
SOLUTIONS

JOSÉ PEDRO GAIVÃO

Exercise 1.
(1) if x ∈ A ∪ (B ∩ C), then x ∈ A or x ∈ B ∩ C. This means

that x ∈ A or x belongs to both B and C. So, x ∈ A ∪ B and
x ∈ A ∪ C.

(2) if x ∈ A∩ (B∪C), then x ∈ A and x ∈ B∪C. This means that
x ∈ A and x belongs to B or C. So, x ∈ A ∩B or x ∈ A ∩ C.

(3) if x ∈ A \ (B ∪C), then x ∈ A but x /∈ B ∪C. This means that
x ∈ A but x does not belong to B or C. So, x ∈ A \ B and
x ∈ A \ C.

Exercise 2.
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Exercise 3.
(1) Bijective. Inverse is f−1(x) = (x − 1)1/3. The graph is a cubic

with a zero at x = −1.
(2) Not injective and not surjective. The graph is a parabola which

is convex (positive 2nd derivative) and zeros at x = 0 and x = 1.
(3) Injective, not surjective. Its inverse is f−1(x) = x2 − 1 defined

for x > 1.
(4) Injective, not surjective. Its inverse is f−1(x) = 1+x

1−x defined for
x < 1. The graph is a hyperbola with a vertical asymptote at
x = −1, horizontal asymptote at y = 1 and zero at x = 1.

(5) Injective, not surjective. Its inverse f−1(x) = − log(x/2) de-
fined for x > 0.

(6) Injective, not surjective. Its inverse f−1(x) =
√
ex − 1 defined

for x > 0.

Exercise 4.
(1) f : N→ Z defined by

f(n) =

{
(−1)n n+1

2
n is odd

(−1)n n−2
2

n is even

(2) f : R→ {x ∈ R : − 1 < x < 1} defined by f(x) = 2
π

arctan(x)

Exercise 5.
(1) (a): • d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2 ≥ 0 is obvious.

•
√

(x1 − y1)2 + (x2 − y2)2 = 0 iff x1 = y1 and x2 = y2,
i.e., x = y.
• Obvious
• In any given triangle, the length of one side is always
less of equal to the sum of the lengths of the other
sides.

(b): • d(x, y) = |x1 − y1|+ |x2 − y2| ≥ 0 is obvious.
• |x1 − y1|+ |x2 − y2| = 0 iff x1 = y1 and x2 = y2, i.e.,
x = y.
• Obvious
•

d(x, z) = |x1 − z1|+ |x2 − z2|
= |x1 − y1 − (z1 − y1)|+ |x2 − y2 − (z2 − y2)|
≤ |x1 − y1|+ |z1 − y1|+ |x2 − y2|+ |z2 − y2|
= d(x, y) + d(y, z)

(c): • d(x, y) = max{|x1 − y1|, |x2 − y2|}geq0 is obvious.
• max{|x1− y1|, |x2− y2|} = 0 iff x1 = y1 and x2 = y2,
i.e., x = y.
• Obvious
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•

d(x, z) = max{|x1 − z1|, |x2 − z2|}
= max{|x1 − y1 − (z1 − y1)|, |x2 − y2 − (z2 − y2)|}
≤ max{|x1 − y1|+ |z1 − y1|, |x2 − y2|+ |z2 − y2|}
≤ max{|x1 − y1|, |x2 − y2|}+ max{|z1 − y1|, |z2 − y2|}
= d(x, y) + d(y, z)

(2) The plots of {x ∈ R2 : d(x, 0) = 1} for each distance d:

Exercise 6. A point x belongs to
⋂
n∈N] − 1/n, 1/n[ if and only if it

belongs to all intervals ] − 1/n, 1/n[, n ∈ N. Clearly, 0 ∈] − 1/n, 1/n[
for every n ∈ N. This shows that {0} ⊂

⋂
n∈N] − 1/n, 1/n[. To show

the other direction of the inclusion, take x ∈
⋂
n∈N]− 1/n, 1/n[. Then,

|x| < 1/n for every n ∈ N. This shows that x = 0.

Exercise 7.
(1) closed, unbounded
(2) compact
(3) compact
(4) open, unbounded
(5) open, unbounded
(6) open, unbounded
(7) closed, unbounded
(8) closed, unbounded
(9) bounded
(10) compact

Exercise 8.
(1) Any finite union of closed sets is closed. Moreover, any finite

union of bounded sets is bounded. Because compact sets and
closed and bounded, it follows from any finite union of compact
sets is compact.

(2) If A is bounded then it is contained in an open ball B. This
implies that A ⊂ B Because B is a closed ball,A is bounded.
Because it is closed by definition, it follows that A is compact.
Now, if A is compact, then it is contained in an open ball B.
But A ⊂ A which implies that A is bounded too.
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Exercise 9. (1) A2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]
(2) The proof is by induction. The set A1 has 21 intervals. Suppose

that An has 2n intervals. Since An+1 is obtained by extracting
from each interval of An two subintervals, we conclude that
An+1 has 2× 2n = 2n+1 intervals.

(3) An is a finite union of closed intervals, thus closed.
(4) It is clear that C =

(⋃
n≥1A

c
n

)c. Since each Acn is open, the
union will also be open. Thus, the complement of the union,
which is C, is closed. As C is contained in [0, 1] we conclude
that C is bounded. Thus C is compact.

Exercise 10. Suppose that limn→∞ xn = x and limn→∞ xn = y. Then

x− y = lim
n→∞

xn − lim
n→∞

xn = lim
n→∞

(xn − xn) = 0

This shows that x = y. So the limit of convergent sequences is unique.

Exercise 11. Given x ∈ R, let {xn}n∈N be a converging sequence in R
and x be its limit, i.e., x = limn→∞ xn. By continuity of g at x,

g(x) = g( lim
n→∞

xn) = lim
n→∞

g(xn).

Using the continuity of f at g(x),

f(g(x)) = f( lim
n→∞

g(xn)) = lim
n→∞

f(g(xn)).

This shows that f ◦ g is continuous at x.

Exercise 12.
(1) f(x) = x2 continuous in D = [−1, 1] because it is a polynomial

function. Since D is a compact interval, by Weierstrass it has
a maximum and minimum.

(2) f(x) = x3 − x2 + 2 − 1 continuous in D = [−2,−1] ∪ [1, 2]
because it is a polynomial function. Since D is compact (union
of two compact intervals), by Weierstrass it has a maximum
and minimum.

(3) f(x) = x cos2(1/x) continuous in D = {(−1)n/(2πn) : n ∈ N}∪
{0} because it is continuous in {(−1)n/(2πn) : n ∈ N} (since
both x and cos2(1/x) are) and continuous at x = 0, i.e., given
xn → 0 we have f(0) = limn→∞ xn cos2(1/xn) = 0. Since D is
compact (close because it contains all its accumulation points),
by Weierstrass it has a maximum and minimum.

(4) f(x, y) = xy continuous in D = [−1, 1]2 because it is a polyno-
mial function. Since D is a compact interval, by Weierstrass it
has a maximum and minimum.

(5) f(x, y) = x log(y) is continuous in D =]0, 1]2 because log(y) is
continuous for y > 0. The domain is not compact, therefore we
cannot apply Weierstrass theorem. It does not have a maximum
and minimum in D.
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(6) f(x, y) = e−x
2−y2 is continuous in D = R2 because it is a com-

position of continuous functions. The domain is not compact,
therefore we cannot apply Weierstrass theorem. However, it has
a maximum in D at (x, y) = (0, 0).

Exercise 13. The fixed point is the intersection of the graph of the
function with the bisectrix y = x.

Exercise 14. Given f :]0, 1/4[→]0, 1/4, f(x) = x2 we have

|f(x)− f(y)| = |x2 − y2| = |x+ y||x− y| ≤ 1

2
|x− y|

because x, y ∈]0, 1/4[. So f is a Lipschitz contraction. By the Banach
fixed point theorem we cannot conclude that f has a fixed point because
]0, 1/4[ is open. In fact, f has no fixed point in its domain of definition.

Exercise 15.

(1) f ′(x) = 1
4
(1 − 3x2). Since |1 − 3x2| takes maximum value 2

in [−1, 1] we have |f ′(x)| ≤ 1
2
< 1. Thus f is Lipschitz with

contraction λ = 1/2. Fixed points: x = 0.
(2) f ′(x) = 1

2
1

1+x2/4
. Since | 1

1+x2/4
| takes maximum value 1 in R

we get |f ′(x)| ≤ 1
2
< 1. Thus f is Lipschitz with contraction

λ = 1/2. Fixed points: x = 0.
(3) f ′(x) = 3

4
x2 cosx3. Since |x2 cosx3| takes maximum value 1

in [−1, 1] we get |f ′(x)| ≤ 3
4
< 1. Thus f is Lipschitz with

contraction λ = 3/4. Fixed points: x = 0.
(4) Solved in Exercise 16.
(5) ∂f1

∂x
= 1/2, ∂f1

∂y
= 0, ∂f2

∂x
= 1/3, ∂f2

∂y
= 0. Thus maxi,j

∣∣∣ ∂fi∂xj

∣∣∣ =

1/2 < 1. So f is Lipschitz with contraction λ = 1/2. Fixed
point: (x, y) = (10,−3/2).
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Exercise 16. Let f(x) =
√

1 + x defined for x ≥ 0. Given y ≥ x we
have,

f(y)− f(x) =

∫ y

x

f ′(u) du =
1

2

∫ y

x

1√
1 + u

du ≤ 1

2
(y − x)

Because 1√
1+u
≤ 1 for every u ≥ 0. This shows that

|f(y)− f(x)| ≤ 1

2
|y − x|

which means that f is a Lipschitz contraction. By the Banach fixed
point theorem, it has a unique fixed point ρ in the closed interval
[0,+∞[. So, as in the proof of the theorem, the sequence xn+1 =√

1 + xn with xn = 0, converges to ρ. To compute ρ we notice that

ρ = lim
n→∞

xn+1 = lim
n→∞

√
1 + xn =

√
1 + lim

n→∞
xn =

√
1 + ρ

Solving the equation ρ =
√

1 + ρ we find ρ = 1
2
(1 +

√
5).

Exercise 17.
(1) convex
(2) not convex
(3) convex
(4) convex
(5) convex

Exercise 18. If 0 < x < 1, then 0 < 1
2
(x + 1) < 1. This shows that

f(]0, 1[) ⊂]0, 1[. f has no fixed point in ]0, 1[. The Brouwer fixed point
theorem does not apply because ]0, 1[ is not compact.

Exercise 19.
(1) Let (x, y, z) ∈ R3

+ such that x+ y + z = 1. Thenx̄ȳ
z̄

 =

0 1/2 1
1 0 0
0 1/2 0

xy
z

 =

y/2 + z
x
y/2


So

x̄+ ȳ + z̄ = y/2 + z + x+ y/2 = x+ y + z = 1

This shows that f(∆2) ⊂ ∆2.
(2) Because ∆2 is compact and convex, f : ∆2 → ∆2 is continu-

ous, then we can apply the Brouwer fixed point theorem and
conclude that f has a fixed point in ∆2.

(3) The fixed point satisfies the equationsxy
z

 =

0 1/2 1
1 0 0
0 1/2 0

xy
z


Hence, x = y and z = y/2. But 1 = x + y + z = y + y + y/2
which gives y = 2/5, x = 2/5 and z = 1/5.
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Exercise 20. f(x) = 1/2(x+ 1). No.

Exercise 21. f(x) = x

Exercise 22.
(1) Yes
(2) The fixed points are x = 0 and x = 2/3
(3) 2n

Exercise 23. The aggregate excess demand of commodity 1 is

g1(p1, p2) = x1,1(p1, p2)− w1,1 + x2,1(p1, p2)− w2,1

=
α(p1 + 2p2)

p1
− 1 +

α(2p1 + p2)

p1
− 2

= 3α− 3 +
3αp2
p1

Similarly,

g2(p1, p2) = 3(1− α)− 3 +
3(1− α)p1)

p2
Thus

p1g1(p1, p2)+p2g2(p1, p2) = p1

(
3α− 3 +

3αp2
p1

)
+p2

(
3(1− α)− 3 +

3(1− α)p1)

p2

)
= 0

So, this economy satisfies the Walras’s law. The equilibrium price is
determined by{

g1(p1, p2) = 0

g2(p1, p2) = 0
⇔

{
3α− 3 + 3αp2

p1
= 0

3(1− α)− 3 + 3(1−α)p1)
p2

= 0

which has solution p2 = (1−α)p1/α. But since prices are relative, i.e.,
p1 + p2 = 1 we get the equilibrium prices p∗1 = α and p∗2 = 1− α.

Exercise 24. (1) and (2)

Exercise 25.
(1) p = (1, 0, . . . , 0) and c = a
(2) H((1, 0, 0),−2)
(3) H((1, 0, 1), 1)

Exercise 26.
(1) yes, A and B are disjoint and convex
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(2) no, A and B are not disjoint
(3) no, A is not convex

Exercise 27.
(1) F is not u.h.c. at x = 1/2 and does not have the closed graph

property.
(2) F is u.h.c. and has the closed graph property.
(3) F is not u.h.c. at x = 1/2 and does not have the closed graph

property.
(4) F is u.h.c. and does not have the closed graph property.

Exercise 28.
(1) The hypothesis of the theorem are satisfied. The fixed points

are {1, 2}
(2) The hypothesis of the theorem are satisfied. The fixed points

are {5, 7}
(3) The hypothesis of the theorem are satisfied. The fixed points

are {7}
(4) The hypothesis of the theorem are not satisfied. F (7) is not

convex. There are no fixed points.

Exercise 29.
(1) Critical point (0, 0, 0) is a local minimizer.
(2) Critical points are (−1,−1, 2, 3) (saddle) and (5/3, 5/3, 2, 3) (lo-

cal maximizer)
(3) Critical points are (0, 0,±1/e) and C = {(x, y, z) ∈ R3 : z =

0, x2 + y2 = 1}. The point (0, 0, 1/e) is a local minimizer and
(0, 0,−1/e) a local maximizer. The points in C are saddles.

Exercise 30. SinceDf(x, y) =
[
2x(1 + y)3 3(1 + y)2x2 + 2y

]
we have

that (0, 0) is the unique critical point. Computing the Hessian of f one
shows that (0, 0) is a local minimizer. It is not a global minimizer
because limy→−∞ f(x, y) = −∞.

Exercise 31.
(1) neither convex nor concave
(2) concave when a+ b < 1 and a, b > 0

Exercise 32. The largest domain where f is concave is {(x, y) ∈ R2 :
x ≥ 5/12}.
Exercise 33.

(1) The critical points (x, y, λ) of the Lagrangian are(
− 2√

5
,− 1√

5
,−
√

5

2

)
,

(
2√
5
,

1√
5
,

√
5

2

)
The first point is a minimizer and the second a maximizer. So
(x, y) =

(
2√
5
, 1√

5

)
solves the maximization problem.
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(2) The critical points (x, y, λ) of the Lagrangian are

(±
√

2,±
√

2,−8)

All four critical points are minimizers, so each point solves the
minimization problem.

(3) The critical points (x, y, z, λ1, λ2) of the Lagrangian are(
(−1

3
,−16

3
,
11

3
,−6

7
,

3

14

)
,

(
1

3
,
16

3
,−11

3
,−6

7
,− 3

14

)
The first point is a minimizer and the second point a maximizer.
Thus (x, y, z) =

(
1
3
, 16

3
,−11

3

)
solves the maximization problem.

(4) The critical points (x, y, z, λ1, λ2) of the Lagrangian are(
(−3

5
,
4

5
,
17

5
,−4,−5

2

)
,

(
3

5
,−4

5
,
3

5
,−4,

5

2

)
The first point is a maximizer and the second point a minimizer.
Thus (x, y, z) =

(
3
5
,−4

5
, 3
5

)
solves the minimization problem.

Exercise 34.
(1) The critical points (x, y, λ) of the Lagrangian are

(
√

2,
√

2, 1), (−
√

2,−
√

2, 1)

Since B2 = −1 for both points we conclude that both critical
points are local minimizers of f on D.

(2) The critical points (x, y, λ) of the Lagrangian are

(4, 4,−1/4), (−4,−4, 1/4)

We have B2(x, y, λ) = 2xyλ. So, B2(4, 4,−1/4) = −8 and
B2(−4,−4, 1/4) = 8. We conclude that (4, 4) is a local mini-
mizer and (−4,−4) a local maximizer.

(3) The Lagrangian has a single critical point(
2a

3
,
2a

3
− b,−a

3
,−2a

3
, 0

)
Since B3 = −6 we conclude that the critical point in a local
maximizer of f on D

Exercise 35.
(1) The solutions (x, y, λ1, λ2) of the Kuhn-Tucker conditions are

(2, 1, 1, 0) , (−2, 1, 1, 0)(
0,
√

5,
1√
5
, 0

)
, (0, 0, 0,−2)(

−
√

5, 0, 1,−2
)
,
(√

5, 0, 1,−2
)
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Since L(x, y, 1, 0) is concave, the points (±2, 1) are maximiz-
ers, thus solve the maximization problem. The points (0,

√
5)

and (±
√

5, 0) are saddles and (0, 0) is a minimizer because
L(x, y, 0,−2) is convex.

(2) The solutions (x, y, z, λ1, λ2) of the Kuhn-Tucker conditions are(
0, 1, 0, 1,−1

2

)
,

(
log 2,

1

2
+ log 2, 0, 1, 0

)
Because L(x, y, z, 1, 0) is concave and both multipliers are ≥ 0
we conclude that

(
log 2, 1

2
+ log 2, 0

)
solves the maximization

problem.
(3) The solutions (x, y, λ1, λ2, λ3) of the Kuhn-Tucker conditions

are (
0,

11

2
,
33

2
,
33

2
, 0

)
, (3, 4, 12, 0, 0)

(11, 0, 44, 0, 88) , (0, 0, 0, 0, 0)

Since L(x, y, λ1, λ2, λ3) is convex in (x, y) we conclude that (0, 0)
is the minimizer, solving the minimization problem.

Exercise 36. The problem we want to solve is
maximize ax+ by + cz

subject to αx2 + βy2 + γz2 ≤ L

x ≥ 0

y ≥ 0

z ≥ 0

The solution is
(x, y, z) =

(
a

2αλ
,
b

2βλ
,
c

2γλ

)
where

λ =

√
1

L

(
a2

4α
+
b2

4β
+
c2

4γ

)
Exercise 37.

(1) 1st order, linear, non-autonomous
(2) 2nd order, linear, non-autonomous
(3) 1st order, non-autonomous

Exercise 38.
(1) x(t) = 4 + e−2tc

(2) x(t) = et

4
+ e−3tc

(3) x(t) = e−t
2
t+ e−t

2
c

(4) x(t) = 2 + e−t
2
c

Exercise 39.
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(1) x(t) = 4− 4e−2t

(2) x(t) = et

4
− 5

4
e−3t

(3) x(t) = e−t
2
t+ e−t

2

(4) x(t) = 2− 4e−t
2

Exercise 40.
(1) K ′ = ασK +H(t) with solution

K(t) =
eασt

(
H0

(
1− et(µ−ασ)

)
+K0(ασ − µ)

)
ασ − µ

(2)

x(t) =
X(t)

N(t)
=

σ

N0

K(t)e−ρt

(3)

lim
t→+∞

x(t) =
H0σ

N0(ρ− ασ)

Exercise 41.
(1) x(t) = e−tt
(2) x(t) =

√
t2 − 1

(3) x(t) = 1−e2t
1+e2t

Exercise 42.
(1) x(t;x0) = log(t+ ex0) and Ix0 =]− ex0 ,+∞[

(2) x(t;x0) =

{√
t+ x20, x0 ≥ 0

−
√
t+ x20, x0 < 0

and Ix0 = [−x20,+∞[

Exercise 43.
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Exercise 44.

x(t) = eatx0 +
b

a− d
(eat − edt)y0

y(t) = edty0

Exercise 45.

(1) J =

[
1
2

(
1−
√

5
)

0

0 1
2

(
1 +
√

5
)]

(2) J =

[
1 1
0 1

]
(3) J =

[
2 1
0 2

]
(4) J =

[
−
√

2 0

0
√

2

]
(5) J =

[
0 −1
1 0

]
(6) J =

[
2 4
−4 2

]
Exercise 46.

(1)

X(t) =

[
e−t

2
+ et

2
− e−t

2
+ et

2

− e−t

2
+ et

2
e−t

2
+ et

2

]
X0

(2)

X(t) =

et/2 cos
(√

3t
2

)
+

et/2 sin
(√

3t
2

)
√
3

2et/2 sin
(√

3t
2

)
√
3

−
2et/2 sin

(√
3t
2

)
√
3

et/2 cos
(√

3t
2

)
−

et/2 sin
(√

3t
2

)
√
3

X0

(3)

X(t) =

[
e−t 0
0 e−t

]
X0

(4)

X(t) =

[
e2t 0
0 1

]
X0

(5)

X(t) =

[
e2t(1− t) e2tt
−e2tt e2t(t+ 1)

]
X0

Exercise 47.
(1) x(t) = 5e−2t

4
+ 3e2t

4
(2) x(t) = sin(t)

(3) x(t) =
et/2 sin

(√
3t
2

)
√
3

+ et/2 cos
(√

3t
2

)
Exercise 48.
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(1) x(t) = −2e−2t

3
+ e−t

2
+ 13et

6
− 1 and y(t) = e−2t

3
− e−t

2
+ 13et

6

(2) x(t) = −7e−3t

15
− e2t

5
− 1

3

Exercise 49.
(i):

J =

[
−3 0
0 2

]
, P =

[
−1 −1
1 2

]
X(t) =

[
2e−3t − e2t e−3t − e2t
−2e−3t + 2e2t −e−3t + 2e2t

]
X0

(ii):

J =

[
1
2

0
0 1

]
, P =

[
1 −1
0 1

]
X(t) =

[
et/2 −et/2

(
−1 + et/2

)
0 et

]
X0
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(iii):

J =

[
−2 1
0 −2

]
, P =

[
−1 −1
1 0

]
X(t) =

[
e−2t(t+ 1) e−2tt
−e−2tt e−2t(1− t)

]
X0

(iv):

J =

[
2 1
0 2

]
, P =

[
−1 −1

2
2 0

]
X(t) =

[
e2t(2t+ 1) e2tt
−4e2tt e2t(1− 2t)

]
X0
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(v):

J =

[
−1 2
−2 −1

]
, P =

[
−3 −1
5 0

]
X(t) =

[
e−t cos(2t) + 3e−t sin(2t) 2e−t sin(2t)

−5e−t sin(2t) e−t cos(2t)− 3e−t sin(2t)

]
X0

(vi):

J =

[
0 1
−1 0

]
, P =

[
−1 1
1 0

]
X(t) =

[
cos(t)− sin(t) −2 sin(t)

sin(t) cos(t) + sin(t)

]
X0
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Exercise 50.
(1) The 2nd order ODE can be written as

X ′ = AX, A =

[
0 1
−b 0

]
where X(t) =

[
x(t)
x′(t)

]
and the initial condition is X0 =

[
x0
x′0

]
.

The solution is

X(t) =

 cos
(√

bt
)

sin(
√
bt)√
b

−
√
b sin

(√
bt
)

cos
(√

bt
)
X0

So,

x(t) = cos
(√

bt
)
x0 +

sin
(√

bt
)

√
b

x′0

The phase portrait of the equation is a center.
(2) The 2nd order ODE can be written as

X ′ = AX, A =

[
0 1
−b −a

]
where X(t) =

[
x(t)
x′(t)

]
and the initial condition is X0 =

[
x0
x′0

]
.

Since tr(A) = −a and det(A) = b we conclude by the trace-
determinant stability plane that
• when a2 < 4b the system is a stable focus (because tr(A) <

0).
• when a2 > 4b the system is sink (because det(A) > 0 and
tr(A) < 0).
• when a2 = 4b the system is a stable node.

The solutions for each case can be easily computed. For in-
stance, when a2 < 4b we have

X(t) = e−
a
2
t

[
cos (ωt) + a

2ω
sin (ωt) sin(ωt)

ω

− b
ω

sin (ωt) cos (ωt)− a
2ω

sin (ωt)

]
X0

where
ω =

1

2

√
4b− a2


