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Solutions

1. .

(a) By Itô’s lemma (or Itô’s formula) applied to g(t, x) (it is a C1,2

function):

dg(t, St) =
∂g

∂t
(t, St)dt+

∂g

∂x
(t, St)dSt +

1

2

∂2g

∂x2
(t, St) (dSt)

2

=

[
∂g

∂t
(t, St) + µSt

∂g

∂x
(t, St) +

1

2
(h(t, St))

2 ∂
2g

∂x2
(t, St)

]
dt

+ h(t, St)
∂g

∂x
(t, St)dBt

= 0 + h(t, St)
∂g

∂x
(t, St)dBt,

where we have used (dBt)
2 = dt. Therefore,

Yt = Y0 +

∫ t

0
h(u, Su)

∂g

∂x
(u, Su)dBu,

and since h and ∂g
∂x are continuous and bounded, the process

h(u, Su) ∂g∂x(u, Su) is adapted and the integral of the expected
value of the squared process is finite. Hence, the process be-
longs to the space L2

a,T and therefore Yt is a martingale (it is a
well defined stochastic integral).

(b) We have
dSt = 0.1Stdt+ 0.25StdBt,

which is the SDE of a geometric Brownian motion with µ = 0.1
and σ = 0.25. The solution is (it can be obtained by applying
the Itô formula to f(x) = log(x))

St = S0 exp

[(
µ− 1

2
σ2
)
t+ σBt

]
= S0 exp

[(
0.1− 1

2
(0.25)2

)
t+ 0.25Bt

]
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Therefore
St = S0 exp [0.06875t+ 0.25Bt] .

SinceBt ∼ N (0; t), then log (St) ∼ N (log (S0) + 0.06875t; 0.0625t).

P

(
S2
S0
≤ 1.15

)
= P (exp [0.06875× 2 + 0.25B2] ≤ 1.15)

= P (Z ≤ ln (1.15)) , .

where Z = 0.1375 + 0.25B2 ∼ N (0.1375; 0, 125) .

Therefore: P
(
S2
S0
≤ 1.15

)
= 0.5026.

2. .

(a) 1 + i has lognormal distribution with parameters (µ, σ2). We also
know that E [1 + i] = 1.05 and V ar[1 + i] = 0.004. Therefore

1.05 = exp(µ+ σ2/2)

and
0.004 = exp

(
2µ+ σ2

) (
exp

(
σ2
)
− 1
)
.

From these equations, we get

2µ+ σ2 = 2ln(1.05)

and

σ2 = ln

(
1 +

0.004

(1.05)2

)
.

Then σ2 = 0.003622 and µ = 0.04698.

(b) We know that in this case we have ln(S10) has a normal distribu-
tion with mean 10× µ = 0.4698 and variance 10× σ2 = 0.03622.
Therefore, the P [S10 > 2] = P [ln(S10) > ln(2)] and this can be
calculated as

1− P
[
Z ≤ ln(2)− 0.4698√

0.03622

]
= 1− P [Z ≤ 1.17356] = 0.12.

The probability that ln(1 + i) < ln(1.04) can be calculated using
the normal distribution of ln(1 + i) and therefore

P [ln(1 + i) < ln(1.04)] = P

[
Z <

ln(1.04)− 0.04698√
0.003622

]
= 0.4487

Since the rates of return are independent, the probability that
1 + i < 1.04 in all the 10 years is simply

(0.4487)10 = 0.00033.
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3. .

(a) Let us consider two portfolios. Portfolio A: one European call
option + cash D1e

−r(T1−t) +D2e
−r(T2−t) +Ke−r(T−t)

Portfolio B: one European put option + one dividend paying
share.

At time T, the value of portfolio A is ST − K + D1e
r(T−T1) +

D2e
r(T−T2) +K = ST +D1e

r(T−T1) +D2e
r(T−T2) if ST > K and

D1e
r(T−T1) +D2e

r(T−T2) +K if ST ≤ K.

At time T , the value of portfolio B is 0 + ST + D1e
r(T−T1) +

D2e
r(T−T2) if ST > K andK−ST+ST+D1e

r(T−T1)+D2e
r(T−T2) =

D1e
r(T−T1) +D2e

r(T−T2) +K if ST ≤ K.

Therefore, the portfolios have the same value at maturity. Then,
by the no-arbitrage principle, the porfolios have the same value
for any time t < T , i.e.,

ct +D1e
−r(T1−t) +D2e

−r(T2−t) +Ke−r(T−t) = pt + St.

(b) For the price of the put option we use the Black-Scholes formula
with dividend yield

f(t, St) = Ke−r(T−t)Φ (−d2)− Ste−q(T−t)Φ (−d1) . (1)

and use the data given in the problem with q = 0.2,r = 0.05,T −
t = 1.5, σ = 0.2 and St = 18, K = 20,d1 = −0.124 and d2 =
−0.369. Using the formula and these values, we obtain

price = 2.352.

4. .If r = 5%, then the risk-neutral probability for an up-movement is

q =
er − d
u− d

=
e0.05 − 0.8928

1.12− 0.8928
= 0.6975.

Binomial tree values: 10; 11.2,8.928; 12.544, 10, 7.9709; 14.0493,11.2,
8.928, 7.116436

Payoff function of the derivative (call + put):

Payoff =


8.5− ST if ST < 8.5
0 if 8.5 ≤ ST ≤ 12
ST − 12 ifST > 12

.

Payoff of the derivative: C3

(
u3
)

= 14.0493− 12 = 2.0493, C3

(
u2d
)

=
0, C3

(
ud2
)

= 0, C3

(
d3
)

= 8.5− 7.116436 = 1.383564

Using the usual backward procedure with r = 0.05 and q = 0.6975 :
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At time 2: C2

(
u2
)

= exp(−r)
[
qC3

(
u3
)

+ (1− q)C3

(
u2d
)]

= 1.3597,

C2 (ud) = exp(−r)
[
qC3 (udu) + (1− q)C3

(
ud2
)]

= 0,

C2

(
d2
)

= exp(−r)
[
qC3

(
d2u
)

+ (1− q)C3

(
d3
)]

= 0.3981.

At time 1: C1(u) = exp(−r)
[
qC2

(
u2
)

+ (1− q)C2 (ud)
]

= 0.9021,
C1(d) = exp(−r)

[
qC2 (du) + (1− q)C2

(
d2
)]

= 0.1146.

The Final price (at time 0) isC0 = exp(−r) [qC1 (u) + (1− q)C1 (d)] =
0.6315.

5. .

(a)

In order to have a porfolio with zero delta, ∆p ×N + ∆S×number of
shares= 0. Since ∆p = −0.25 and ∆S = 1, we have

N =
50000

0.25
= 200000.

(b) We have ∆X = 0.3, ∆Y = 0.4, ΓX = 0.15, ΓY = 0.25. Let NX

be the number of derivatives X and NY be the number of derivatives
Y in the portfolio. In order to have a zero delta and a zero gamma
portfolio: {

0.3NX + 0.4NY = 0
200000× 0.1 + 0.15NX + 0.25NY = 0

It is easy to solve this linear system os 2 equations. The solution is{
NX = 533333,
NY = −400000.

6. .

(a) The Vasicek model has the dynamics, under the risk-neutral mea-
sure Q:

dr(t) = α(µ− r(t))dt+ σdW̃ (t)

where W̃ is a standard Brownian motion under Q.

The Cox-Ingersoll-Ross (CIR) model has the dynamics under Q:

dr(t) = α(µ− r(t))dt+ σ
√
r(t)dW̃ (t).

Both models are one-factor models and are time homogeneous
with three parameters. The critical difference between the two
models occurs in the volatility, which is increasing in line with the
square-root of r(t) for the CIR model and it is constant for the
Vasicek model. In the CIR model, since

√
r(t) diminishes to zero
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as r(t) approaches zero, and provided σ2 is not too large (r(t)
will never hit zero provided σ2 ≤ 2αµ), we can guarantee that
r(t) will not hit zero. Consequently all other interest rates will
also remain strictly positive. On the other hand, in the Vasicek
model, there is some probability that the interest rates can be
negative (and in some cases, very negative), since the solution of
the Vasicek model has a normal distribution.

(b) Solve the SDE for the Vasicek model and deduce the form of the
distribution of the zero-coupon bond price for this model

drt = α (µ− rt) dt+ σdW̃t

α, σ > 0 and µ ∈ R.

Solution of the associated ODE dxt = −αxtdt is xt = xe−αt.

Consider the variable change rt = Yte
−αt or Yt = rte

αt.

By the Itô formula applied to f (t, x) = xeαt (wich is a C1,2

function), we obtain

dYt = αrre
αtdt+ eαtdrt +

1

2
× 0.

Replacing the equation of drt and integrating, we have

Yt = x+ µ
(
eαt − 1

)
+ σ

∫ t

0
eαsdBs.

Therefore

rt = µ+ (x− µ) e−αt + σe−αt
∫ t

0
eαsdBs,

Since eαs is a deterministic function (square integrable determin-
istic function), then

∫ t
0 e

αsdBs has Gaussian distribution and all
the other factors are deterministic. Therefore, rt has a normal
distribution and calculating the expected value and the variance
(using the Itô isometry for the variance and the property of zero
expected value for the stochastic integral), we obtain the follow-
ing distribution for rt :

N

[
µ+ (x− µ) e−αt,

σ2

2α

(
1− e−2αt

)]
.

We obtain the invariant stationary distribution, by calculating
the limit when t→∞, which is

N

(
µ,
σ2

2α

)
.
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