
# Learning Objectives

- Learn how to create a requirements definition
- Learn various requirements analysis techniques
- Learn when to use each requirements analysis techniques
- Learn how to gather requirements using interviews, JAD sessions, questionnaires, document analysis & observation
- Learn various requirements documentation techniques such as concept maps, story cards & task-lists
- Understand when to use each requirements-gathering technique
- Be able to begin the creation of a system proposal



### Introduction

 The systems development process transforms the existing (as is) system into the proposed (to be) system





### Introduction

- Requirements determination
  - The single most critical step of the entire SDLC
  - Changes can be made easily in this stage
  - Most (>50%) system failures are due to problems with requirements
  - An iterative process is effective because:
    - Small batches of requirements can be identified and implemented incrementally
    - The system will evolve over time



















#### • Purpose:

- to convert high level business requirements (from the system request)
- into detailed requirements that can be used as inputs for creating models

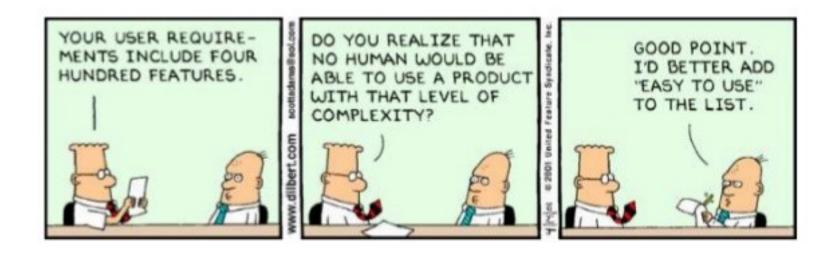


#### What is a requirement?

- A statement of what the system must do or a characteristic it must have
- Will later evolve into a technical description of how the system will be implemented
- A requirement is a a property that must be exhibited in order to solve a real-world problem
- Requirements define what the system is required to do and the constraints under which it is required to operate
- Requirements can be described in a more or less abstract form, in its most abstract form can even be a simple math expression



- For definitions of the requirements may be considered appropriate, these must meet a set of criteria, such as being:
  - Full
  - Clear
  - Measurable
  - Achievable
  - Required
  - Correct
  - Testable






#### Examples:

- the software must provide the means to represent and to access to external files created by other tools
- the user must be able to define the file types to be used
- every file must be represented by a specific icon







- Types of requirements:
  - Functional: relates to a process or data
  - Non-functional: relates to performance or usability



#### Functional:

 Describe the functions the software is to accomplish (capabilities)

#### Examples:

- The software shall verify that a student meets all prerequisites before enrolling in a course
- The system must allow users to search for books by title and author



- Functional (typical):
  - Business Rules
  - Transaction corrections, adjustments and cancellations
  - Administrative functions
  - Authentication
  - Authorization levels
  - Audit Tracking
  - External Interfaces
  - Certification Requirements
  - Reporting Requirements
  - Historical Data
  - Legal or Regulatory Requirements



#### Non-Functional:

- Nonfunctional requirements are those that constrain the solution (constraints or quality requirements) as:
- Performance requirements
- Maintainability requirements
- Safety requirements
- Reliability requirements

#### • Examples:

- "The user interface of the system should be implemented using a WWW browser"
- "the system must support at least 20 transactions per second"



#### Non-Functional:

- Performance for example: response time, throughput, utilization, static
   volumetric
- Scalability
- Capacity
- Availability
- Reliability
- Recoverability
- Maintainability
- Security
- Regulatory
- Manageability
- Environmental
- Data Integrity
- Usability
- Interoperability
- Serviceability



# Exercise (1/2)

- Classify the following requirements:
  - The system must...
    - Be accessible to Web users
    - Include the Company Logo and Company Colour Schema
    - Restrict access to Company Profits
    - Include real and budget costs
    - Generate Management reports
    - Update Sales Information
    - Do (6) at least once a day
    - Process information on all subsidiary companies



# Exercise (2/2)

- Classify the following requirements:
  - The system must... (cont.)
    - Allow up to N users simultaneously
    - Apply a discount to all clients who, in the last X months, have paid more than Y Euros
    - Keep online the last X years orders
    - Be periodically shutdown for backup purposes



### Requirements Definition

- Functional & non-functional requirements listed in outline format
- May be prioritized
- Provides information needed in subsequent workflows
- Defines the scope of the system



### Sample of Requirements Definition

#### **Nonfunctional Requirements**

#### 1. Operational Requirements

- 1.1. The system will operate in Windows environment.
- 1.2. The system should be able to connect to printers wirelessly.
- 1.3. The system should automatically back up at the end of each day.

#### 2. Performance Requirements

- 2.1. The system will store a new appointment in 2 seconds or less.
- 2.2. The system will retrieve the daily appointment schedule in 2 seconds or less.

#### 3. Security Requirements

- 3.1. Only doctors can set their availability.
- 3.2. Only a manager can produce a schedule.

#### 4. Cultural and Political Requirements

4.1. No special cultural and political requirements are anticipated.

#### **Functional Requirements**

#### 1. Manage Appointments

- 1.1. Patient makes new appointment.
- 1.2. Patient changes appointment.
- 1.3. Patient cancels appointment.

#### 2. Produce Schedule

- 2.1. Office Manager checks daily schedule.
- 2.2. Office Manager prints daily schedule.

#### 3. Record Doctor Availability

3.1. Doctor updates schedule



### Requirement Properties

- Identifier: it must be unique to allow software configuration control and management over the entire software life-cycle
- Type: helps grouping requirements (an accepted taxonomy should exist)
- Stakeholder: who is (are) the main actor concerned with the requirement
- Description: describes what the requirement is about
- Priority: to enable trade-offs in the face of finite resources
- Status: to enable project progress to be monitored
- Scope: the extent to which a requirement affects the software architecture

• Valatility the expected change rate during the life evale

| Identifier | Type | Stakeholder | Description | Priority | Status | Scope | Volatility |
|------------|------|-------------|-------------|----------|--------|-------|------------|
|            |      |             |             |          |        |       |            |



# Determining Requirements

- Business & IT personnel need to collaborate
- Strategies for problem analysis:
  - Root cause analysis
  - Duration analysis
  - Activity-based costing
  - Informal benchmarking
  - Outcome analysis
  - Technology analysis
  - Activity elimination



# Determining Requirements

- Requirements are best determined by systems analysts and business people together
- Techniques for identifying requirements
  - Interviews, questionnaires and/or observation
  - Joint application development (JAD)
  - Document analysis



# Creating a Requirements Definition

- Determine the types of functional and non-functional requirements applicable to the project
- Use requirements-gathering techniques to collect details
- Analysts work with users to verify, change and prioritize each requirement
- Continue this process through analysis workflow, but be careful of scope creep
- Requirements that meet a need but are not within the current scope can be added to a list of future enhancements



# Problems in Requirements Determination

- Analyst may not have access to the correct users
- Requirements specifications may be inadequate
- Some requirements may not be known in the beginning
- Verifying and validating requirements can be difficult



# Requirements Analysis Strategies

- Problem analysis
  - Ask users to identify problems with the current system
  - Ask users how they would solve these problems
  - Good for improving efficiency or ease-of-use
- Root cause analysis
  - Focus is on the cause of a problem, not its solution
  - Create a prioritized list of problems
  - Try to determine their causes
  - Once the causes are known, solutions can be developed



# Requirements Analysis Strategies(Cont.)

- Duration analysis
  - Determine the time required to complete each step in a business process
  - Compare this to the total time required for the entire process
  - Large differences suggest problems that might be solved by:
    - Integrating some steps together
    - Performing some steps simultaneously (in parallel)
- Activity-based costing
  - Same as duration analysis but applied to costs
- Informal benchmarking
  - Analyzes similar processes in other successful organizations



# Requirements Analysis Strategies(Cont.)

- Outcome analysis
  - What does the customer want in the end?
- Technology analysis
  - Apply new technologies to business processes & identify benefits
- Activity elimination
  - Eliminate each activity in a business process in a "forcefit" exercise



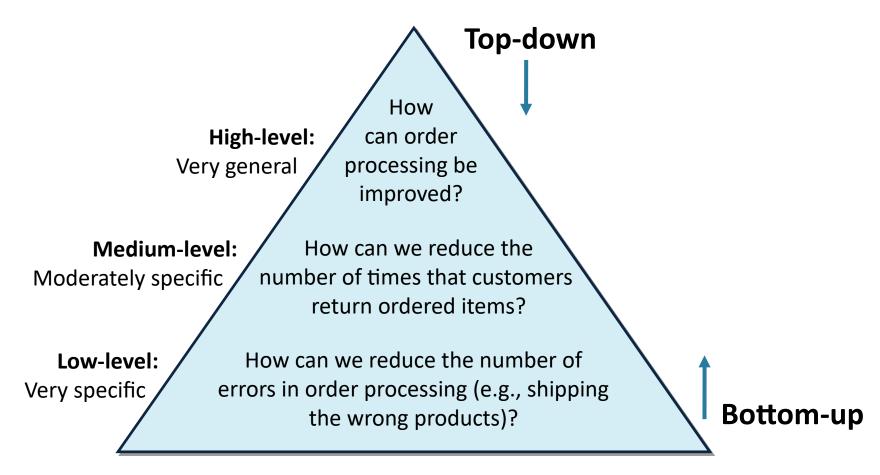
# Requirements Gathering Techniques

- Process is used to:
  - Uncover all requirements (those uncovered late in the process are more difficult to incorporate)
  - Build support and trust among users
- Which technique(s) to use?
  - Interviews
  - Meeting
  - Observation
  - Questionnaires
  - Document analysis
  - Scenarios
  - Prototyping



### Interviews

- Most popular technique—if you need to know something, just ask
- Process:
  - Select people to interview & create a schedule
  - Design interview questions (Open-ended, closed-ended, & probing types of questions)
  - Prepare for the interview (Unstructured vs. structured interview organized in a logical order)
  - Conduct the interview (Top-down vs. bottom-up)
  - Follow-up after the interview




# **Question Types**

| Types of Questions     | Examples                                                                                                                                                                                                            |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Closed-ended questions | <ul> <li>How many telephone orders are received per day?</li> <li>How do customers place orders?</li> <li>What information is missing from the monthly sales report?</li> </ul>                                     |  |  |  |  |
| Open-ended questions   | <ul> <li>What do you think about the current system?</li> <li>What are some of the problems you face on a daily basis?</li> <li>What are some of the improvements you would like to see in a new system?</li> </ul> |  |  |  |  |
| Probing questions      | <ul><li>Why?</li><li>Can you give me an example?</li><li>Can you explain that in a bit more detail?</li></ul>                                                                                                       |  |  |  |  |



# Interviewing Strategies





### Post-Interview

Prepare notes and send to the interviewee for verification

Interview Notes Approved by: Linda Estey

Person Interviewed: Linda Estey, Director, Human Resources

Interviewer: Barbara Wixom

#### Purpose of Interview:

- Understand reports produced for Human Resources by the current system
- Determine information requirements for future system

#### Summary of Interview:

- Sample reports of all current HR reports are attached to this report. The information that is not
  used and missing information are noted on the reports.
- Two biggest problems with the current system are:
  - The data are too old (the HR Department needs information within two days of month end; currently information is provided to them after a three-week delay)
  - The data are of poor quality (often reports must be reconciled with departmental HR database)
- The most common data errors found in the current system include incorrect job level information and missing salary information.

#### Open Items:

- Get current employee roster report from Mary Skudrna (extension 4355).
- Verify calculations used to determine vacation time with Mary Skudrna.
- Schedule interview with Jim Wack (extension 2337) regarding the reasons for data quality problems.

Detailed Notes: See attached transcript.



# Meeting

- Joint user-analyst meeting hosted by a facilitator
  - 10 to 20 users
  - 1 to 2 scribes as needed to record the session
  - Usually in a specially prepared room
- Meetings can be held electronically and anonymously
  - Reduces problems in group settings
  - Can be held remotely
- Sessions require careful planning to be successful
  - Users may need to bring documents or user manuals
  - Ground rules should be established.



### Questionnaires

- A set of written questions used to obtain information from individuals
- May be paper based or electronic (e.g., web based)
- Common uses:
  - Large numbers of people
  - Need both information and opinions
  - When designing for use outside the organization (customers, vendors, etc.)
- Typical response rates: < 50% (paper); < 30% (Web)</li>



# Questionnaire Steps

- Select the participants
  - Identify the population
  - Use representative samples for large populations
- Designing the questionnaire
  - Careful question selection
  - Remove ambiguities
- Administering the questionnaire
  - Working to get good response rate
  - Offer an incentive (e.g., a free pen)
- Questionnaire follow-up
  - Send results to participants
  - Send a thank-you



## Good Questionnaire Design

- Begin with non-threatening and interesting questions
- Group items into logically coherent sections
- No important items at the very end
- Do not crowd a page with too many items
- Avoid abbreviations
- Avoid biased or suggestive items or terms
- Number questions to avoid confusion
- Pre-test to identify confusing questions
- Provide anonymity to respondents

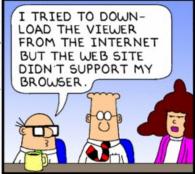


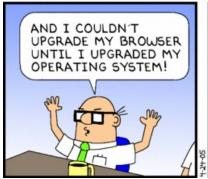


### **Document Analysis**

- Provides information about the "as-is" system
- Review technical documents when available
- Review typical user documents:
  - Forms
  - Reports
  - Policy manuals
- Look for user additions to forms
- Look for unused form elements







### **Document Analysis**





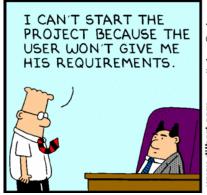













### Observation

- Users/managers often don't remember everything they do
- Checks validity of information gathered in other ways
- Behaviours may change when people are watched
  - Workers tend to be very careful when watched
  - Keep a low profile
  - Try not to interrupt or influence workers
- Be careful not to ignore periodic activities
  - Weekly ... Monthly ... Annually



## Prototyping







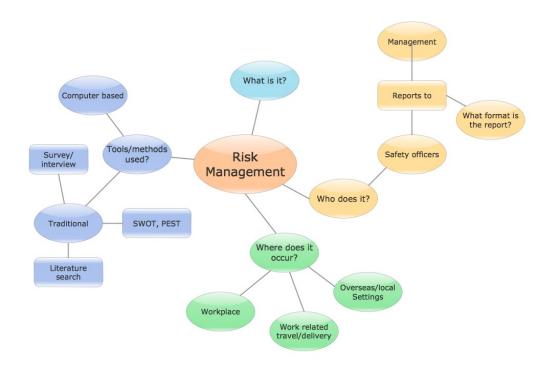






# Requirements-Gathering Techniques Compared

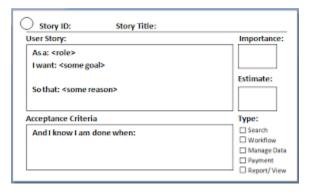
- A combination of techniques may be used
- Document analysis & observation require little training;
   JAD sessions can be very challenging


|                            | Interviews                 | Joint Application<br>Design | Questionnaires      | Document<br>Analysis | Observation   |
|----------------------------|----------------------------|-----------------------------|---------------------|----------------------|---------------|
| Type of information        | As-is, improvements, to-be | As-is, improvements, to-be  | As-is, improvements | As-is                | As-is         |
| Depth of information       | High                       | High                        | Medium              | Low                  | Low           |
| Breadth of information     | Low                        | Medium                      | High                | High                 | Low           |
| Integration of information | Low                        | High                        | Low                 | Low                  | Low           |
| User involvement           | Medium                     | High                        | Low                 | Low                  | Low           |
| Cost                       | Medium                     | Low-Medium                  | Low                 | Low                  | Low to Mediur |



41

### Alternative Techniques


- Concept Maps
  - Represent meaningful relationships between concepts
  - Focus individuals on a small number of key ideas





### Alternative Techniques

- User Stories, Story Cards & Task Lists
  - Associated with agile development methods
  - Very low tech, high touch, easily updatable, and very portable
  - Captured using story cards (index cards)
  - Capture both functional and non-functional requirements.





### Story Cards & Task Lists

- Capture requirement using story cards (index cards)
- File card with single requirement
- Each requirement (card) is discussed
  - How much effort is required to implement it
  - A task list is created for each requirement (story)
  - Large requirements can be split into smaller sections
  - The story can be prioritized by risk level and importance



MIS 2019/20

### The System Proposal

- Combines all material created in planning & analysis
- Included sections:
  - Executive summary
    - Provides all critical information is summary form
    - Helps busy executives determine which sections they need to read in more detail
  - The system request
  - The workplan
  - The feasibility analysis
  - The requirements definition
  - Current models of the system (expected to evolve)



### System Proposal Template

#### 1. Table of Contents

#### 2. Executive Summary

A summary of all the essential information in the proposal so a busy executive can read it quickly and decide what parts of the proposal to read in more depth.

#### 3. System Request

The revised system request form (see Chapter 2).

#### 4. Workplan

The original workplan, revised after having completed analysis (see Chapter 2).

#### 5. Feasibility Analysis

A revised feasibility analysis, using the information from analysis (see Chapter 2).

#### 6. Requirements Definition

A list of the functional and nonfunctional business requirements for the system (this chapter).

#### 7. Functional Model

An activity diagram, a set of use case descriptions, and a use-case diagram that illustrate the basic processes or external functionality that the system needs to support (see Chapter 4).

#### 8. Structural Models

A set of CRC cards, class diagram, and object diagrams that describe the structural aspects of the to-be system (see Chapter 5). This may also include structural models of the current as-is system that will be replaced.

#### 9. Behavioral Models

A set of sequence diagrams, communication diagrams, behavioral-state machines, and a CRUDE matrix that describe the internal behavior of the to-be system (see Chapter 6). This may include behavioral models of the as-is system that will be replaced.

#### 10. Appendices

These contain additional material relevant to the proposal, often used to support the recommended system. This might include results of a questionnaire survey or interviews, industry reports and statistics, and so on.



46

## System Proposal Template





### Summary

- Discussion of functional and non-functional requirements determination
- Requirements analysis strategies
  - problem analysis, root cause analysis, duration analysis, activity-based costing analysis, informal benchmarking analysis, outcome analysis, technology analysis and activity elimination
- Requirements gathering techniques
  - Interviews, joint application development, questionnaires, document analysis and observation
- Alternative requirements documentation techniques
  - concept maps, story cards and task lists
- The system proposal



### Bibliography

Dennis, Wixom, & Tegarden Systems (2015)
 Analysis and Design with UML, 5th Edition John Wiley & Sons, Inc

