Universidade de Lisboa

Instituto Superior de Economia e Gestão

Exercícios

SÉRIES TEMPORAIS PARA FINANÇAS - MESTRADO EAP (2019/2020)

1 Preços e Retornos

1. O gráfico seguinte mostra a cotação do PSI20 no período 2000-2012.

Tendo em conta o gráfico mostre que o retorno anualizado é negativo.

2. Considere os preços de uma acção:

- (a) Calcule R_4 (3) usando as fórmulas R_t (m) = $\frac{P_t P_{t-m}}{P_{t-m}}$ e R_t (m) = $\prod_{j=t-m+1}^{t} (1 + R_j) 1$.
- (b) Calcule r_4 (3) usando as fórmulas r_t (m) = $\log P_t \log P_{t-m}$ e r_t (m) = $r_t + r_{t-1} + ... + r_{t-m+1}$.
- (c) Suponha que os dados são mensais. Calcule o retorno anualizado (com base em retornos contínuos).
- 3. Seja r_t o retorno diário de uma acção em percentagem $(r_t = 100 \log{(P_t/P_{t-1})})$. Suponha que $\{r_t\}$ é uma sequência de v.a. i.i.d. com distribuição $N\left(\mu,\sigma^2\right)$ onde $\mu = 0.03$ e $\sigma^2 = 5$.
 - (a) Qual é a distribuição de $r_t(3) = r_t + r_{t-1} + r_{t-2}$?
 - (b) Calcule $P(r_t(3) < -1)$.
 - (c) Calcule o retorno anualizado e a volatilidade anualizada supondo que se observam 250 preços por ano.

4. Considere:

	Activo A	Activo B
Como os retornos são observados:	diariamente	mensalmente
Média dos retornos	0.01% (média diária)	0.1% (média mensal)

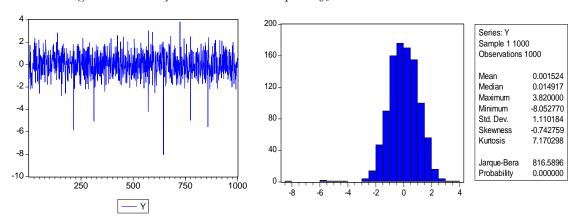
Note: retornos são calculados usando a fórmula $r_t = \log(P_t) - \log(P_{t-1})$ onde P representa o preço.

Verifique qual dos activos apresenta maior rendibilidade anualizada.

- 5. Considere o ficheiro SP500 (3/01/1950-21/12/2012)
 - (a) Obtenha a série dos retornos $\{r_t\}$ onde $r_t = \log(P_t/P_{t-1})$.
 - (b) Calcule o retorno anualizado e a volatilidade anualizada no período total disponível.
 - (c) Calcule o retorno anualizado e a volatilidade anualizada no período 1950-2000.
 - (d) Calcule o retorno anualizado e a volatilidade anualizada no período 2001-2012.

2 Factos Empíricos Estilizados de Séries Temporais Financeiras

1. Analise a seguinte informação sobre a série temporal y_t :



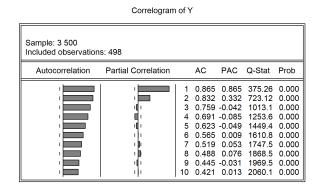
Teste Ljung-Box
$$H_0$$
: Corr $(y_t, y_{t-1}) = ... = \text{Corr}(y_t, y_{t-10}) = 0$, valor-p = 0.86
Teste Ljung-Box H_0 : Corr $(y_t^2, y_{t-1}^2) = ... = \text{Corr}(y_t^2, y_{t-10}^2) = 0$, valor-p = 0.90

Sabe-se que y_t é uma série temporal de dados diários; mas não se sabe se é uma série financeira, macro-económica ou outra. Duas hipóteses estão em confronto. Hipótese F: y é uma série retornos de uma acção ou de um índice bolsista; hipótese NF: y não é uma série retornos de uma acção ou de um índice bolsista. Exponha **todos** os argumentos a favor destas duas hipóteses. Em sua opinião, qual é a hipótese mais credível?

- 2. Concorda ou discorda da seguinte afirmação: "Coeficientes estimados de *kurtosis* altos (acima de 3) implicam a presença do fenómeno *volatility clustering*.
- 3. Concorda ou discorda da seguinte afirmação: "O efeito assimétrico implica uma distribuição assimétrica negativa para os retornos."
- 4. Concorda ou discorda da seguinte afirmação: "Se fortes (baixas) variações são normalmente seguidas de fortes (baixas) variações em ambos os sentidos, então r_t^2 deve estar correlacionado com r_{t-i} (i = 1, 2, ...)".
- 5. Seja r_t o retorno diário de um activo financeiro cotado na bolsa de valores. É razoável esperar que

$$|\operatorname{Corr}(r_t, r_{t-1})| + \dots + |\operatorname{Corr}(r_t, r_{t-100})| > |\operatorname{Corr}(r_t^2, r_{t-1}^2)| + \dots + |\operatorname{Corr}(r_t^2, r_{t-100}^2)|$$
?

6. Considere o seguinte correlograma.



Concorda ou discorda da seguinte afirmação: "Existem fortes indícios de que y é um série financeira".

7. Imagine uma série de rendibilidades diárias associadas a um activo cotado na bolsa de valores. Nestas circunstâncias:

5

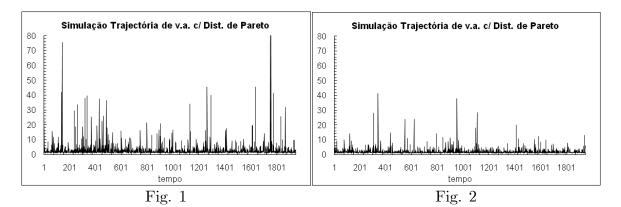
(a) Um valor plausível para a kurtosis é . Justifique o valor.

- (b) Um valor plausível para Corr (r_{t-1}, r_t^2) é . Justifique o valor.
- (c) Um valor plausível para $\frac{P(|r_t-\bar{r}|>3\hat{\sigma})}{P(|Z|>3)}$ onde $Z\sim N\left(0,1\right)$ é ______. Justifique o valor.
- 8. Diga como pode analisar e testar estatisticamente os seguintes aspetos:
 - (a) "Fortes variações dos retornos são normalmente seguidas de fortes variações em ambos os sentidos"
 - (b) "O volume de transações está normalmente correlacionado com volatilidade".
- 9. Considere o seguinte modelo para o preço de um activo cotado na bolsa

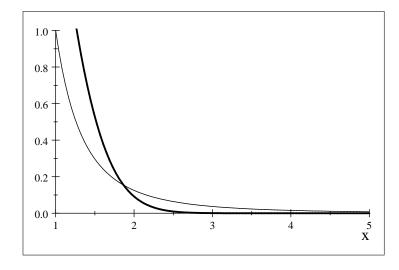
$$\log P_t = \log P_{t-1} + u_t$$

onde u_t é um ruído branco. Poderá este modelo pode captar (ou estimar) a existência de um prémio de risco positivo?

- 10. Considere uma série de preços de uma ação cotada na bolsa. A partir desses preços calcularam-se os retornos **diários** e obteve-se o valor-p da estatística Bera-Jarque. Seja p_d esse valor. De igual forma, a partir dos preços calcularam-se os retornos **semanais** e obteve-se o valor-p da estatística Bera-Jarque. Seja p_s esse valor. Concorda com a seguinte afirmação: "é de esperar que $p_d < p_s$ "? Justifique.
- 11. Foram simuladas duas trajectórias de variáveis aleatórias com distribuição de Pareto $f(y) = \alpha c^{\alpha} y^{-(\alpha+1)}$, y > c = 1. Numa das trajectórias considerou-se $\alpha = 2$ e na outra $\alpha = 1.5$. Qual das figuras seguintes foi simulada com $\alpha = 2$? Justifique devidamente.



12. As curvas apresentadas na figura seguinte representam as abas direitas de duas funções de densidade de probabilidade (fdp). Uma das curvas é proporcional a e^{-x^2} ; a outra é proporcional a $x^{-(\alpha+1)}$, $\alpha > 0$.



Qual das duas funções caracteriza melhor a distribuição marginal de uma série de retornos?

13. Uma classe de distribuições de cauda pesada é definida a partir da mistura de densidades. Considere

$$f(x) = \alpha f_1(x) + (1 - \alpha) f_2(x), \ 0 \le \alpha \le 1$$

onde, $f_1(x)$ é a fdp da $N(0, \sigma_1^2)$ e $f_2(x)$ é a fdp da $N(0, \sigma_2^2)$. Suponha $\alpha = 0.9$, $\sigma_1 = 0.1$ e $\sigma_2 = 3.148$. Sabendo que Y tem fdp f, mostre que P(|Y| > 3) = 0.0340. Compare com P(|Z| > 3), onde $Z \sim N(0, 1)$ e comente.

- 14. Considere uma série financeira de cotações de um índice ou acção.
 - (a) Apresente os gráficos das séries temporais dos preços e dos retornos r_t .
 - (b) Apresente o valor do retorno anualizado r_A , e teste a hipótese do retorno anualizado ser positivo (este retorno deve ser encarado como um parâmetro populacional).
 - (c) Teste a igualdade de médias dos retornos em relação aos dias da semana.
 - (d) Teste a igualdade de médias dos retornos em relação aos meses do ano.
 - (e) Apresente um gráfico da estimativa não paramétrica da fdp dos retornos juntamente com a fdp normal.
 - (f) Calcule o estimador de Hill para a aba esquerda e direita da distribuição de retornos.
 - (g) Estime os primeiros 20 coeficientes de autocorrelação dos retornos e teste a nulidade dos primeiros 20 coeficientes de autocorrelação. Comente os resultados.
 - (h) Estime os primeiros 200 coeficientes de autocorrelação dos retornos absolutos, i.e. de $|r_t|$. Comente os resultados.
 - (i) Faça os seguintes ensaios:

i.
$$H_0: k = 3$$
.

ii.
$$H_0: sk = 0$$
.

iii.
$$H_0: k = 3 \text{ e } sk = 0.$$

iv.
$$H_0: Corr(r_t^2, r_{t-1}) = 0.$$

- (j) Tendo em conta as alínea anteriores, identifique alguns dos "factos empíricos estilizados".
- (k) Repita o exercício para dados mensais.

3 Modelação da Heterocedasticidade Condicionada - Caso Univariado

- 1. Seja $\{y_t\}$ uma série temporal. Concorda com a seguinte afirmação: "se y é um processo não linear (por exemplo, um ARCH) então a FAC e a FACP de y não permitem identificar o modelo probabilístico subjacente a y".
- 2. Depois de estimado um certo modelo realizou-se o teste multiplicador de Lagrange de Engle cujos resultados estão apresentados na tabela seguinte.

ARCH Test:			
F-statistic	0.133345	Probability	0.984719
Obs*R-squared	0.668998	Probability	0.984627

Test Equation: Dependent Variable: RESID^2 Method: Least Squares

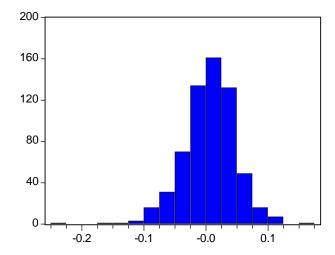
Included observations: 1571 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1) RESID^2(-2) RESID^2(-3)	6.58E-08 0.020564 0.000127 -0.001061 -0.001119	3.69E-08 1.780103 0.025278 0.813521 0.025283 0.005006 0.025283 -0.041955		0.0753 0.4160 0.9960 0.9665
RESID^2(-4)	-0.001119	0.025283	-0.044256	0.9647
RESID^2(-5)		0.025278	-0.022776	0.9818
R-squared	0.000426	Mean dependent var		6.70E-08
Adjusted R-squared	-0.002768	S.D. dependent var		1.45E-06
S.E. of regression	1.46E-06	Akaike info criterion		-24.03676
Sum squared resid	3.32E-09	Schwarz criterion		-24.01630
Log likelihood	18886.88	F-statistic		0.133345
Durbin-Watson stat	2.000002	Prob(F-statistic)		0.984719

Verifique se existe evidência estatística de efeito ARCH.

3. Para estudar os retornos mensais do índice S&P 500 no período Julho de 1954 a Maio de 2006 estimaram-se dois modelos (modelo I e II). Os modelos incluem as seguintes variáveis dummy:

$$\begin{array}{rcl} \mathrm{SET} & = & \left\{ \begin{array}{l} 1 & \mathrm{se}\ t\ \mathrm{corresponde}\ \mathrm{a}\ \mathrm{Setembro} \\ 0 & \mathrm{outros}\ \mathrm{casos} \end{array} \right. \\ \mathrm{OUT87} & = & \left\{ \begin{array}{l} 1 & \mathrm{se}\ t\ \mathrm{corresponde}\ \mathrm{a}\ \mathrm{Out.1987} \\ 0 & \mathrm{outros}\ \mathrm{casos} \end{array} \right. \end{array}$$



Series: R Sample 1954M07 2006M05 Observations 623				
Mean	0.006055			
Median	0.009064			
Maximum	0.151043			
Minimum	-0.245428			
Std. Dev.	0.041904			
Skewness	-0.579596			
Kurtosis	5.433204			
Jarque-Bera	188.5666			
Probability	0.000000			

Modelo I

Dependent Variable: R Method: Least Squares

Sample (adjusted): 1954M12 2006M05

White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable	Coefficient	Std. Error t-Statistic		Prob.
C	0.007211	0.001725 4.17941		0.0000
SET	-0.019060	0.006113 -3.11785		0.0019
R(-5)	0.101825	0.040983 2.48460		0.0132
OUT87	-0.253252	0.001677 -151.009		0.0000
R-squared	0.083949	Mean dependent var		0.005847
Adjusted R-squared	0.079474	S.D. dependent var		0.041776
S.E. of regression	0.040082	Akaike info criterion		-3.589343
Sum squared resid	0.986417	Schwarz criterion		-3.560692
Log likelihood	1113.107	F-statistic		18.75622
Durbin-Watson stat	2.004844	Prob(F-statistic)		0.000000

_	ARCH Test:				
	F-statistic Obs*R-squared	3.809286 36.46783	Probability Probability		0.000053 0.000070
	Test Equation: Dependent Variable: I Method: Least Square				
	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	С	0.000952	0.000177	5.386259	0.0000
	RESID^2(-1)	0.082923	0.056271	1.473640	0.1411
	RESID^2(-2)	0.084488	0.050719	1.665822	0.0963
	RESID^2(-3)	0.127261	0.061940	2.054581	0.0404
	RESID^2(-4)	-0.018052	0.036482	-0.494806	0.6209
	RESID^2(-5)	0.041309	0.035902	1.150603	0.2504
	RESID^2(-6)	0.088388	0.042430	2.083174	0.0377
	RESID^2(-7)	-0.060176	0.032040	-1.878148	0.0608
	RESID^2(-8)	-0.044494	0.040461	-1.099684	0.2719
	RESID^2(-9)	0.006290	0.040704	0.154531	0.8772

0.048278

2.027224

0.0431

0.097871

RESID^2(-10)

Modelo II

Dependent Variable: R
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 1954M12 2006M05
Included observations: 618 after adjustments
Bollerslev-Wooldrige robust standard errors & covariance

	Coefficient	Std. Error	z-Statistic	Prob.
C	0.007280	0.001619 4.49744		0.0000
SET	-0.014501	0.005507 -2.63316		0.0085
R(-5)	0.095225	0.039378 2.41819		0.0156
OUT87	-0.253332	0.001574 -160.977		0.0000
	Variance	Equation		
C	0.000112	5.33E-05	2.099832	0.0351
RESID(-1)^2	0.083939	0.028061	2.991251	0.0028
GARCH(-1)	0.847647	0.059015	14.36334	0.0000
R-squared	0.082925	Mean dependent var		0.005847
Adjusted R-squared	0.073919	S.D. dependent var		0.041776
S.E. of regression	0.040202	Akaike info criterion		-3.622529
Sum squared resid	0.987520	Schwarz criterion		-3.572391
Log likelihood	1126.361	F-statistic		9.208061
Durbin-Watson stat	2.003605	Prob(F-statistic)		0.000000

Correlogram of Standardized Residuals

Sample: 1954M12 2006M05 Included observations: 618						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		2 3 4 5 6 7 8 9	-0.012 0.039 0.013 -0.007 -0.050 -0.005 -0.002 0.041 -0.002	-0.006 -0.051 -0.007 -0.003 0.046 0.001	0.1815 1.1344 1.2415 1.2742 2.8199 2.8330 2.8369 3.9145 3.9162	0.871 0.938 0.831 0.900 0.944 0.917 0.951
		12 13 14	0.021 -0.044 -0.041	-0.042		0.979

Sample: 1954M12 2006M05 Included observations: 618						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		2 3 4 5 6 7 8 9 10 11	-0.008 0.029 -0.034 0.013 0.084 -0.031 -0.011 0.014 0.068 0.012 0.039	-0.012 0.028 -0.031 0.010 0.085 -0.019 -0.014 0.009 0.077 0.018 0.035	8.8526 8.9246 9.0455 11.977 12.064 13.038	0.120 0.294 0.393 0.447 0.576 0.220 0.263 0.349 0.433 0.287 0.359 0.366
1)1		13 14 15	0.020	0.037 0.030 -0.024	13.608 13.856 14.140	0.402 0.460 0.515

- (a) Faça o teste multiplicador de Lagrange (teste de Engle) (escreva a hipótese nula). O que pode concluir?
- (b) Quais as estimativas que escolheria para a média condicional: as do modelo I ou as do modelo II? Justifique.
- (c) Por que razão o modelo II foi estimado com a opção "Bollerslev-Wooldridge robust standard errors & covariance"?
- (d) Que conclusões pode retirar das duas últimas tabelas (a seguir à estimação do modelo II)? Formule as hipóteses nulas.
- (e) Considere as estatísticas que constam da figura I. Se tivesse considerado dados diários esperaria obter aproximadamente os mesmos valores para a média, variância e coeficiente de *kurtosis*? Ou esperaria que os valores para essas estatísticas fossem maiores ou menores? Justifique.

4. Considere:

-feira.

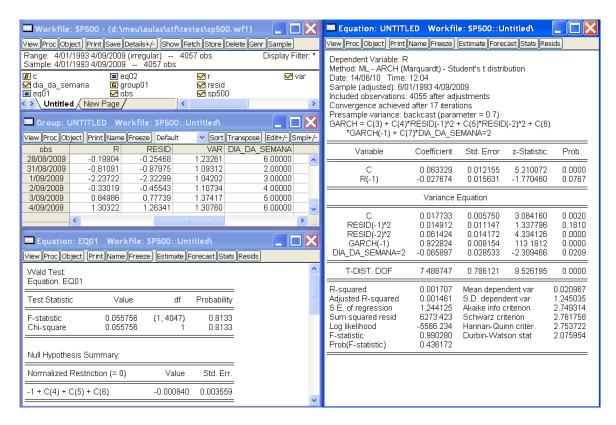
(a) r - série dos retornos diários do SP500;

dia_da_semana assume os valores 2,3,...,6 consoante o dia da semana (segunda, terça,...,sexta). dia_da_semana=2 é uma variável dummy.que assume o valor 1 se o dia corresponde a uma segunda

var representa a série das variâncias condicionadas no período de estimação.

Com base no output seguinte,

- (b) Obtenha a previsão da variância condicional a dois passos.
- (c) Considere o teste de Wald apresentado numa das janelas. Escreva as hipóteses nula e alternativa associadas ao teste e retire as conclusões estatísticas. Concorda com a afirmação: "sob a hipótese nula os estimadores de máxima verosimilhança são inconsistentes"?



5. Na figura seguinte apresentam-se os resultados de estimação do retorno do NASDAQ (Período: 12/10/1984 a 21/12/2004, 5066 obs.)

Dependent Variable: RETORNO Method: ML - ARCH (Marquardt) - Normal distribution Included observations: 5063 after adjustments Convergence achieved after 30 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
С	0.000703	0.000150	4.692919	0.0000
SEGUNDA	-0.001547	0.000290	-5.334311	0.0000
QUARTA	0.000816	0.000266	3.074664	0.0021
RETORNO(-1)	0.172979	0.015571	11.10877	0.0000
	Variance	Equation		
С	3.96E-06	9.77E-07	4.055530	0.0001
RESID(-1)^2	0.063598	0.009189	6.921289	0.0000
RESID(-1)^2*(RESID(-1)<0)	0.140397	0.011611	12.09180	0.0000
GARCH(-1)	0.812864	0.009463	85.89974	0.0000
SEGUNDA	3.63E-06	1.78E-06	2.040244	0.0413
QUARTA	-1.03E-05	2.83E-06	-3.636438	0.0003
QUINTA	-4.55E-06	1.85E-06	-2.463333	0.0138
VOL_EST(-1)	7.29E-06	8.47E-07	8.607166	0.0000
R-squared	-0.007505	Mean dependent var		0.000427
Adjusted R-squared	-0.009699	S.D. dependent var		0.014328
S.E. of regression	0.014397	Akaike info c	riterion	-6.334065
Sum squared resid	1.046928	Schwarz crite	erion	-6.318588
Log likelihood	16046.69	Durbin-Watso	on stat	2.213909

Sabe-se que a última observação disponível é uma terça-feira e, nesse dia, registaram-se os seguintes valores: $y_n = 0.010779$, $\hat{u}_n = 0.010519$, $\hat{\sigma}_n^2 = 0.000176$, $vol_est_n = 3.511798$ (volume estandardizado).

- (a) Escreva o modelo teórico subjacente ao modelo estimado (considere y= retorno) e identifique a distribuição assumida para os $\varepsilon's$.
- (b) Discuta o efeito dos dias da semana na média e na variância condicional.
- (c) Calcule

$$\mathrm{E}\left[y_{t}|\operatorname{segunda}_{t}=1\right], \qquad \mathrm{E}\left[y_{t}|\operatorname{quarta}_{t}=1\right], \qquad \mathrm{E}\left[y_{t}|\operatorname{sexta}_{t}=1\right].$$

(d) Assuma $E[vol \ est] = 1$. Calcule

$$\operatorname{Var}\left[y_{t} | \operatorname{segunda}_{t} = 1\right], \quad \operatorname{Var}\left[y_{t} | \operatorname{quarta}_{t} = 1\right], \quad \operatorname{Var}\left[y_{t} | \operatorname{sexta}_{t} = 1\right]$$

- (e) Obtenha a previsão para y_t onde t = n + 1, n + 2 e n + 3
- (f) Calcule a previsão para σ_t^2 onde t = n + 1, n + 2 e n + 3. Nas previsões a dois e a três passos assuma $vol_est_{n+1} = vol_est_{n+2} = vol_est_n$.
- 6. Seja y o retorno diário (período 11/Out/84 a 2/Set/05) associado ao índice NASDAQ. Considere os modelos 1, 2 e 3.

$$BM_t \ (black \ monday) = \left\{ \begin{array}{ll} 1 & \text{se } t \text{ corresponde a 19, 20, 21, 22 ou 23 de Outubro de 1997} \\ 0 & \text{outros casos} \end{array} \right.$$

(a variável BM identifica a semana onde ocorreu o crash bolsista de Outubro de 1997).

 $\mathrm{HL}_t = \mathrm{high}_t - \mathrm{low}_t$, $\mathrm{high}_t = \mathrm{low}_t$ são respectivamente o valor mais alto e mais baixo do índice observado durante o dia t.

- (a) As estimativas dos modelos 1 e 2 são diferentes, apesar das variáveis explicativas serem as mesmas (na equação da média e da variância). Porquê? Refira-se às propriedades de consistência e de eficiência dos estimadores envolvidos.
- (b) Compare os modelo 2 e 3 quanto à "parcimónia" e "precisão". Identifique o modelo mais "parcimonioso" e o mais "preciso". Com base nestes critérios, qual dos dois modelos (2 e 3) escolheria?

NOTA: Nas questões seguintes considere o modelo 3.

- (c) Interprete os coeficientes associados a BM (na equação da média e da variância) e analise a sua significância. Num quarto modelo (resultados não apresentados) experimentou-se o terceiro modelo sem a variável "RESID(-1)^2*RESID(-1)<0". Como resultado, a estimativa associada a BM na variância mostrou-se mais significativa (isto é, o rácio-t em módulo aumentou). Indique uma possível explicação.
- (d) Qual (ou quais) o(s) dia(s) da semana onde a rendibilidade é, em média, mais alta? E mais baixa? Qual (ou quais) o(s) dia(s) da semana onde a volatilidade é, em média, mais alta? E mais baixa?
- (e) O sinal da estimativa do coeficiente associado a HL é o esperado? Justifique.
- (f) Obtenha a previsão a dois passos para y (momentos n+1 e n+2) sabendo que a última observação disponível é uma sexta-feira e, nesse dia, se observou o seguinte:

$$y_n = -0.003$$

(g) Obtenha a previsão a um passo para a variância condicionada sabendo que:

$$\hat{u}_n = -0.004, \qquad HL_n = 12.94, \qquad \hat{\sigma}_n^2 = 0.000098$$

Modelo 1 Modelo 2

Dependent Variable: Y
Method: ML - ARCH (Marquardt) - Normal distribution
Included observations: 5242 after adjustments
Bollerslev-Wooldrige robust standard errors & covariance

	Coefficient	Std. Error	z-Statistic	Prob.
C	-0.000634	0.000280	-2.266869	0.0234
Y(-1)	0.159423	0.014835	10.74633	0.0000
TER	0.001196	0.000371	3.223762	0.0013
QUA	0.002216	0.000357	6.198392	0.0000
QUI	0.001578	0.000371	4.254999	0.0000
SEX	0.001528	0.000376	4.067297	0.0000
BM	-0.046719	0.040034	-1.166979	0.2432
	Variance	Equation		
С	6.66E-06	4.59E-06	1.449592	0.1472
RESID(-1)^2	0.103038	0.014539	7.087258	0.0000
GARCH(-1)	0.822135	0.020743	39.63483	0.0000
TER	-4.05E-06	7.72E-06	-0.524283	0.6001
QUA	-1.11E-05	5.74E-06	-1.937437	0.0527
QUI	-6.59E-06	5.31E-06	-1.241204	0.2145
SEX	-7.48E-07	8.07E-06	-0.092662	0.9262
BM	0.001024	0.000835	1.225465	0.2204
HL(-1)	5.15E-07	9.65E-08	5.337689	0.0000
R-squared	0.000245	Mean dependent var		0.000413
Adjusted R-squared	-0.002624	S.D. depende	ent var	0.014157
S.E. of regression	0.014175	Akaike info c	riterion	-6.349016
Sum squared resid	1.050096	Schwarz criterion		-6.328980
Log likelihood	16656.77	F-statistic		0.085448
Durbin-Watson stat	2.206552	Prob(F-statistic)		0.999999

Dependent Variable: Y Method: ML - ARCH (Marquardt) - Student's t distribution Included observations: 5242 after adjustments

	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.000495	0.000244	-2.030007	0.0424
Y(-1)	0.155979	0.014670	10.63251	0.0000
TER	0.001188	0.000340	3.495186	0.0005
QUA	0.002143	0.000332	6.449250	0.0000
QUI	0.001673	0.000327	5.112804	0.0000
SEX	0.001714	0.000334	5.132336	0.0000
BM	-0.056380	0.013589	-4.149081	0.0000
	Variance	Equation		
С	5.51E-06	2.39F-06	2 302453	0.0213
RESID(-1)^2	0.089098	0.010058	8.858508	0.0000
GARCH(-1)	0.841762	0.013698	61.44986	0.0000
TER	-1.70E-06	4.27E-06	-0.397519	0.6910
QUA	-8.93E-06	3.86E-06	-2.316245	0.0205
QUI	-5.35E-06	3.55E-06	-1.505108	0.1323
SEX	-4.91E-06	3.72E-06	-1.321313	0.1864
BM	0.000805	0.000395	2.039192	0.0414
HL(-1)	5.44E-07	8.11E-08	6.713897	0.0000
T-DIST. DOF	7.594247	0.671885	11.30289	0.0000
R-squared	-0.001175	Mean dependent var		0.000413
Adjusted R-squared	-0.004240	S.D. depende		0.014157
S.E. of regression	0.014187	Akaike info c	riterion	-6.387044
Sum squared resid	1.051588	Schwarz crite	-6.365755	
Log likelihood	16757.44	Durbin-Watso	on stat	2.197513

Modelo 3

Dependent Variable: Y

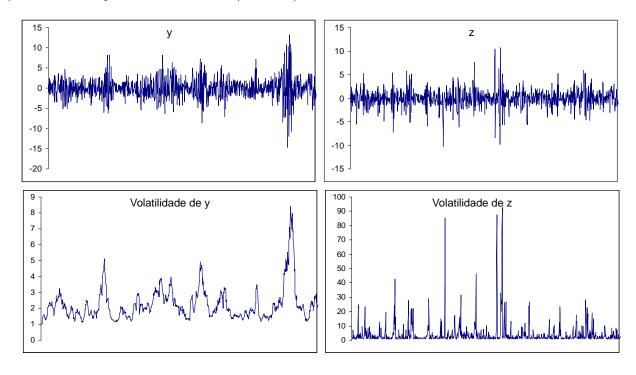
Method: ML - ARCH (Marquardt) - Student's t distribution

Included observations: 5242 after adjustments

	Coefficient	Std. Error	z-Statistic	Prob.			
С	-0.000534	0.000237	-2.248188	0.0246			
Y(-1)	0.160906	0.014799	10.87258	0.0000			
TER	0.001079	0.000328	3.291703	0.0010			
QUA	0.002112	0.000319	6.624500	0.0000			
QUI	0.001582	0.000325	4.869947	0.0000			
SEX	0.001664	0.000339	4.907460	0.0000			
BM	-0.059032	0.014622	-4.037293	0.0001			
Variance Equation							
С	2.73E-06	7.29E-07 3.749794		0.0002			
RESID(-1)^2	0.042726	0.011570	0.0002				
RESID(-1)^2*(RESID(-1)<0)	0.101943	0.017114	0.0000				
GARCH(-1)	0.826632	0.017114 5.956655 0.014149 58.42538		0.0000			
QUA	-5.84E-06	3.10E-06 -1.882604		0.0598			
ВМ	0.000833	0.000452	1.843104	0.0653			
HL(-1)	5.83E-07	8.09E-08	7.202286	0.0000			
T-DIST. DOF	8.120120	0.743425	10.92259	0.0000			
R-squared	-0.002421	Mean dependent var		0.000413			
Adjusted R-squared	-0.005105	S.D. depende	ent var	0.014157			
S.E. of regression	0.014193	Akaike info criterion		-6.394088			
Sum squared resid	1.052897	Schwarz criterion		-6.375304			
Log likelihood	16773.91	Durbin-Wats	on stat	2.206637			

7. Nos gráficos seguintes estão representadas duas séries temporais $(y \in z)$ e as respectivas volatilidades estimadas

(ambas as séries possuem efeitos ARCH/GARCH).



Qual das séries exibe maior dependência temporal da volatilidade?

8. Para estudar os retornos diários da cotação IBM obtiveram-se os seguintes resultados

Dependent Variable: R Method: ML - ARCH (Marquardt) - Student's t distribution Included observations: 11156 after adjustments

	Coefficient	Std. Error z-Statistic		Prob.		
C	0.058934	0.026023	2.264677	0.0235		
TER	-0.023163	0.036713	-0.630932	0.5281		
QUA	-0.060686	0.035578	-1.705738	0.0881		
QUI	-0.094204	0.035625	-2.644295	0.0082		
SEX	-0.063007	0.036022	-1.749152	0.0803		
JAN	0.032624	0.037617	0.867262	0.3858		
Variance Equation						
C RESID(-1)^2*(RESID(-1)<0) GARCH(-1) VOL(-1) TER QUA QUI SEX	0.159397	0.049791	3.201327	0.0014		
	0.031524	0.004490	7.020474	0.0000		
	0.043304	0.006572	6.588806	0.0000		
	0.938043	0.004712	199.0711	0.0000		
	0.146484	0.022031	6.648994	0.0000		
	-0.038917	0.091006	-0.427636	0.6689		
	-0.334158	0.085922	-3.889099	0.0001		
	-0.169021	0.079195	-2.134248	0.0328		
	-0.123027	0.079473	-1.548033	0.1216		
T-DIST. DOF	6.238264	0.302559	20.61836	0.0000		
R-squared	0.000414	Mean dependent var		0.030201		
Adjusted R-squared	-0.000932	S.D. dependent var		1.634094		
S.E. of regression	1.634856	Akaike info criterion		3.510571		
Sum squared resid	29774.47	Schwarz criterion		3.521069		
Log likelihood	-19565.97	F-statistic		0.307531		
Durbin-Watson stat	2.031709	Prob(F-statistic)		0.994917		

onde, R representa os retornos diários, TER, QUA, etc. são variáveis dummies que captam o efeito do dia da semana, JAN é uma variável dummy que capta o efeito do mês de Janeiro e

$$VOL_t = \log (\text{volume}_t) - \log (\text{volume}_{t-1})$$

sendo "volume" o volume de transações.

NOTA: nos casos apropriados, formule as hipóteses estatísticas que permitem discutir as questões.

- (a) Para certas acções detecta-se um aumento das rendibilidades em Janeiro (por motivos fiscais tende-se a vender em Dezembro e a comprar em Janeiro). Verifique se os dados suportam este efeito.
- (b) Comente a afirmação "um aumento ceteris paribus do volume de transações tende a aumentar a volatilidade".
- (c) Descreva sucintamente o efeito assimétrico e verifique se esse efeito está presente na série em estudo.
- (d) Concorda com a afirmação: "o modelo é inaceitável pois o R-square é muito baixo"?
- (e) Quais as estimativas que viriam diferentes se fosse usado o método de pseudo máxima verosimilhança baseado na distribuição normal? Justifique
- (f) Apresente uma estratégia de compra e venda de acções da IBM com base nos resultados do modelo. Justifique.
- 9. Considere o seguinte Output onde se estima um modelo para as rendibilidades do PSI 20:

Dependent Variable: R

Method: ML - ARCH (Marquardt) - Student's t distribution

Sample: 4/01/2002 31/05/2007 Included observations: 1376

	Coefficient	Std. Error	z-Statistic	Prob.			
C MA(1)	0.071494 0.050038	0.016352 0.027302	4.372331 1.832744	0.0000 0.0668			
Variance Equation							
С	0.003036	0.009827	0.308921	0.7574			
RESID(-1)^2	0.039957	0.018699	2.136914	0.0326			
RESID(-1)^2*(RESID(-1)<0)	0.055215	0.023645	2.335145	0.0195			
GARCH(-1)	0.903125	0.018724	48.23364	0.0000			
ABS_AMPL(-1)	0.000239	0.000196	1.217098	0.2236			
HOLIDAYS	0.110723	0.058033	1.907920	0.0564			
T-DIST. DOF	6.530626	1.106313	5.903056	0.0000			

ABS_AMPL_t representa a amplitude high-low (isto é a diferença entre a cotação máxima e a cotação mínima registada no dia t. HOLIDAYS_t é uma variável dummy que assume o valor 1 se o dia t-1 (i.e., no dia anterior) houve um feriado.

- (a) Escreva o modelo teórico subjacente (i.e., escreva as equações que descrevem o modelo) e identifique a média condicional, a variância condicional e a distribuição condicional.
- (b) Analise a significância estatística dos coeficientes associados a ABS_AMPL e a HOLIDAYS. Use um nível de significância de 10%. Escreva as hipóteses nulas e alternativas.
- 10. Em Abril de 2010 ocorreu uma explosão na plataforma petrolífera Deepwater Horizon no Golfo do México (Estados Unidos). A plataforma estava sob a responsabilidade da companhia BP (British Petroleum). A explosão matou 11 trabalhadores e provocou o derramamento de petróleo durante meses. Para avaliarmos as implicações deste evento nas cotações da empresa BP realizou-se um estudo econométrico com as seguintes variáveis:

RETURNS_BP: retornos diários das ações da BP; **RETURNS_MARKET**: retornos do índice bolsista FTSE100; **RETURNS_OIL**: variações do preço do petróleo no mercado internacional; **LEAK**: variável dummy que assume o valor 1 durante o período em que houve derramamento de petróleo. Obtiveram-se os seguintes resultados:

Dependent Variable: RETURNS_BP Method: ML - ARCH (Marquardt) - Normal distribution Sample: 21/05/1987 15/03/2011

Included observations: 5899

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
C	0.024894 0.016277 0.615100 0.012546 0.124924 0.006330 -2.083357 0.505492		1.529391	0.1262		
RETURNS_MARKET			49.02592	0.0000		
RETURNS_OIL			19.73539	0.0000		
LEAK			-4.121446	0.0000		
Variance Equation						
C	0.030927	0.003828	8.080129	0.0000		
RESID(-1)^2	0.027338	0.004347	6.288740	0.0000		
RESID(-1)^2*(RESID(-1)<0)	0.044633	0.006221	7.174912	0.0000		
GARCH(-1)	0.934073	0.004233	220.6833	0.0000		
LEAK	1.207213	0.269741	4.475445	0.0000		

Discuta o impacto que o derramamento de petróleo teve nas cotações da BP. Fundamente as suas conclusões com base em testes estatísticos.

11. Consideraram-se 3 modelos para estimar os retornos do PSI20 no período 04/01/1993-04/09/2009 (4055 observações diárias) (os retornos foram multiplicados por 100, i.e. $r_t = \log(P_t/P_{t-1}) \times 100$).

$$M1 \left\{ \begin{array}{l} r_{t} = c + \phi r_{t-1} + u_{t} \\ u_{t} = \sigma_{t} \varepsilon_{t}, \quad \varepsilon_{t} \sim N\left(0,1\right) \\ \sigma_{t}^{2} = \omega + \alpha u_{t-1}^{2} + \beta \sigma_{t-1}^{2} \end{array} \right. \quad M2 \left\{ \begin{array}{l} r_{t} = c + \phi r_{t-1} + u_{t} \\ u_{t} = \sigma_{t} \varepsilon_{t}, \quad \varepsilon_{t} \sim t\left(v\right) \\ \sigma_{t}^{2} = \omega + \alpha u_{t-1}^{2} + \beta \sigma_{t-1}^{2} \end{array} \right. \quad M3 \left\{ \begin{array}{l} r_{t} = c + \phi r_{t-1} + u_{t} \\ u_{t} = \sigma_{t} \varepsilon_{t}, \quad \varepsilon_{t} \sim t\left(v\right) \\ \sigma_{t}^{2} = \omega + \alpha \left(u_{t-1} - \gamma\right)^{2} + \beta \sigma_{t-1}^{2} \end{array} \right.$$

Em todos os casos assume-se que ε_t é independente de u_{t-k} , $k \in \mathbb{N}$ e $\mathrm{E}(\varepsilon_t) = 0$ e $\mathrm{Var}(\varepsilon_t) = 1$. Os resultados da estimação (através do programa GAUSS) foram:

MODELO M1

Mean log-likelihood -1.31369

Covariance of the parameters computed by the following method: QML covariance matrix

Parameters	Estimates	Std. err.
С	0.0582	0.0142
phi	0.1241	0.0220
W	0.0187	0.0078
alfa	0.1755	0.0507
beta	0.8278	0.0431
AIC 2	.6298547	
SC 2	.6376308	

Todos os modelos foram estimados pelo método da quase máxima verosimilhança (embora usando-se diferentes pseudo verdadeiras densidades - normal no modelo 1 e t-Student nos modelos 2 e 3).

- (a) Compare os resultados de estimação do modelo 1 e 2. Refira-se às vantagens em se assumir uma distribuição t-Student para os erros.
- (b) Justique o interesse da especificação $\sigma_t^2 = \omega + \alpha (u_{t-1} \gamma)^2 + \beta \sigma_{t-1}^2$ (modelo M3) face à especificação usual GARCH(1,1).
- (c) Considere

$$r_{n-1} = 0.99,$$
 $r_n = 0.97$
$$\hat{\mu}_{n-1} = \hat{c} + \hat{\phi}r_{n-2} = -0.153,$$

$$\hat{\mu}_n = \hat{c} + \hat{\phi}r_{n-1} = 0.162$$

$$\hat{\sigma}_{n-1}^2 = 0.967$$

$$\hat{\sigma}_n^2 = 0.993.$$

Com base nos resultados do modelo 3, determine um intervalo de previsão para r_{n+1} a 95%.

MODELO M2

Mean log-likelihood

-1.26936

Covariance of the parameters computed by the following method: QML covariance matrix

Parameters	Estimates	Std. err.
С	0.0493	0.0102
phi	0.1193	0.0170
W	0.0098	0.0038
alfa	0.1338	0.0299
beta	0.8711	0.0268
v (graus lib.	5.3621	0.4839
AIC 2.54	416849	
SC 2.5	510162	

MODELO M3

Mean log-likelihood

-1.26832

Covariance of the parameters computed by the following method: QML covariance matrix

Parameters	Estimates	Std. err.
С	0.0435	0.0105
phi	0.1199	0.0170
W	0.0096	0.0038
alfa	0.1328	0.0281
beta	0.8697	0.0259
gamma	0.1122	0.0393
v (graus lib	.) 5.3654	0.4813
AIC 2.	5400895	
SC 2.	5509760	

- (d) Com base nos resultados do modelo 3 obtenha uma estimativa do retorno anualizado.
- (e) Com base no modelo 3 obtenha a expressão de $Var(r_t)$ como função dos parâmetros do modelo. Que condição ou condições deve impôr para que $Var(r_t)$ exista?
- 12. Considere o seguinte output obtido a partir de uma série de retornos diários de um título cotado na bolsa de valores:

Dependent Variable: R Method: ML - ARCH (Marquardt) - Student's t distribution Sample (adjusted): 5/01/2000 21/02/2012 Included observations: 2885 after adjustments

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C R(-1)	3.37E-05 0.051775			0.8595 0.0041
Variance Equation				
C RESID(-1)^2 RESID(-1)^2*(RESID(-1)<0) GARCH(-1)	2.27E-06 0.135656 0.119858 0.844630	7.03E-07 3.223868 0.022252 6.096371 0.032428 3.696107 0.012415 68.03218		0.0013 0.0000 0.0002 0.0000
T-DIST. DOF	3.796430	0.282714 13.42853		0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.005620 0.005275 0.021693 1.356705 7880.153 1.885872	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.001072 0.021750 -5.457992 -5.443513 -5.452773

A partir dos resíduos estandardizados $\hat{\varepsilon}_t$ obteve-se:

$$Q_{obs}=n\left(n+2\right)\sum_{i=1}^{10}\frac{1}{n-i}\hat{\rho}_i^2\left(\hat{\varepsilon}_t\right)=13.5,$$
 com valor-p igual a 0.141

 $Q_{obs} = n (n+2) \sum_{i=1}^{20} \frac{1}{n-i} \hat{\rho}_i^2 (\hat{\varepsilon}_t^2) = 10.8$, com valor-p igual a 0.930

Na figura seguinte representam-se os últimos valores das séries r_t , $\hat{\varepsilon}_t$ e $\hat{\sigma}_t^2$

/iew Proc Ol	bject Print Na	me Freeze Defa	ault ▼ So	rt Transpose E	dit+/- Smp
obs	R	RES_ESTAND	VAR		
6/02/2012	0.027780	0.864470	0.001003		
7/02/2012	0.186877	6.011421	0.000951		
8/02/2012	0.049872	0.543097	0.005469		
9/02/2012	-0.005420	-0.115507	0.004840		
10/02/2012	-0.033152	-0.513463	0.004107		
13/02/2012	0.033152	0.569020	0.003748		
14/02/2012	-0.027550	-0.507571	0.003332		
15/02/2012	0.011111	0.226921	0.003036		
16/02/2012	-0.051003	-1.014544	0.002588		
17/02/2012	0.000000	0.048669	0.002869		
20/02/2012	0.022990	0.466045	0.002426		
21/02/2012	-0.011429	-0.274609	0.002123		

- (a) Concorda ou discorda das seguintes afirmações:
 - i. "Os retornos usados na estimação basearam-se na fórmula $r_t = \ln(P_t) \ln(P_{t-1})$. Se tivesse sido usada a fórmula $R_t = (P_t P_{t-1})/P_{t-1}$ os resultados da estimação poderiam ser muito diferentes". Justifique.
 - ii. "A série $\hat{u}_t/\hat{\sigma}_t$ (notação usada nas aulas) parece comportar-se aproximadamente de acordo com uma distribuição N(0,1)". Justifique.
- (b) Teste a especificação do modelo (avaliação do diagnóstico). Comente os resultados.
- (c) Mostre que há forte evidência estatística de $Var(u_t)$ não existir. Forneça uma possível explicação para esse facto.
- (d) Apresente uma previsão para r_{n+1} e σ_{n+1}^2 .
- 13. Considere o processo multiplicativo, $u_t = \varepsilon_t \sigma_t$ onde ε_t é um ruído branco. Sabe-se que u_t^2 tem a seguinte representação:

$$u_t^2 = 0.1 + u_{t-1}^2 - 0.5v_{t-1} + v_t$$

onde $\mathbf{E}\left[v_{t}\right]=0$ e Cov $\left(v_{t},v_{t-k}\right)=0$. Discuta a existência de $\mathrm{Var}\left[u_{t}\right]$.

14. Seja $r_{n+1} | \mathcal{F}_n \sim N\left(\mu_{n+1}, \sigma_{n+1}^2\right)$ onde

$$\mu_{n+1} = \phi r_n,$$

$$\sigma_{n+1}^2 = \omega + \alpha \left(r_n - \mu_n \right)^2 + \beta \sigma_n^2.$$

Nestas condições pode concluir que a distribuição marginal de r_t é normal?

15. Considere o processo multiplicativo, $u_t = \varepsilon_t \sigma_t$ onde ε_t é um ruído branco. Sabe-se que u_t^2 tem a seguinte representação:

$$u_t^2 = 0.1 + 0.9u_{t-1}^2 - 0.7v_{t-1} + v_t$$

onde $E[v_t] = 0$ e $Cov(v_t, v_{t-k}) = 0$ (para todo o k inteiro). Calcule $Var[u_t]$.

- 16. Quais os factos empíricos estilizados que o modelo ARCH(q) consegue explicar/modelar? Quais os que não pode explicar?
- 17. Considere

$$y_{t} = c + \phi y_{t-1} + \sqrt{\omega + \alpha_{1} (y_{t-1} - c - \phi y_{t-2})^{2}} \varepsilon_{t}$$

onde ε_t é um ruído branco Gaussiano de média 0 e variância 1.

(a) Reescreva o processo na forma

$$y_t = c + \phi y_{t-1} + u_t,$$

$$u_t = \sigma_t \varepsilon_t$$

identificando σ_t^2 como uma função de u_{t-1}^2

- (b) Qual a distribuição condicional de u_t ?
- (c) Qual a distribuição condicional de y_t ?
- (d) Imponha restrições sobre ϕ , ω e α_1 para que:
 - i. a variância condicional esteja bem definida;
 - ii. $\{u_t\}$ seja um processo estacionário de segunda ordem e, nestas circunstância, calcule $Var[u_t]$;
 - iii. $\{y_t\}$ seja um processo estacionário de segunda ordem e, nestas circunstâncias, calcule $\mathbf{E}[y_t]$ e $\mathrm{Var}[y_t]$
- (e) Explique por que razão é desnecessário assumir-se uma variância para ε_t diferente de um.
- (f) Como procederia para estimar os parâmetros do modelo utilizando apenas o método dos mínimos quadrados?
- (g) As estimativas dos mínimos quadrados para $c \in \phi$ coincidem com as de máxima verosimilhança?
- 18. Suponha que se pretende modelar os retornos de um título cotado na bolsa de valores através do seguinte modelo,

$$y_t = c + u_t, u_t = \varepsilon_t \sigma_t,$$

$$\sigma_t^2 = \omega + \alpha_1 u_{t-1}^2 + \beta_1 \sigma_{t-1}^2 + \delta D_t + \gamma_1 u_{t-1}^2 \mathcal{I}_{\{u_{t-1} < 0\}},$$

onde $D_t = 1$ se t corresponde a uma segunda-feira e $D_t = 0$ no caso contrário.

Verifique se são possíveis e/ou plausíveis os seguintes valores para os parâmetros, justificando:

$$c=-.01;$$
 $\omega=-0.1;$ $\alpha_1=0.3;$ $\alpha_1=-0.1;$ $\beta=0.01;$ $\beta=0.9;$ $\delta=0;$ $\gamma_1=-0.1.$

19. Suponha que se pretende modelar os retornos de um título cotado na bolsa de valores através do seguinte modelo,

$$y_t = \mu_t + u_t, \qquad u_t = \varepsilon_t \sigma_t, \qquad \ln \sigma_t^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2} + \beta \ln \sigma_{t-1}^2 + \delta D_t$$

onde $D_t = 1$ se t corresponde a uma segunda-feira e $D_t = 0$ no caso contrário.

(a) Verifique se são possíveis e/ou plausíveis os seguintes valores para os parâmetros, justificando:

$$\omega = -0.1$$
 ; $\alpha_1 = 0.3$; $\alpha_1 = -0.1$; $\alpha_2 = 0.1$; $\beta = 0.01$; $\beta = 0.9$; $\delta = 0$.

- (b) Por que razão em certas aplicações financeiras se assume uma distribuição t-Student para ε_t ? Existem inconvenientes sérios em se admitir uma distribuição normal para ε_t quando a hipótese de normalidade é rejeitada?
- 20. Considere o seguinte modelo

$$y_t = \mu_t + u_t$$

$$u_t = \varepsilon_t \sigma_t$$

$$\sigma_t^2 = \omega + \alpha u_{t-1}^2 + \beta \sigma_{t-1}^2$$

onde $\{\varepsilon_t\}$ é uma sequência de variáveis aleatórias i.i.d. de média zero e variância um. Suponha que os resultados de estimação (t = 1, ..., n) fornecem os seguintes valores:

$$\hat{\mu}_n = -0.8, \qquad \hat{\sigma}_n^2 = 1, \qquad \hat{\omega} = 1, \qquad \hat{\alpha} = 0.2, \qquad \hat{\beta} = 0.5.$$

Sabe-se também que $y_n=1.2$ (último valor observado).

- (a) Discuta a estacionaridade de segunda ordem do processo $\{u_t\}$ e, caso seja possível, obtenha uma estimativa para $E\left[u_t^2\right]$.
- (b) Obtenha uma estimativa para $E\left[\left.\sigma_{n+1}^{2}\right|\mathcal{F}_{n}\right], E\left[\left.\sigma_{n+2}^{2}\right|\mathcal{F}_{n}\right]$ e $\lim_{h\to+\infty}E\left[\left.\sigma_{n+h}^{2}\right|\mathcal{F}_{n}\right]$.

21. Considere

$$y_t = \phi y_{t-1} + u_t, \qquad u_t = \sigma_t \varepsilon_t, \qquad \sigma_t^2 = 1 + \alpha u_{t-1}^2$$

onde $\{\varepsilon_t\}$ é uma sucessão de variáveis aleatórias i.i.d. com distribuição de Laplace,

$$g\left(\varepsilon_{t}\right) = \frac{1}{\sqrt{2}}e^{-\left|\varepsilon_{t}\right|\sqrt{2}}.$$

Sabe-se:

$$E[\varepsilon_t] = 0, \quad Var[\varepsilon_t] = 1, \quad E[\varepsilon_t^4] = 6.$$

- $\{u_t\}$ é um processo estacionário de segunda ordem e $\mathrm{E}\left[u_t^4\right]<\infty$.
- (a) Obtenha a média marginal e condicional e a variância marginal e condicional de y_t .
- (b) Seja $\theta = (\phi, \alpha)'$. Comente as propriedades assimptóticas do estimador $\hat{\theta}_n$ baseado no problema de optimização

$$\max_{\theta} \sum_{t=1}^{n} \log f(y_t | \mathcal{F}_{t-1}; \theta) \quad \text{ond} \quad$$

$$\log f(y_t | \mathcal{F}_{t-1}; \theta) = -\frac{1}{2} \ln (2\pi) - \frac{1}{2} \log \sigma_t^2 - \frac{1}{2\sigma_t^2} (y_t - \mu_t)^2$$
$$\mu_t = \phi y_{t-1}, \qquad \sigma_t^2 = 1 + \alpha u_{t-1}^2.$$

- (c) Calcule o coeficiente de curtose de u_t . Apresente todos os cálculos.
- 22. Defina um processo de modo que o facto estilizado "retornos de acções tendem a apresentar assimetria negativa" possa ser estimado.
- 23. Mostre que o modelo $\sigma_t^2 = \sigma^2 + \alpha_1 \left(u_{t-1}^2 \sigma^2 \right)$, com $\sigma^2 = \text{Var}\left[u_t \right]$ e $0 < \alpha_1 < 1$, pode representar-se na forma $\sigma_t^2 = \omega + \alpha_1 u_{t-1}^2$.
- 24. Por que razão o processo GARCH com $\alpha_1+\beta_1=1$ se designa por integrated GARCH?
- 25. Suponha que $y \sim \text{IGARCH}$. Por que razão y pode assumir episodicamente valores muitos altos ou muito baixos?
- 26. Calcule $\mathbb{E}\left[\left.\sigma_{n+h}^2\right|\mathcal{F}_n\right]$ sabendo que

$$\sigma_t^2 = \omega_0 + \omega_1 \mathcal{I}_{\{u_{t-1} < 0\}} + \alpha u_{t-1}^2$$

e u_t tem distribuição marginal e condicional simétrica em torno de zero.

- 27. Seja P_n o valor de um activo ou de um portfolio no momento n.
 - (a) Explique (em termos matemáticos) por que razão a variação do valor do portfolio, $P_{n+h} P_n$, pode ser aproximada pela expressão

$$r_n[h] \times P_n$$

onde

$$r_n[h] = r_{n+1} + r_{n+2} + \dots + r_{n+h}, \qquad r_{n+i} = \log(P_{n+i}/P_{n+i-1})$$

(b) Seja $r_{n+1} | \mathcal{F}_n \sim N\left(\mu_{n+1}, \sigma_{n+1}^2\right)$ onde

$$\mu_{n+1} = \phi r_n,$$

$$\sigma_{n+1}^2 = \omega + \alpha (r_n - \mu_n)^2 + \beta \sigma_n^2.$$

Considere a variável aleatória $Z = r_n [2] \times P_n$. Obtenha

$$E[Z|\mathcal{F}_n] \in Var[Z|\mathcal{F}_n].$$

28. Considere:

$$y_t = c + \phi y_{t-1} + u_t, \quad u_t = \varepsilon_t \sigma_t,$$

$$\sigma_t^2 = \omega + \alpha_1 u_{t-1}^2 + \beta_1 \sigma_{t-1}^2.$$

Certos valores para os parâmetros c, ϕ , etc., podem ser possíveis mas não plausíveis (i.e., podem verificarse em certos casos particulares, mas para a maioria das aplicações com séries financeiras não se verificam); outros valores para os parâmetros são incompatíveis com a definição do modelo (por exemplo, se implicam uma variância negativa). Com base nestas ideias e supondo que y representa um retorno de um título cotado na bolsa de valores, seleccione a opção que lhe pareça mais correcta:

(a) O valor para $c =01$ é
possível e plausível possível mas não é plausível incompatível
Note: "incompatível" significa impossível ou incompatível com a definição do modelo.
(b) O valor para $\phi=0.3$ é
possível e plausível possível mas não é plausível incompatível
(c) O valor para $\alpha_1 = -0.1$ é
possível e plausível possível mas não é plausível incompatível
(d) O valor para $\beta_1=1.9$ é
possível e plausível possível mas não é plausível incompatível
Considere o modelo com efeitos ARCH
$y_t = \mu_t + \sqrt{1 + 0.5 (y_{t-1} - 0.5 - 0.2y_{t-3})^2} \varepsilon_t$
onde ε_t é um ruído branco Gaussiano de média 0 e variância 1. Verifique se $\{y_t\}$ é um processo estacionário de segunda ordem.
Considere o modelo GJR-GARCH
$u_t = \sigma_t \varepsilon_t, \qquad \sigma_t^2 = \omega + \alpha_1 u_{t-1}^2 + \gamma u_{t-1}^2 \mathcal{I}_{\{u_{t-1} < 0\}},$

31. Seja $u_t = \sigma_t \varepsilon_t$, onde σ_t^2 tem uma representação GARCH(1,1) e ε_t é um ruído branco Gaussiano de média 0 e variância 1 e independente de σ_t . Para que valores de s se verifica a seguinte relação:

$$\mathrm{E}\left[\left.u_{n+s}^{2}\right|\mathcal{F}_{n}\right] = \mathrm{E}\left[\left.\sigma_{n+s}^{2}\right|\mathcal{F}_{n}\right] ?$$

onde ε_t é um ruído branco independente de σ_t para todo o t e $\alpha_1 + \gamma/2 < 1$. Se $\alpha_1 = 0$ então as "boas notícias"

E para que valores de s se verifica a seguinte desigual dade:

no período t-1 (isto é, $u_{t-1}>0)$ não têm influência na volatilidade.

$$\operatorname{E}\left[\left.u_{n+s}^{2}\right|\mathcal{F}_{n}\right]\neq\operatorname{E}\left[\left.\sigma_{n+s}^{2}\right|\mathcal{F}_{n}\right]$$
?

Justifique

A proposição é falsa.

A proposição é verdadeira.

29.

30.

32. Considere

$$y_t = u_t, \qquad u_t = \sigma_t \varepsilon_t, \qquad \sigma_t^2 = \omega + \alpha u_{t-1}^2.$$

onde ε é uma sequência de v.a. i.i.d. com função densidade de probabilidade

$$g(\varepsilon) = \frac{\sqrt{2}}{\pi} \frac{1}{1 + x^4}, \quad x \in \mathbb{R},$$

Escreva a função de log-verosimilhança.

- 33. Por que razão o modelo ARCH (na sua versão original) não é habitualmente usado para modelar a volatilidade de séries temporais financeiras? Justifique. Para dados financeiros observados com baixa frequência (por exemplo dados mensais) consideraria a possibilidade de usar um ARCH(1)? Justifique.
- 34. Seja $\{u_t\}$ um processo ARCH(1) definido por: $u_t = \sigma_t \varepsilon_t$ onde $\sigma_t^2 = \omega + \alpha u_{t-1}^2$, $\varepsilon_t \sim N(0,1)$ e ε_t é independente de u_{t-k} , $k \in \mathbb{N}$. Seja ρ_k a função de autocorrelação de u_t^2 . Prove que $\rho_2 = \alpha^2$ (autocorrelação de ordem 2). Apresente as condições que garantem a existência de ρ_2 .

35. Considere

$$r_t = \phi r_{t-1} + u_t, |\phi| < 1$$

 $u_t = \sigma_t \varepsilon_t, \quad \sigma_t^2 = \omega + \alpha u_{t-1}^2 + \beta \sigma_{t-1}^2$

onde ε_t é um ruído branco N(0,1) independente de r_{t-1} . Mostre que $\mathbb{E}\left(r_t^2 - \sigma_t^2\right) > 0$.

36. Considere um modelo GARCH(1,1)

$$u_t = \sigma_t \varepsilon_t, \qquad \sigma_t^2 = \omega + \alpha_1 u_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

onde ε_t é um ruído branco. Mostre que se $\alpha_1 = 0$ e $\sigma_0^2 = \omega/(1-\beta_1)$ então $\{u_t\}$ é um processo condicionalmente homocedástico.

37. Considere um modelo GARCH(1,1)

$$y_t = \mu + \phi y_{t-1} + u_t, \qquad u_t = \sigma_t \varepsilon_t, \qquad \sigma_t^2 = \omega + \alpha_1 u_{t-1}^2 + \beta_1 \sigma_{t-1}^2,$$

e as seguintes especificações:

A)
$$\mu = 1$$
, $\phi = 0.5$, $\alpha_1 = 0.8$, $\beta_1 = 0.1$;

B)
$$\mu = 0$$
, $\phi = 0.5$, $\alpha_1 = 0.1$, $\beta_1 = 0.9$.

Desenhe uma possível trajectória para cada uma das especificações. Justifique as trajectórias traçadas.

- 38. Por que razão na estimação do modelo ARMA-GARCH é, por vezes, utilizada a opção "Heteroskedasticity Consistent Covariance (Bollerslev-Wooldridge)"?
- 39. Considere

$$u_t = \sigma_t \varepsilon_t,$$

$$\sigma_t^2 = \omega + \alpha_1 u_{t-1}^2$$

onde ε_t é um ruído branco Gaussiano com variância. Admita as hipóteses H1, H2 e H3 (pag. 326). Mostre:

(a)
$$E(u_t^3) = 0$$

(b)
$$k_u = 3 + \frac{6\alpha_1^2}{1 - 3\alpha_1^2}$$

40. Considere o modelo

$$u_t = \varepsilon_t \sigma_t, \qquad \sigma_t^2 = \omega + \alpha u_{t-1}^2 + \left(\beta + \gamma \mathcal{I}_{\{e_{t-1} < 0\}}\right) \sigma_{t-1}^2$$

onde,

• ε é um ruído branco com distribuição N(0,1) e ε_t é independente de $u_{t-k}, k \in \mathbb{N}$;

- e_t é um ruído branco e $P(e_t < 0) = 3/4$.
- u_t é independente de e_t ;
- $E\left[u_t^2\right]$ é finito e constante.

Calcule a variância marginal de u_t . A condição $0 < \alpha + \beta + \gamma/2 < 1$ garante a estacionaridade de segunda ordem?

41. Considere o seguinte estimador para a variância condicional:

$$\sigma_t^2(h) = \frac{1}{h} \sum_{i=1}^h y_{t-i}^2 = \frac{1}{h} \left(y_{t-1}^2 + y_{t-2}^2 + \dots + y_{t-h}^2 \right).$$

Uma das limitações deste estimador é a de que todas as observações no período (t-h,t-1) têm o mesmo peso na determinação do valor de $\sigma_t^2(h)$. Mostre que o estimador EWMA

$$\sigma_t^2 = (1 - \lambda) y_{t-1}^2 + \lambda \sigma_{t-1}^2,$$

supera essa limitação.

42. Considere o ARCH(1),

$$y_t = c + u_t, \qquad u_t = \varepsilon_t \sigma_t, \qquad \sigma_t^2 = \omega + \alpha u_{t-1}^2$$

onde ε_t é um ruído branco N(0,1) independente de σ_t e $\mathbb{E}\left[u_t^4\right] < \infty$. Seja $v_t = u_t^2 - \sigma_t^2$.

- (a) Calcule a média condicional de v_t e as autocovariâncias de v_t .
- (b) Calcule a variância condicional de v_t .
- (c) Escreva a equação de regressão que permite estimar ω e α usando o estimador OLS. Comente a qualidade deste estimador OLS.
- 43. Considere o modelo de regressão de variável aleatória residual com coeficientes autoregressivos aleatórios (na literatura este modelo é designado por RCAR(2), random coefficient autoregressive):

$$y_t = x_t \beta + u_t u_t = (\phi_1 + \eta_{1t}) u_{t-1} + (\phi_2 + \eta_{2t}) u_{t-2} + \varepsilon_t$$

onde β , ϕ_1 e ϕ_2 são parâmetros (escalares), $\{\varepsilon_t\}$ é uma sequência de v.a. i.i.d. de média zero e variância σ^2 e

$$\left\{\eta_{t}\right\} = \left\{ \left[\begin{array}{c} \eta_{1t} \\ \eta_{2t} \end{array}\right] \right\}$$

é uma sequência de vectores aleatórios i.i.d. Suponha ainda:

$$\begin{split} E\left[\eta_{t}\right] &= \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ E\left[\eta_{t}\eta_{t}'\right] &= \Sigma = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{12} & \alpha_{22} \end{bmatrix} \text{ (Σ \'e semi-definida positiva)} \end{split}$$

e $\{\varepsilon_t\}$ e $\{\eta_t\}$ são mutuamente independentes.

- (a) Calcule a média condicional de u_t e compare-a com a média condicional de um processo AR(2).
- (b) Calcule a variância condicional de u_t e compare-a com a variância condicional de um processo ARCH(2). Discuta os resultados.
- (c) Prova-se que o processo $u_t = \sum_{j=1}^{q} (\phi_j + \eta_{jt}) u_{t-j} + \varepsilon_t$ é estacionário de segunda ordem se, dada a matriz

$$M = \left[\begin{array}{cc} \mathbf{0}_{(q-1)\times 1} & I_{q-1} \\ \phi_q & \left(\phi_{q-1},...,\phi_1\right) \end{array} \right],$$

 $(\mathbf{0}_{(q-1)\times 1}$ é o vector nulo de dimensão (q-1) e I_{q-1} é a matriz identidade de ordem q-1) se tem:

- \bullet todos os valores próprios de M são em módulo inferiores a um;
- $vec(\Sigma)'$ **a** < 1 onde **a** é a última coluna da matriz $(I M \otimes M)^{-1}$.

Deduza uma expressão simplificada para a condição de estacionaridade de segunda ordem no caso q=1. Compare com a condição de estacionaridade do modelo ARCH(1) e AR(1). Discuta. [R: $|\phi| < 1$, $\alpha_{11}/\left(1-\phi^2\right) < 1$]

44. Daniel Nelson propôs a seguinte distribuição (padronizada) GED (Generalized Error Distribution) para captar o achatamento das distribuição marginais de dados financeiros:

$$g(x) = \frac{v \exp\left\{-\frac{1}{2} \left| \frac{x}{\lambda} \right|^v\right\}}{\lambda 2^{(1+1/v)} \Gamma(1/v)}$$

onde Γ é a função gama e $\lambda = \sqrt{\frac{2^{-2/v}\Gamma(1/v)}{\Gamma(3/v)}}$. Note-se que se X tem distribuição g então E[X] = 0 e Var[X] = 1. O parâmetros v controla o achatamento da distribuição (se v = 2 a distribuição g corresponde à distribuição normal padronizada, se v < 2 a distribuição g é leptocúrtica). Considere o modelo

$$y_t = \phi y_{t-1} + u_t, |\phi| < 1$$

 $u_t = \sigma_t \varepsilon_t$

onde u_t é um processo estacionário, σ_t^2 tem a especificação GARCH(1,1) e ε_t é uma variável i.i.d. com distribuição GED.

- (a) Escreva a função log verosimihança identificando todos os parâmetros a estimar.
- (b) Admita ainda que ε_t tem distribuição GED com v < 2. Quais seriam as propriedades do estimador que resultasse da maximização da função $-\frac{1}{2} \sum \ln \sigma_t^2 \frac{1}{2} \sum \frac{(y_t \phi y_{t-1})^2}{\sigma_t^2}$ onde σ_t^2 tem a especificação GARCH(1,1)?
- (c) Discuta as possíveis vantagens em se admitir uma distribuição GED para ε_t .
- 45. Engle, Lilien e Robins propuseram o modelo ARCH-M para captar a relação entre rendimento e risco, basicamente a partir de uma especificação do tipo

$$y_t = m_t + g\left(\sigma_t^2\right) + u_t$$

$$u_t = \sigma_t \varepsilon_t$$

onde, σ_t tem especificação do tipo ARCH, m_t representa um conjunto de outras variáveis explicativas da média condicional e g é uma função real de variável real. Considere o modelo ARCH-M

$$y_{t} = \delta \sigma_{t}^{2} + u_{t}$$

$$u_{t} = \sigma_{t} \varepsilon_{t}, \quad \varepsilon_{t} \stackrel{i.i.d.}{\sim} N(0, 1)$$

$$\sigma_{t}^{2} = \omega + \alpha_{1} u_{t-1}^{2}, \quad 0 \leq \alpha_{1} < 1/\sqrt{3}$$

Calcule a média e variância condicional de y_t e mostre que

$$E[y_t] = \delta\omega \left(1 + \frac{\alpha_1}{1 - \alpha_1}\right) = \frac{\delta\omega}{1 - \alpha_1},$$

$$Var[y_t] = \frac{\omega}{1 - \alpha_1} + \frac{\left(\delta\alpha_1\right)^2 2\omega^2}{\left(1 - \alpha_1\right)^2 \left(1 - 3\alpha_1^2\right)}.$$

(note: $E\left[\sigma_t^4\right] = \frac{\omega^2(1+\alpha_1)}{(1-\alpha_1)(1-3\alpha_1^2)}$). Verifique que y_t é autocorrelacionado.

46. Considere o modelo:

$$r_t = c + u_t, u_t = \sigma_t \varepsilon_t,$$

$$\sigma_t^2 = \omega + \alpha (u_{t-1} - \theta \sigma_{t-1})^2 + \beta \sigma_{t-1}^2$$

onde $\varepsilon_t \sim N(0,1)$ e ε_t é independente de $u_{t-k}, k \in \mathbb{N}$. Verifique se o modelo permite captar o efeito assimétrico. Justifique. Obtenha a expressão do VaR a dois períodos a $\alpha 100\%$.

- 47. Considere a série BP disponibilizada no site da cadeira. Objectivo: Ajustar um modelo dinamicamente completo com uma componente do tipo GARCH. Aspectos a considerar:
 - (a) Testar a presença de um efeito ARCH.
 - (b) Testar a presença de um efeito assimétrico.
 - (c) Testar o efeito dos dias da semana na média e na variância condicional.
 - (d) Analisar o efeito do derrame de petróleo no Golfo do México (variável derrame).
 - (e) Testar o efeito do preço do crude no preço da BP.
 - (f) Estimar o modelo supondo $\varepsilon_t \sim normal$ e $\varepsilon_t \sim t$ -Student. Compare os resultados.
 - (g) Incluir no modelo todos os efeitos considerados estatisticamente significativos.
 - (h) Testar a especificação do modelo (testes de diagnóstico).
 - (i) Apresentar um gráfico do desvio padrão condicional, $\hat{\sigma}_t$, ao longo do tempo.
 - (j) Obter um intervalo de previsão a 1 passo a 95% para o retorno.
 - (k) Obter a previsão da variância condicional a 1 passo.

Em relação aos ensaios estatísticos defina as hipóteses, a estatística de teste e a respectiva distribuição, a região crítica ou p-value, a decisão do ensaio e, numa linha, interprete os resultados.

4 Modelação da Heterocedasticidade Condicionada: Caso Multivariado

1. O processo vectorial y tem a seguinte representação:

$$\begin{pmatrix} y_{1t} \\ y_{2t} \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} \phi_{11} & 0 \\ \phi_{21} & \phi_{22} \end{pmatrix} \begin{pmatrix} y_{1,t-1} \\ y_{2,t-1} \end{pmatrix} + \begin{pmatrix} u_{1t} \\ u_{2t} \end{pmatrix}$$

onde

$$\begin{cases} u_{1t} = e_{1t} - e_{2t} \\ u_{2t} = ae_{1t} + e_{2t} \end{cases}$$

 (e_{1t}, e_{2t}) são independentes entre si, e $e_{it} | \mathcal{F}_{t-1} \sim N(0, \sigma_{it}^2)$.

- (a) O modelo poderá designar-se de "triangular"? Justifique.
- (b) Obtenha $\operatorname{Var}(\mathbf{y}_t|\mathcal{F}_{t-1})$ como função dos termos σ_{1t}^2 e σ_{2t}^2
- 2. Considere um modelo multivariado

$$\begin{pmatrix} y_{1t} \\ y_{2t} \\ y_{3t} \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} + \mathbf{\Phi} \begin{pmatrix} y_{1,t-1} \\ y_{2,t-1} \\ y_{3,t-1} \end{pmatrix} + \mathbf{\Psi} \begin{pmatrix} e_{1t} \\ e_{2t} \\ e_{3t} \end{pmatrix}$$

onde Φ e Ψ são matrizes quadradas de ordem 3. Suponha que os elementos de $\mathbf{e}_t = (e_{1t}, e_{2t}, e_{3t})$ são independentes entre si, e $e_{it} | \mathcal{F}_{t-1} \sim N\left(0, \sigma_{it}^2\right)$, $\sigma_{it}^2 = \omega_i + \alpha_i e_{i,t-1}^2 + \beta_i \sigma_{i,t-1}^2$. Suponha o seguinte:

- A média condicional de y_{1t} depende apenas de $y_{1,t-1}$;
- A média condicional de y_{2t} depende apenas de $y_{2,t-1}$ e de $y_{3,t-1}$;
- A média condicional de y_{3t} depende de $y_{1,t-1}$, $y_{2,t-1}$ e $y_{3,t-1}$;
- A variância condicional de y_{1t} depende apenas dos choques (idiossincráticos) da equação 1;
- A variância condicional de y_{2t} depende apenas dos choques (idiossincráticos) da equação 2 e dos choques aleatórios da primeira equação;
- A variância condicional de y_{3t} depende dos choques (idiossincráticos) da equação 3 e dos choques aleatórios da primeira equação.
- (a) Escreva as matrizes Φ e Ψ (inserindo parâmetros e restrições de nulidade) tendo em conta as hipóteses enunciadas.
- (b) Explique como estimaria os parâmetros do modelo.
- (c) Calcule a covarância condicionada entre y_{1t} e y_{3t} .
- 3. Sejam y_{1t} e y_{2t} , respectivamente, os retornos em % associados ao índice FTSE USA OIL & GAS e ao índice FTSE USA INDUSTRIALS. Foi considerado o seguinte modelo multivariado (os parâmetros são designados por c(1), ..., c(11), de acordo com a notação do EVIEWS):

$$\begin{pmatrix} y_{1t} \\ y_{2t} \end{pmatrix} = \begin{pmatrix} c(1) \\ c(4) \end{pmatrix} + \begin{pmatrix} c(2) & c(3) \\ c(5) & c(6) \end{pmatrix} \begin{pmatrix} y_{1,t-1} \\ y_{2,t-1} \end{pmatrix} + \begin{pmatrix} u_{1t} \\ u_{2t} \end{pmatrix}$$

onde

$$\begin{pmatrix} u_{1t} \\ u_{2t} \end{pmatrix} \middle| \mathcal{F}_{t-1} \sim N(\mathbf{0}, \mathbf{H}_t), \quad \text{vech}(\mathbf{H}_t) = \begin{pmatrix} c(7) \\ c(8) \\ c(9) \end{pmatrix} + c(10) \begin{pmatrix} u_{1,t-1}^2 \\ u_{1,t-1}u_{1,t-1} \\ u_{2,t-1}^2 \end{pmatrix} + c(11) \begin{pmatrix} h_{11,t-1} \\ h_{12,t-1} \\ h_{22,t-1} \end{pmatrix}.$$

Os resultados de estimação são os seguintes:

Estimation Method: ARCH Maximum Likelihood (Marquardt)

Covariance specification: Diagonal VECH

Sample: 3/01/2000 21/01/2011 Included observations: 2780

Convergence achieved after 26 iterations

	Coefficient	Std. Error	z-Statistic	Prob.		
C(1)	0.067023	0.024378	2.749297	0.0060		
C(2) C(3)	-0.028323 -0.017968	0.019986 0.019937	-1.417175 -0.901220	0.1564 0.3675		
C(4)	0.054303	0.019743	2.750423	0.0060		
C(5)	-0.035374	0.014741	-2.399679	0.0164		
C(6)	0.009921	0.021013	0.472114	0.6368		
Variance Equation Coefficients						
C(7)	0.012612	0.002705	4.662608	0.0000		
C(8)	0.006343	0.001437	4.414880	0.0000		
C(9)	0.007308	0.001456	5.018096	0.0000		
C(10)	0.053475	0.003204	16.69028	0.0000		
C(11)	0.943913	0.003232	292.0141	0.0000		
Log likelihood	-9033.394Schwarz criterion			6.530223		
Avg. log likelihood	-1.624711Hannan-Quinn criter.			6.515231		
Akaike info criterion	6.506758					

View Proc	Object Print	Name Freeze D	efault ▼ S	ort Transpose	Edit+/- Smpl+/-	Title Sample				
obs	obs	H11	H12	H22	RESID01	RESID02	Y1	Y2		
7/01/2011	7/01/2011	0.820284	0.526474	0.577348	0.571067	0.083928	0.659189	0.162211		
10/01/2011	10/01/2011	0.804328	0.505853	0.552651	-0.417943	0.119330	-0.372505	0.151923		
11/01/2011	11/01/2011	0.781169	0.481157	0.529723	1.444597	0.356886	1.519442	0.425873		
12/01/2011	12/01/2011	0.861563	0.488084	0.514132	1.239416	0.900937	1.255752	0.905716		
13/01/2011	13/01/2011	0.907999	0.526765	0.536009	-0.191193	0.041883	-0.176011	0.060749		
14/01/2011	14/01/2011	0.871639	0.503136	0.513347	1.195967	0.403861	1.266884	0.464993		
18/01/2011	18/01/2011	0.911851	0.507089	0.500585	0.702704	0.658415	0.725490	0.672516		
19/01/2011	19/01/2011	0.899726	0.509733	0.502999	-1.096077	-1.121988	-1.061685	-1.086677		
20/01/2011	20/01/2011	0.926120	0.553251	0.549413	-0.852135	-0.468615	-0.735516	-0.387537		_
21/01/2011	21/01/2011	0.925619	0.549918	0.537649	0.565709	0.933064	0.660528	1.009540		
										Ŧ
	4		111						1	

- (a) Com base num teste estatístico verifique se é possível deduzir alguma relação de causalidade à Granger (na média).
- (b) Apresente a previsão do coeficiente de correlação condicionado a um passo (previsão para o período n+1, sendo n a última observação). Nota: não precisa de indicar o valor final, basta apresentar as contas que terá de efectuar para obter o resultado final.
- (c) Indique como procederia para testar a correcta especificação do modelo.
- 4. Considere um modelo GARCH multivariado de dimensão m=2, $\mathbf{y}_t=\boldsymbol{\mu}_t+\mathbf{u}_t$ (notações habituais) onde $\mathbf{u}_t=\mathbf{H}_t^{1/2}\boldsymbol{\varepsilon}_t$ e $\boldsymbol{\varepsilon}_t$ é um vector de v.a. i.i.d. (condicionalmente homocedástico) tal que $\mathbf{E}\left(\boldsymbol{\varepsilon}_t\right)=\mathbf{0}$, $\mathrm{Var}\left(\boldsymbol{\varepsilon}_t\right)=\mathbf{I}$. Suponha que a matriz \mathbf{H}_t é definida pelos seguintes elementos:

$$\begin{array}{lcl} h_{11,t} & = & \omega_1 + \theta_1 u_{1,t-1}^2 + \pi_1 h_{11,t-1} \\ h_{12,t} & = & \omega_2 + \theta_2 u_{1,t-1}^2 + \theta_3 u_{1,t-1} u_{2,t-1} + \pi_2 h_{11,t-1} + \pi_3 h_{12,t-1} \\ h_{22,t} & = & \omega_3 + \theta_4 u_{1,t-1}^2 + \theta_5 u_{1,t-1} u_{2,t-1} + \theta_6 u_{2,t-1}^2 + \pi_4 h_{11,t-1} + \pi_5 h_{12,t-1} + \pi_6 h_{22,t-1}. \end{array}$$

- (a) Determine as condições, em termos dos parâmetros, que asseguram a existência de $Var(\mathbf{u}_t)$.
- (b) Que crítica ou críticas pode apontar a este modelo?
- 5. No modelo triangular com 3 equações escreva \mathbf{u}_t na forma $\mathbf{u}_t = \mathbf{H}_t^{1/2} \boldsymbol{\varepsilon}_t$ onde $\mathbf{E}(\boldsymbol{\varepsilon}_t) = 0$ e $\mathrm{Var}(\boldsymbol{\varepsilon}_t) = \mathbf{I}$, identificando a matriz $\mathbf{H}_t^{1/2}$.

6. Foi estimado o seguinte modelo multivariado para os retornos dos preços internacionais do ouro e da prata no período 22/06/1993 a 19/06/2013:

$$\mathbf{y}_t = \boldsymbol{\mu}_t + \mathbf{u}_t$$

onde (usando a notação do EVIEWS)

$$\boldsymbol{\mu}_{t} = \begin{pmatrix} c(1) \\ c(4) \end{pmatrix} + \begin{pmatrix} c(2) & c(3) \\ c(5) & c(6) \end{pmatrix} \begin{pmatrix} r_{1,t-1} \\ r_{2,t-1} \end{pmatrix}, \quad \mathbf{u}_{t} = \begin{pmatrix} h_{11,t} & h_{12,t} \\ h_{12,t} & h_{22,t} \end{pmatrix}^{1/2} \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

e, com "o" para designar o produto de Hadamard,

$$\begin{pmatrix} h_{11,t} & h_{12,t} \\ h_{12,t} & h_{22,t} \end{pmatrix} = \begin{pmatrix} M\left(1,1\right) & M\left(1,2\right) \\ M\left(1,2\right) & M\left(2,2\right) \end{pmatrix} + \begin{pmatrix} A\left(1,1\right) & A\left(1,2\right) \\ A\left(1,2\right) & A\left(2,2\right) \end{pmatrix} \circ \begin{pmatrix} u_{1,t-1}^{2} & u_{1,t-1}u_{2,t-1} \\ u_{1,t-1}u_{2,t-1} & u_{2,t-1}^{2} \end{pmatrix} + \begin{pmatrix} B\left(1,1\right) & B\left(1,2\right) \\ B\left(1,2\right) & B\left(2,2\right) \end{pmatrix} \circ \begin{pmatrix} h_{11,t-1} & h_{12,t-1} \\ h_{12,t-1} & h_{22,t-1} \end{pmatrix}.$$

Nota: a matriz de variâncias-covariâncias do processo foi estimada a partir da especificação

$$\mathbf{H}_{t} = ilde{oldsymbol{\omega}}_{1} \left(ilde{oldsymbol{\omega}}_{1}
ight)' + ilde{\mathbf{a}}_{1} \left(ilde{\mathbf{a}}_{1}
ight)' \circ \mathbf{u}_{t-1} \mathbf{u}_{t-1}' + ilde{\mathbf{b}}_{1} \left(ilde{\mathbf{b}}_{1}
ight)' \circ \mathbf{H}_{t-1}$$

Estimation Method: ARCH Maximum Likelihood (Marquardt) Covariance specification: Diagonal VECH Sample: 22/06/1993 19/06/2013 Included observations: 5217 Total system (balanced) observations 10434

Coefficient Std. Error z-Statistic Prob C(1) -0.002982 0.009344 -0.319128 C(2) -0.088187 0.014665 -6.013514 C(3) 0.067115 0.006457 10 39475 C(4) -0.018903 0.018338 -1.030812 0.3026 C(5) 0.021855 0.020872 1.047129 0.2950 C(6) -0.017149 0.013248 -1.294417

Equation: R1 = C(1) + C(2)*R1(-1) + C(3)*R2(-1)

Equation: R2 = C(4) + C(5)*R1(-1) + C(6)*R2(-1)

Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1)

	Coefficient	Std. Error	z-Statistic	Prob.
M(1,1) M(1,2) M(2,2) A(1,1) A(1,2) A(2,2) B(1,1) B(1,2) B(2,2)	0.002579 0.003654 0.013817 0.050917 0.045596 0.043215 0.948885 0.951385	0.000372 0.000642 0.001788 0.001493 0.001366 0.001744 0.001493 0.001254 0.001738	6.933996 5.687504 7.727013 34.10743 33.38964 24.78178 635.4679 758.6965 548.8337	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

- (a) Com base nos resultados de estimação **diga se concorda ou não** com seguintes afirmações, justificando devidamente e usando testes estatísticos, caso se apliquem:
 - i. "Os coeficientes correlação condicional são positivos ao longo de todo o período".
 - ii. " r_1 causa à Granger r_2 e vice-versa".
- (b) Qual ou quais os "factos empíricos estilizados" que normalmente se observam nos retornos das cotações de ações que estão aqui também presentes, tendo em conta os resultados da estimação do modelo? Justifique. Recorde-se que r_1 e r_2 representam os retornos das cotações do ouro e da prata, respectivamente.
- (c) Suponha que a verdadeira matriz \mathbf{H}_t não é dada pela especificação anterior, mas sim por

$$\begin{pmatrix} h_{11,t} & h_{12,t} \\ h_{12,t} & h_{22,t} \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 1 - \lambda \\ 1 - \lambda & 1 - \lambda \end{pmatrix} \circ \begin{pmatrix} u_{1,t-1}^2 & u_{1,t-1}u_{2,t-1} \\ u_{1,t-1}u_{2,t-1} & u_{2,t-1}^2 \end{pmatrix} + \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} \circ \begin{pmatrix} h_{11,t-1} & h_{12,t-1} \\ h_{12,t-1} & h_{22,t-1} \end{pmatrix}.$$

- i. Estude a estacionaridade de segunda ordem de $\{\mathbf{u}_t\}$
- ii. Obtenha uma expressão para a previsão de \mathbf{H}_{n+h} , dado \mathcal{F}_n , $h \geq 1$.
- 7. Considere o sistema com m=2 equações

$$\mathbf{r}_t = \boldsymbol{\mu}_t + \mathbf{u}_t$$

onde $\mathbf{u}_t = \mathbf{H}_t^{-1/2} \boldsymbol{\varepsilon}_t$ e $\boldsymbol{\varepsilon}_t$ é um vetor de v.a. i.i.d. (condicionalmente homocedástico) tal que $\mathbf{E}(\boldsymbol{\varepsilon}_t) = \mathbf{0}$ eVar $(\boldsymbol{\varepsilon}_t) = \mathbf{I}$. Suponha que \mathbf{H}_t é definida da seguinte forma:

$$\mathbf{H}_t = \mathbf{C}'\mathbf{C} + \mathbf{A}'\mathbf{u}_{t-1}\mathbf{u}_{t-1}'\mathbf{A}$$

onde se assume

$$\mathbf{A} = \begin{pmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{pmatrix}, \qquad \mathbf{C} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}, \qquad c_{12} = c_{21}.$$

Usando estas matrizes $\bf A$ e $\bf C$ na especificação de $\bf H_t$ acima definida obtém-se, depois de algumas contas,

$$\mathbf{H}_{t} = \begin{pmatrix} c_{11}^{2} + c_{21}^{2} & c_{11}c_{21} + c_{21}c_{22} \\ c_{11}c_{21} + c_{21}c_{22} & c_{21}^{2} + c_{22}^{2} \end{pmatrix} \\ + \begin{pmatrix} a_{11}^{2}\mathbf{u}_{1,\mathsf{t}-1}^{2} & a_{11}a_{12}\mathbf{u}_{1,\mathsf{t}-1}^{2} + a_{11}a_{22}\mathbf{u}_{1,\mathsf{t}-1}\mathbf{u}_{2,\mathsf{t}-1} \\ a_{11}a_{12}\mathbf{u}_{1,\mathsf{t}-1}^{2} + a_{11}a_{22}\mathbf{u}_{1,\mathsf{t}-1}\mathbf{u}_{2,\mathsf{t}-1} & a_{12}^{2}\mathbf{u}_{1,\mathsf{t}-1}^{2} + 2a_{12}a_{22}\mathbf{u}_{1,\mathsf{t}-1}\mathbf{u}_{2,\mathsf{t}-1} + a_{22}^{2}\mathbf{u}_{2,\mathsf{t}-1}^{2} \end{pmatrix}.$$

- (a) Escreva (sem simplificar) a expressão de Corr $(r_{1t}, r_{2t} | F_{t-1})$.
- (b) Apresente duas vantagens do modelo em análise relativamente ao modelo Vech GARCH(1,1). Justifique.
- (c) Estude a estacionaridade de segunda ordem do processo $\{\mathbf{u}_t\}$.
- 8. Considere

$$\begin{aligned} y_{1t} &= c_1 + \phi_{11} y_{1,t-1} + u_{1t} \\ y_{2t} &= c_2 + \phi_{21} y_{1,t-1} + \phi_{22} y_{2,t-1} + u_{2t} \\ y_{3t} &= c_3 + \phi_{31} y_{1,t-1} + \phi_{32} y_{2,t-1} + \phi_{33} y_{3,t-1} + u_{3t} \end{aligned}$$

onde:

- $u_{1t} = e_{1t}$, $u_{2t} = ae_{1t} + e_{2t}$, $u_3 = be_{1t} + ce_{2t} + e_{3t}$;
- $e_{it} | F_{t-1} \sim N(0, \sigma_{it}^2), i = 1, 2, 3;$
- $\sigma_{it}^2 = \omega_i + \alpha_i e_{i,t-1}^2 + \beta_i \sigma_{i,t-1}^2$, i = 1, 2, 3;
- e_{1t} e e_{2t} são independentes entre si mas
- $\operatorname{Cov}(e_{1t}, e_{3t} | F_{t-1}) = \gamma.$

Determine $\text{Var}(\mathbf{y}_{t}|\mathbf{F}_{t-1})$ e $\text{Var}(\mathbf{u}_{t}|\mathbf{F}_{t-1})$ onde $\mathbf{y}_{t} = (y_{1t}, y_{2t}, y_{3t})'$ e $\mathbf{u}_{t} = (u_{1t}, u_{2t}, u_{3t})'$.

9. Considere o sistema $\mathbf{r}_t = \boldsymbol{\mu} + \mathbf{u}_t$ onde $\mathbf{u}_t = \mathbf{H}_t^{1/2} \boldsymbol{\varepsilon}_t$

$$\mathbf{r}_{t} = \begin{pmatrix} r_DAX_{t} \\ r_BRASIL_{t} \\ r_NIKKEI_{t} \\ r_SP500_{t} \\ r_FTSE100_{t} \end{pmatrix}; \qquad \boldsymbol{\mu} = \begin{pmatrix} \mu_{1} \\ \mu_{2} \\ \mu_{3} \\ \mu_{4} \\ \mu_{r} \end{pmatrix}$$

$$\mathbf{H}_{t} = \mathbf{M} + \alpha \mathbf{u}_{t-1} \mathbf{u}_{t-1}^{\prime} + \beta \mathbf{H}_{t-1}$$

Considere os outputs:

Estimation Method: ARCH Maximum Likelihood (BFGS / Marquardt steps)

Covariance specification: Diagonal VECH

Sample: 1/01/1999 6/04/2018 Included observations: 5026

Convergence achieved after 114 iterations

Coefficient covariance computed using outer product of gradients

	Coefficient	Std. Error	z-Statistic	Prob.
C(1)	0.045696	0.014568	3.136814	0.0017
C(2)	0.059909	0.018406	3.254804	0.0011
C(3)	0.029973	0.016619	1.803494	0.0713
C(4)	0.043928	0.011020	3.986169	0.0001
C(5)	0.023168	0.011464	2.020877	0.0433

Equation: $R_DAX30*100 = C(1)$

Equation: R_MSBRAZIL*100 = C(2)

Equation: R_NIKKEI225*100 = C(3)

Equation: R_SP500*100 = C(4)

Equation: R_FTSE100*100 = C(5)

Covariance specification: Diagonal VECH

GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1)

M is an indefinite matrix

A1 is a scalar B1 is a scalar

	Coefficient	Std. Error	z-Statistic	Prob.
M(1,1)	0.019828	0.001202	16.49283	0.0000
M(1,2)	0.009251	0.001125	8.220656	0.0000
M(1,3)	0.006216	0.000905	6.870847	0.0000
M(1,4)	0.007914	0.000669	11.83502	0.0000
M(1,5)	0.012348	0.000858	14.38806	0.0000
M(2,2)	0.034930	0.002131	16.39363	0.0000
M(2,3)	0.004493	0.001327	3.387098	0.0007
M(2,4)	0.010047	0.000853	11.78446	0.0000
M(2,5)	0.007596	0.000887	8.559209	0.0000
M(3,3)	0.030092	0.001635	18.40341	0.0000
M(3,4)	0.002402	0.000740	3.245264	0.0012
M(3,5)	0.004458	0.000722	6.172605	0.0000
M(4,4)	0.011222	0.000654	17.17085	0.0000
M(4,5)	0.005442	0.000511	10.65716	0.0000
M(5,5)	0.012098	0.000797	15.17981	0.0000
A1	0.047636	0.001091	43.67326	0.0000
B1	0.942025	0.001274	739.1398	0.0000

⁽a) Quais os ativos com maior rendibilidade no período? E os ativos com maior variância condicional?

⁽b) Os dados sugerem que o processo é estacionário? Use a representação VECH (ou VEC) do modelo para justificar a sua resposta. Nota: não precisa de expandir $\operatorname{vech}(\mathbf{M})$, $\operatorname{vech}(\mathbf{u}_{t-1}\mathbf{u}'_{t-1})$ e $\operatorname{vech}(\mathbf{H}_{t-1})$.

5 Modelação da Média - Abordagem Não Linear

1. Considere o processo

$$y_t = |b\varepsilon_t| \, y_{t-1} + u_t$$

onde u e ε são ruídos brancos Gaussianos, independentes entre si, com distribuição $N\left(0,1\right)$. Determine uma condição suficiente, envolvendo a constante b, para que y seja um processo estritamente estacionário. Note: $\mathrm{E}\left[\left|\varepsilon_{t}\right|\right]=\sqrt{\frac{2}{\pi}}$

2. Considere

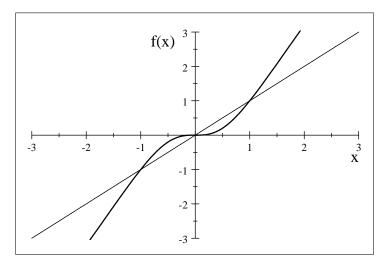
$$y_t = (y_{t-1}^2 + y_{t-2}^2)^{1/4} + u_t$$

onde $\{u_t\}$ é um ruído branco $N\left(0,\sigma^2\right)$ e u_t é independente de $y_{t-k},\ k\geq 1$. Estude a estacionaridade do processo $\{y_t\}$.

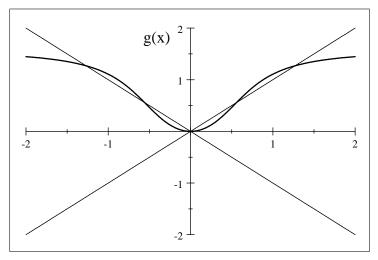
3. Considere a equação determinística

$$y_t = f\left(y_{t-1}\right)$$

Na figura seguinte representam-se as funções f(x) e x (recta de 45°). Identifique graficamente o ponto ou os pontos fixos e estude a estabilidade desse ou desses pontos.

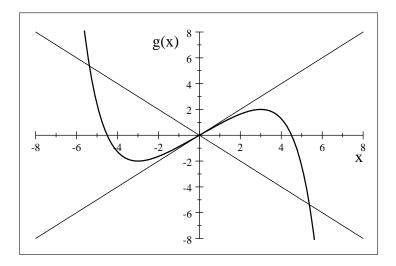


4. Considere $y_t = \arctan(2y_{t-1}^2) + u_t$ onde $\{u_t\}$ é uma sucessão de v.a. i.i.d. e independentes de y_{t-k} , $k \ge 1$, com função de densidade positiva e $\mathbf{E}(u_t) = 0$. O esqueleto da equação está representado na figura seguinte, juntamente com as rectas -x e x.



(a) Sabendo que $\left|\arctan\left(2x^2\right)\right| < 1.5709$ prove que o processo $\{y_t\}$ é estritamente estacionário.

- (b) Tendo em conta a figura anterior acha que a distribuição estacionária pode ser bimodal? Justifique.
- 5. Considere $y_t = y_{t-1} + e^{-3} (e^{-y_{t-1}} e^{y_{t-1}}) + u_t$ onde $\{u_t\}$ é um processo ruído branco e u_t é independente de y_{t-1} . O esqueleto da equação, $g(x) = x + e^{-3} (e^{-x} e^x)$, está representado na figura seguinte, juntamente com as rectas -x e x. Discuta a partir da figura se o processo $\{y_t\}$ pode ser estritamente estacionário.

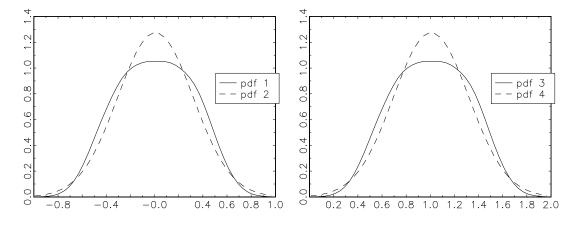


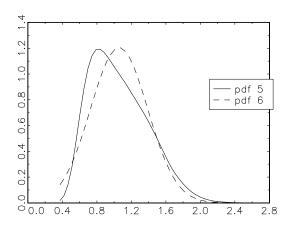
6. Considere

$$y_t = y_{t-1} + \beta y_{t-1} \left(1 - e^{-\frac{x^2}{4}} \right) + u_t, \tag{*}$$

onde u_t é ruído branco Gaussiano com variância igual a 1.

- (a) Considere $\beta = -1$. Determine o ponto fixo do esqueleto da equação, e discuta a estabilidade desse ponto fixo através do gráfico teia de aranha (considere os valores iniciais -1 e 1).
- (b) Determine os valores de β que asseguram a estacionaridade estrita do processo $\{y_t\}$.
- (c) O teste Dickey-Fuller pode apresentar baixa potência no contexto do modelo (*) com $\beta = -1$. Explique porquê.
- (d) A distribuição estacionária (que coincide com a distribuição marginal) é desconhecida, mas pode ser estimada. Das 6 funções densidade de probabilidade (probability density functions pdf) abaixo apresentadas, qual é a que corresponde à densidade estacionária do processo estocástico em análise? Justifique.





7. Considere o processo

$$y_t = \left| b\varepsilon_t^2 \right| y_{t-1} + u_t^2$$

onde u e ε são ruídos brancos Gaussianos, independentes entre si, com distribuição N(0,1). Determine uma condição suficiente, envolvendo apenas a constante b, para que y seja um processo estritamente estacionário.

8. Para o modelo

$$y_t = \begin{cases} \phi_1 y_{t-1} + u_t & \text{se } y_{t-d} \le \gamma \\ \phi_2 y_{t-1} + u_t & \text{se } y_{t-d} > \gamma \end{cases}$$

com $Var[u_t] = \sigma^2$, obtiveram-se os seguintes resultados na fase de estimação:

Valores de $\hat{\sigma}^2$ em função de γ e d

1010100 000	0111 10111	gao ao 1 o a
$\begin{array}{c} d \to \\ \gamma \downarrow \end{array}$	1	2
-1	15.5	16
-0.7	12.4	13.5
-0.1	12.1	12.3
001	3.5	2.5
0.0	1.2	2.4
1.2	2.5	2.8
1.5	5.5	7

- (a) Proponha uma estimativa para γ , $d \in \sigma^2$. Justifique.
- (b) Para os valores $\hat{\gamma}$, \hat{d} , obtidos no passo anterior, obteve-se

$$\hat{\boldsymbol{\phi}}\left(\hat{\gamma},\hat{d}\right) = \left(\mathbf{X}\left(\hat{\gamma},\hat{d}\right)'\mathbf{X}\left(\hat{\gamma},\hat{d}\right)\right)^{-1}\mathbf{X}\left(\hat{\gamma},\hat{d}\right)'\mathbf{y} = \begin{bmatrix} 0.5\\-1 \end{bmatrix}.$$

- i. Escreva a última linha da matriz $\mathbf{X}\left(\hat{\gamma},\hat{d}\right)$ supondo $y_{n-1}=1.5$ e $y_n=-1.5$.
- ii. Faça um esboço do gráfico teia de aranha associado ao esqueleto do modelo estimado (i.e., $\hat{g}(x)$). Trace sobre o gráfico uma trajectória com início em $y_0 = 3$.
- iii. Determine o ponto fixo de $\hat{g}(x)$ e discuta a estabilidade desse ponto.
- (c) Para o modelo estimado, qual das hipóteses está correcta $\mathbf{E}[y_t] = 0$, $\mathbf{E}[y_t] < 0$ ou $\mathbf{E}[y_t] > 0$? Justifique devidamente.

9. Considere

$$y_t = \begin{cases} 0.1 + y_{t-1} + u_t, & \text{se } y_{t-1} < -2\\ y_{t-1} + u_t, & \text{se } -2 \le y_{t-1} \le 2\\ -0.1 + y_{t-1} + u_t, & \text{se } y_{t-1} > 2 \end{cases}$$

onde $\{u_t\}$ é um processo ruído branco e u_t é independente de y_{t-1}

(a) Discuta a estacionaridade estrita do processo $\{y_t\}$.

- (b) Trace três possíveis trajectórias de y (ao longo do tempo) com os seguintes valores iniciais: $y_0 = 0$, $y_0 = 5$, $y_0 = -3$. Justifique.
- 10. Considere as seguintes observações

t	1	2	3	4	5	6	7
y_t	1	2	-1	4	5	-2	-1

e o modelo

$$y_t = \begin{cases} c_1 + u_t & \text{se } y_{t-1} \le 0 \\ c_2 + u_t & \text{se } y_{t-1} > 0. \end{cases}$$

Estime os parâmetros c_1 e c_2 utilizando um método de estimação consistente.

11. Considere

$$y_t = \begin{cases} -0.8y_{t-1} + u_t & y_{t-1} < 0\\ 0.9y_{t-1} + u_t & y_{t-1} \ge 0 \end{cases}$$

onde $\{u_t\}$ é um ruído branco Gaussiano e u_t é independente de $y_{t-k}, k \geq 1$.

(a) Qual das hipóteses está correcta:

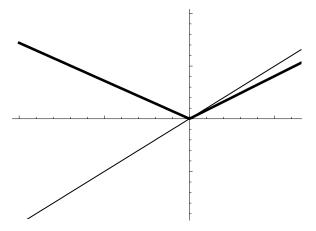
$$P\left(y_t > 0\right) = P\left(y_t < 0\right)$$

$$P\left(y_t > 0\right) \quad > \quad P\left(y_t < 0\right)$$

$$P\left(y_t > 0\right) < P\left(y_t < 0\right)?$$

Justifique devidamente.

(b) Sabendo que o gráfico seguinte representa g(g(x)) e x (linha 45^{o}) (g é o esqueleto do modelo) diga se existem pontos periódicos de período 2 e identifique-os caso existam.



12. Considere

$$y_t = \begin{cases} e^1 y_{t-1} + u_t & \text{se } S_t = 1\\ e^{-1} y_{t-1} + u_t & \text{se } S_t = 2 \end{cases}$$

onde $\{u_t\}$ é um ruído branco e $\{S_t\}$ é uma cadeia de Markov homogénea. Determine a relação entre $P(S_t = 1 | S_{t-1} = 1)$ e $P(S_t = 2 | S_{t-1} = 2)$ por forma a assegurar a estacionaridade estrita do processo $\{y_t\}$. Comente o resultado obtido.

13. Considere

$$y_t = \begin{cases} 10 + u_t & \text{se } S_t = 1\\ 20 + u_t & \text{se } S_t = 2 \end{cases}$$

onde $\{u_t\}$ é um processo ruído branco e $\{S_t\}$ é uma cadeia de Markov com matriz de probabilidades de transição

$$\mathbf{P} = \left[\begin{array}{cc} 0.9 & 0.1 \\ 0.4 & 0.6 \end{array} \right].$$

Determine $\mathbb{E}(y_t)$.

14. Considere

$$y_t = \begin{cases} 10 + u_t & \text{se } S_t = 1\\ 20 + u_t & \text{se } S_t = 2 \end{cases}$$

onde $\{u_t\}$ é um processo ruído branco e $\{S_t\}$ é uma cadeia de Markov. Sabendo que

$$\mathbf{P}^{t} = \underbrace{\mathbf{P} \times \mathbf{P} \times ...\mathbf{P}}_{t \text{ vezes}} = \begin{bmatrix} \frac{4}{5} + \frac{2^{-t}}{5} & \frac{1}{5} - \frac{2^{-t}}{5} \\ \frac{4}{5} - \frac{2^{2-t}}{5} & \frac{1}{5} + \frac{2^{2-t}}{5} \end{bmatrix}$$

determine $\mathbb{E}(y_t|S_0=1)$ e $\lim_{t\to\infty}\mathbb{E}(y_t|S_0=1)$.

15. Suponha que y é modelado através de um modelo Markov-Switching onde os regimes seguem uma cadeia de Markov com matriz de probabilidade de transição não homogénea dada por

$$P_{t} = \left[\begin{array}{cc} p_{11t} & p_{12t} \\ p_{21t} & p_{22t} \end{array} \right] = \left[\begin{array}{cc} \Phi\left(\alpha_{0} + \alpha_{1}y_{t-1}\right) & 1 - \Phi\left(\alpha_{0} + \alpha_{1}y_{t-1}\right) \\ 1 - \Phi\left(\beta_{0} + \beta_{1}y_{t-1}\right) & \Phi\left(\beta_{0} + \beta_{1}y_{t-1}\right) \end{array} \right].$$

onde $\Phi(x)$ é a função de distribuição da variável N(0,1). Qual o interesse desta especificação? Forneça um exemplo onde o modelo possa ser aplicado. Como poderia testar a homogeneidade da cadeia de Markov?

16. Para analisar as variações do nível da taxa de juro (FED fund) no período 03/1954-07/2010 considerou-se o modelo AR(1) e o modelo Markov-Switching. A variável analisada foi $y_t = r_t - r_{t-1}$ onde r_t representa o nível da taxa de juro. O modelo Markov-Switching é

$$y_t = \begin{cases} c_1 + \phi_1 y_{t-1} + \sigma_1 \varepsilon_t & \text{se } S_t = 1\\ c_2 + \phi_2 y_{t-2} + \sigma_2 \varepsilon_t & \text{se } S_t = 2. \end{cases}$$

Obtiveram-se os seguintes resultados:

Modelo AR(1)

Modelo Markov-Switching

0.0097 0.0364

0.0082

0.1946

0.9809

Log-likelihood	-481.68
Number of cases	669

Log-li	kel:	ihood	-98.25
Number	of	cases	669

Parameters	Estimates	Std. err.	Parameters	Estimates	Std. err.
c	-0.0012	0.0192	c1	-0.0365	0.1185
phi	0.3814	0.0712	phi1	0.3476	0.0836
sigma	0.4977	0.0744	sigma1	1.1794	0.2314
			c2	0.0047	0.0085
			phi2	0.5318	0.0425
			giama?	0 1946	0 0097

- (a) Defina a hipótese nula para testar o modelo AR(1) contra o modelo Markov-Switching.
- (b) Sabendo que o processo y se encontra no momento t no regime de alta volatilidade, qual é a probabilidade do processo y continuar nesse regime no momento t + 2?

p11

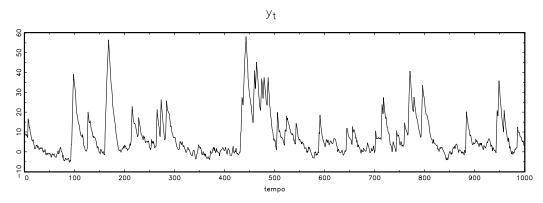
(c) Verifique a condição de estacionaridade estrita do processo y.

17. Foi realizada uma simulação baseada no modelo

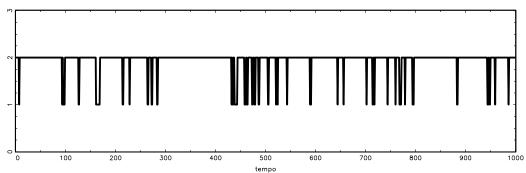
$$y_t = \begin{cases} c_1 + 0.9y_{t-1} + u_t & \text{se } S_t = 1\\ c_2 + 0.9y_{t-1} + u_t & \text{se } S_t = 2 \end{cases}$$

onde $\{S_t\}$ é uma cadeia de Markov com matriz de probabilidades de transição $p_{ii} = P(S_t = i | S_{t-1} = j)$ e $\{u_t\}$ é um processo ruído branco. Com base nas trajectórias simuladas (ver gráfico) e indique os valores de $c_1, c_2 \in p_{ji}$, sabendo que os valores possíveis para $c_1 \in c_2$ são $\{0, 10\}$ e os valores possíveis para $p_{11} \in p_{22}$ são $\{0.5, 0.95\}$. Justifique.

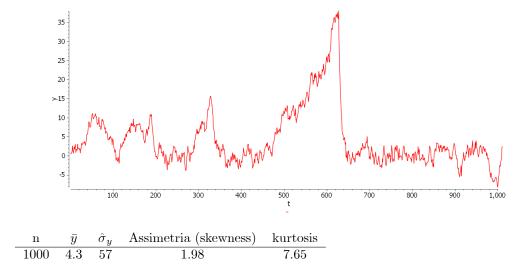
37



S_t Regime



18. Considere a série temporal:



- (a) Identifique os possíveis indícios de não linearidade na série temporal. Justifique.
- (b) Entre o modelo Markov-Switching e o SETAR, qual escolheria para modelar a série? Escreva o modelo seleccionado, justificando.
- 19. Seja f a fdp de uma mistura de distribuições normais: $\alpha 100\%$ de $N\left(\mu_1, \sigma_1^2\right)$ e $(1-\alpha) 100\%$ de $N\left(\mu_2, \sigma_2^2\right)$. Sabendo que o tempo médio de permanência no regime 1 é igual a 10 períodos, reescreva o modelo probabilístico como um processo Markov-Switching, $\{y_t\}$, identificando abaixo as expressões A, B, ..., F

$$y_t = \left\{ \begin{array}{ll} A & \text{se } y_t \text{ est\'a no regime 1} \\ B & \text{se } y_t \text{ est\'a no regime 2} \end{array} \right., \qquad P = \left(\begin{array}{ll} C & D \\ E & F \end{array} \right).$$

Justifique.

20. Considere o modelo

$$y_t = c + u_t \tag{*}$$

$$u_t = \varepsilon_t \sigma_t \tag{**}$$

$$u_{t} = \varepsilon_{t}\sigma_{t}$$

$$\sigma_{t}^{2} = \omega_{1} + \omega_{2}I_{\{S_{t}=2\}} + \alpha u_{t-1}^{2} + \beta \sigma_{t-1}^{2}$$

$$(***)$$

onde:

- $\{\varepsilon_t\}$ é uma sequência de v.a. i.i.d. com $\mathbf{E}\left[\varepsilon_t\right] = 0$ e $\mathrm{Var}\left[\varepsilon_t\right] = 1$ e ε_t é independente de $u_{t-k}, k \in \mathbb{N}$;
- $\{S_t\}$ é uma cadeia de Markov com espaço de estados $\{1,2\}$ e matriz de probabilidades de transição

$$\mathbf{P} = \left(\begin{array}{cc} p_{11} & p_{12} \\ p_{21} & p_{22} \end{array}\right);$$

- $I_{\{S_t=2\}}$ é uma variável dummy igual a um se $S_t=2$.
- (a) Numa aplicação empírica estimou-se o modelo (*), (**) e (***) e obteve-se $\hat{\alpha} + \hat{\beta} = 0.91$. Para efeitos de comparação, estimou-se o modelo (*), (**) mas considerando a especificação habitual GARCH(1,1) $\sigma_t^2 = \omega + \alpha u_{t-1}^2 + \beta \sigma_{t-1}^2$. Neste último caso obteve-se $\hat{\alpha} + \hat{\beta} = 1.01$. Dê uma possível razão para as diferenças obtidas na estimação de $\alpha + \beta$. Em seu entender, por que razão o modelo (***) permite obter uma estimativa $\hat{\alpha} + \beta$ mais baixa?
- (b) Considerando o modelo (*), (**) e (***) obtenha

$$\operatorname{E}\left(\left.\sigma_{n+2}^{2}\right|F_{n},S_{n}=1\right)$$

21. Considerou-se o modelo Markov-Switching para estimar os retornos mensais (multiplicados por 100) da Microsoft no período Marco/1986 a Fevereiro/2015, cujos resultados se apresentam a seguir:

Dependent Variable: R100 Method: Switching Regression (Markov Switching)

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
Regime 1						
C LOG(SIGMA)	1.220794 1.713034	0.421486 0.053677	2.896405 31.91389	0.0038 0.0000		
Regime 2						
C LOG(SIGMA)	2.984211 2.324357	0.993352 0.070599	3.004182 32.92321	0.0027 0.0000		

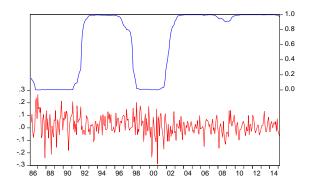
Constant transition probabilities:

P(i, k) = P(s(t) = k | s(t-1) = i)

(row = i / column = j)

	1	2
1	0.991207	0.008793
2	0.014854	0.985146

No gráfico seguinte representam-se os retornos e uma das smoothed probabilities, isto é, $P(S_t = 1 | \mathcal{F}_n)$ ou $P(S_t = 2 | \mathcal{F}_n)$. (Nota: S_t representa a cadeia de Markov, com espaço de estados $\{1,2\}$. Assim, $S_t = 1$ significa que S_t se encontra no regime 1, no momento t; de forma análoga para $S_t = 2$).



- (a) Qual das probabilidades está representada na figura, $P\left(\left.S_{t}=1\right|\mathcal{F}_{n}\right)$ ou $P\left(\left.S_{t}=2\right|\mathcal{F}_{n}\right)$? Justifique.
- (b) Calcule o tempo médio de permanência em cada um dos regimes e relacione com um dos factos empíricos estilizados das séries financeiras.
- (c) Obtenha o retorno anualizado.

6 Risco de Mercado e o Valor em Risco

 Considere os problemas de otimização para a determinação dos pesos óptimos de uma carteira constituída por m activos com risco:

(A)
$$\begin{cases} \min_{\boldsymbol{\omega}} \operatorname{Var}\left(R_{p,n+1}\right) \\ \text{s.a } \operatorname{E}\left(R_{p,n+1}\right) = \mu_{p} \operatorname{e} \sum_{i=1}^{m} \omega_{i} = 1 \end{cases}$$
 (B)
$$\begin{cases} \min_{\boldsymbol{\omega}_{i}} \boldsymbol{\omega}_{n+1}' \mathbf{H}_{n+1} \boldsymbol{\omega}_{n+1} \\ \text{s.a } \boldsymbol{\omega}_{n+1}' \boldsymbol{\mu}_{n+1} = \mu_{p} \operatorname{e} \boldsymbol{\omega}_{n+1}' \mathbf{1} = 1 \end{cases}$$

Concorda com a seguinte afirmação: "O problema de optimização (B), baseado em momentos condicionais, é geralmente preferível."

- 2. Em relação ao exercício 12 do capítulo 3 calcule o $VaR_{n,n+h,\alpha}$ associado a um capital de 1000 unidades monetárias para h=1 e $\alpha=0.05$.
- 3. Em relação ao exercício 46 do capítulo 3 obtenha a expressão do VaR a dois períodos a $\alpha 100\%$.
- 4. Seja $\Delta V_{n+1} = \frac{\Delta V_{n+1}}{V_n} V_n = R_{n+1} V_n$ onde $R_{n+1} = (P_{n+1} P_n) / P_n$ (notações usadas nas aulas). Usando a abordagem não paramétrica, expresse o VaR a um período como função do quantil da distribuição de $r_t = \log (P_t / P_{t-1})$ de ordem α .
- 5. Considere

$$r_t = c + \theta u_{t-1} + u_t, \qquad u_t = \sigma_t \varepsilon_t, \qquad \sigma_t^2 = \omega + \alpha_1 u_{t-1}^2 + \beta_1 \sigma_{t-1}^2, \ \alpha_1 + \beta_1 = 1$$

Obtenha a expressão geral do VaR a dois períodos a $\alpha 100\%$.

6. Para estimar o VaR (Value at Risk) da série de retornos da Microsoft (dados diários entre 13/03/1986 e 20/02/2015) foram considerados dois modelos:

$$\begin{aligned} \mathbf{Modelo\ M1} \; \left\{ \begin{array}{l} r_t = c + u_t \\ u_t = \sigma_t \varepsilon_t, & \varepsilon_t \sim N\left(0,1\right) \\ \sigma_t^2 = \lambda u_{t-1}^2 + \left(1 - \lambda\right) \sigma_{t-1}^2 \\ \end{aligned} \right. \\ \mathbf{Modelo\ M2} \; \left\{ \begin{array}{l} r_t = c + u_t \\ u_t = \sigma_t \varepsilon_t, & \varepsilon_t \sim t\left(v\right) \\ \sigma_t^2 = \omega + \alpha_1 u_{t-1}^2 + \beta_1 \sigma_{t-1}^2 \end{array} \right. \end{aligned}$$

Depois dos modelos estimados calcularam-se as quantidades:

$$VaR_{t,t-1,\alpha}^{(M1)}, VaR_{t,t-1,\alpha}^{(M2)},$$

isto é, os VaRs associados aos dois modelos. Definiram-se depois as seguintes funções indicatrizes:

$$I1_{t} = \begin{cases} 1 & \text{se } \Delta V_{t} < -VaR_{t,t-1,\alpha}^{(M1)} \\ 0 & \text{no caso contrário.} \end{cases}$$

$$I2_{t} = \begin{cases} 1 & \text{se } \Delta V_{t} < -VaR_{t,t-1,\alpha}^{(M2)} \\ 0 & \text{no caso contrário.} \end{cases}$$

e realizaram-se as seguintes regressões auxiliares:

Equação 1Dependent Variable: I1
Method: Least Squares

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C I1(-1) I1(-2) I1(-3)	0.048981 0.017888 0.040725 0.017888	0.003029 0.012566 0.012558 0.012566	16.16899 1.423540 3.243106 1.423540	0.0000 0.1546 0.0012 0.1546
Prob(F-statistic)	0.001735			

Equação 2Dependent Variable: I2
Method: Least Squares

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C 12(-1) 12(-2) 12(-3)	0.046867 0.018424 0.018424 0.011551	0.002915 0.012567 0.012567 0.012567	16.07865 1.466019 1.466019 0.919126	0.0000 0.1427 0.1427 0.3581
Prob(F-statistic)	0.149220			

Finalmente testou-se em cada um dos casos, a hipótese C(1)=0.05, C(2)=0, C(3)=0, C(4)=0 (notação do EVIEWS), cujos resultados se apresentam a seguir:

Wald Test: Equação 1

Test Statistic	Value	df	Probability
F-statistic	4.070173	(4, 6331)	0.0027
Chi-square	16.28069	4	0.0027

Wald Test: Equação 2

Test Statistic	Value	df	Probability
F-statistic	1.351769	(4, 6331)	0.2482
Chi-square	5.407077	4	0.2480

- (a) O que se pretende investigar neste exercício? Qual o valor de α usado no cálculo dos VaRs? Justifique.
- (b) Retire as devidas conclusões em face dos resultados obtidos. Explique as diferenças obtidas em face dos modelos usados.
- (c) Sugira um possível melhoramento no cálculo do VaR, sem sair do quadro da estimação paramétrica. Justifique.
- 7. Analisou-se os retornos da Microsoft (dados diários entre 2/01/1990 e 20/02/2015) nos seguintes aspetos:
 - (A) Considerou-se o modelo mistura de normais onde se dá um peso α à distribuição de $X_1 \sim N\left(\mu_1, \sigma_1^2\right)$ e o complementar à distribuição de $X_2 \sim N\left(\mu_2, \sigma_2^2\right)$. Todos os parâmetros foram estimados pelo método da máxima verosimilhança, como se apresenta na tabela seguinte:

Parameters	Estimates	Std. err.	
			-
alfa	0.2433	0.0300	
miu1	0.0022	0.0010	
miu2	0.0002	0.0001	
sigma1	0.0346	0.0014	
sigma2	0.0137	0.0005	

Com base nestas estimativas obteve-se, por integração numérica, o seguinte quadro:

$\underline{}$	$\hat{P}\left(r < x\right)$
-0.031	0.05
-0.021	0.10
0.033	0.95
0.064	0.99

(B) Estimou-se o índice de cauda através do estimador de Hill:

Aba Esquerda 2.4 (considerando 2% das observações mais baixas) Aba Direita 3.0 (considerando 2% das observações mais altas)

- (a) Comente os resultados obtidos na parte (B) e relacione com os resultados da parte (A).
- (b) Obtenha uma estimativa do VaR a 1% dado um investimento de $V_n=1000$ unidades monetárias.
- (c) Destaque uma vantagem e uma desvantagem do método usado para calcular o VaR. Justifique.
- 8. Tenha em consideração que pretende calcular o VaR de forma paramétrica recorrendo à metodologia RiskMet-rics para um índice bolsista norte-americano. Para o efeito aplicou o modelo da Figura 1 (página seguinte)
 aos retornos desse índice e obteve, de seguida, a estimativa da série da respectiva variância condicional (Figura
 2, página seguinte).
 - (a) Considere o seguinte $\hat{VaR}_{t,t+1,0.05}$ para $t=1,2,\cdots,T$ (Figura 3, página seguinte). Discuta a plausibilidade desta estimativa ter sido gerada pelo modelo estimado na Figura 2.

Dependent Variable: R1 Method: ML ARCH - Student's t distribution (BFGS / Marquardt steps)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.050424	0.008933	5.645009	0.0000
Variance Equation				
RESID(-1)^2 GARCH(-1)	0.06900 A	0.002228 ?	31.283 ?	0.0000
T-DIST. DOF	7.679880	0.328239	23.39720	0.0000

Figura 1: Estimação GARCH



Figura 2: Série da variância condicional

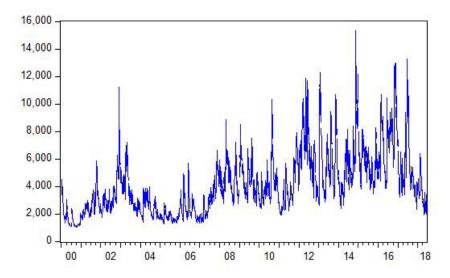


Figura 3: Estimativa do VaR

- (b) Apresentando um valor possível para a quantidade **A** (Figura 1), escreva a expressão (analítica) para o \widehat{VaR} a 3 períodos a 5% sabendo que:
 - $\sigma_n^2 = 0.57$,
 - $r_n = -0.10$,
 - o valor do investimento inicial foi de 1000 u.m.

9. Considere:

• VaR_p - o valor em risco de um portefólio constituído por 2 ativos com igual peso na carteira. Este VaR_p é calculado com base num sistema de 2 equações $\mathbf{r}_t = \boldsymbol{\mu} + \mathbf{u}_t$, $\mathbf{u}_t = \mathbf{H}^{1/2} \boldsymbol{\varepsilon}_t$, onde

$$\boldsymbol{\mu} = \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right), \qquad \mathbf{H} = \left(\begin{array}{cc} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{array} \right);$$

o investimento total é V_n .

- VaR_i , i=1,2 os valores em risco dos 2 ativos acima referidos, mas considerados individualmente. O investimento em cada um dos ativos é $V_n/2$. O calculo de VaR_i , i=1,2 baseia-se na equação i do sistema $\mathbf{r}_t = \boldsymbol{\mu} + \mathbf{u}_t$.
- (a) Determine σ_{12} de forma que o valor em risco do portefólio seja igual à soma do valor em risco dos dois ativos, i.e.

$$VaR_p = VaR_1 + VaR_2.$$

(use o mesmo quantil de ordem em todos os casos).

Note:
$$\sqrt{\left(\begin{array}{cc} 1/2 & 1/2 \end{array}\right) \left(\begin{array}{cc} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{array}\right) \left(\begin{array}{c} 1/2 \\ 1/2 \end{array}\right)} = \frac{1}{2} \sqrt{\sigma_1^2 + 2\sigma_{12} + \sigma_2^2}.$$

(b) Calcule |**H**| e comente.