribution with a diversity score D is:

o With N = 100:

‐ D = 100 <‐> we have 100 independent debtors with potential losses of L each

‐ D = 50 <‐> we have 50 independent debtors with potential losses of 2L each

‐ D = 1 <‐> we have perfect dependency between all exposures, with a
potential losses of N x L

from
with
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BINOMIAL EXPANSION TECHNIQUE (BET)
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o Lower diversity scores => less continuous distributions and higher probability
attached to higher losses => more concentrated portfolios are riskier.

Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.
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o Moody’s starts by assuming perfect diversification (D = N).

o D is adjusted downwards according to:

(i) Exposure sizes:

‐ Large exposures are penalized (portfolios with identical exposures are not
adjusted).

(ii) Industry diversification

(iii) Regional diversification
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GAUSSIAN COPULA
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o Defining t1 and t2 as the time to default of companies 1 and 2, respectively, if these variables
are not normally distributed, we may transform them into new variables x1 and x2:

where

Q1 and Q2 – cumulative probability distributions for t1 and t2

N‐1 – inverse of the cumulative normal distribution

o x1 and x2 ‐ default threshold of each company, determined by the balance sheet structure,
normally distributed, with zero mean and unit standard deviation

o The joint distribution of x1 and x2 is a bivariate normal.

GAUSSIAN COPULA
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GAUSSIAN COPULA
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o This assumption is convenient as it allows to characterize the joint distribution of
t1 and t2 by the cumulative default probability distributions Q1 and Q2, with a
single correlation parameter between x1 and x2 – the copula correlation.

o To avoid defining a different correlation between xi and xj for each pair of
companies i and j, a one‐factor model is often used:

with

F = the common or systematic risk factor – can be viewed as a business cycle indicator

Zi ~ N(0,1), i.i.d. – can be viewed as an idiosyncratic or firm‐specific factor (e.g. quality of
the management, level of innovation)

ai = constant parameters between ‐1 and +1

ai * aj = correlation between xi and xj
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o A default occurs until T when 

o As , PD conditional on the factor F is:
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o With all loans having the same probability distributions of default and the same correlation
=>

corresponds to the % defaults in a homogeneous portfolio by time T as a function of F.

o  drives the weight of the idiosyncratic and systematic components:

  = 0 => the business cycle is irrelevant to explain credit risk, i.e. the PD will not fluctuate.

  = 1 => the business cycle is the only driver of defaults.
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o As F ~ N(0,1), we are X% sure that F >

o We are X% sure that the percentage of losses over T years on a large homogeneous
portfolio will be less than V(X,T) – Worst Case Default Rate (WCDR):

o Vasicek (1987) (published in Risk Magazine, in 2002, as “Loan Portfolio Value”):

o Credit‐VaR = V(X,T) x LGD x EAD
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o As F ~ N(0,1), we are X% sure that F >

o We are X% sure that the percentage of losses over T years on a large homogeneous
portfolio will be less than V(X,T):

o Vasicek (1987) (published in Risk Magazine, in 2002, as “Loan Portfolio Value”):

o X very close to 1 => Worst Case Default Rate (WCDR)

o Credit‐VaR =WCDR x LGD x EAD
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GAUSSIAN COPULA
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o Example ‐ Retail loan portfolio:

‐ Value = 100 M€

‐ 1y PD = 2%

  = 0.1

‐ RR = 60%

o 1y Credit‐VaR =WCDR x LGD x EAD = 0.128 x (1‐ 0.6) x 100 M€ = 5.13 M€

o 1y EL = PD x LGD x EAD = 0.02 x (1‐ 0.6) x 100 M€ = 0.8 M€

o  = 0 => V(X,T) = N(N‐1[Q(T)]) = Q(T) = PD => Credit‐VaR = EL

o  ‐> 1=> V(X,T) ‐> N() ‐> 1 => Credit‐VaR ‐> LGD x EAD
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o Portfolio credit loss tends to 1 with the 1y PD, regardless the level of confidence
and the correlation coefficient.

o For very high degrees of confidence (X), credit loss converges to 1 following a
concave curve, at a faster speed and from a higher value with higher correlations.
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o For lower degrees of confidence, credit loss converges slower to 1, at a faster speed
with higher correlations and degrees of freedom.
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o Basel II allows banks to calculate their capital requirements for the different
portfolios using internal estimates for PD and LGD, using regulatory formulas based
on the WCDR and assuming different functions for the correlation coefficient.

o Corporate, Sovereign and Bank Exposures:

o Capital Requirement:

o Maturity Adjustment (MA):

o Where and M is the maturity.
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o Probability of having exactly n defaults (X=n) – average of the conditional
probabilities of n defaults, averaged over the possible realizations of F and weighted
by the probability density function Q(T|f):

o Probability of n defaults, conditional on the realization F = f of the systematic factor:

| |

| 1
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o From , we get the probability density function of defaults:

o Probability distribution function:

o These functions are in line with the previous result for independent loans, but
incorporating the copula and the single factor:
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GAUSSIAN COPULA
Default losses with one‐factor model (N=100, N[Q(T)] = 5% for different levels of : 

o Increasing asset and default correlation => pdf shift to the left and increase
of the right tail, as very good events (no or very few defaults) become equally
more likely than very bad events (many defaults) => VaR increases with
asset correlation.
Source: Schonbucher, Philipp J. (2003), “Credit Derivatives Pricing Models – Models, Pricing and Implementation”, Wiley.


