
Object Oriented Programming
Prof. Carlos J. Costa, PhD

2020

Learning Objectives

• Understand the main concepts related to the object-oriented
approach

• Understand how object-oriented programming is implemented in
Python

• Create a small application with object-oriented programming

Imperative Programming

 Procedural - instructions grouped into procedures
 Object-Oriented - instructions grouped together with the

part of the state they operate on.

Object oriented Approach

The main structural components of all systems are:
 Objects
 Class Objects

Object

Object is something that takes up space in the
real or conceptual world with which somebody
may do things

(Booch et al . 1999)

Object

The objects have :
 Name (or ID)
 State
 Operations (or behavior)

Class

Class is the blueprint of an object.

Instance

• An object is an instance of a class.

Main caracteristics of the approach

 encapsulation
 abstraction
 inheritance
 polymorphism

Encapsulation

Abstraction

Abstraction

Inheritance

 Inheritance is the mechanism of making new classes
from existing one.

Class Diagrams

 Elements of a class diagram :
 Classes
 Relations between classes

 Associations
 Compositions
 Aggregations
 Generalizations

Classe
•ID Class (Class Name)

 Refers to specific objects, but the must abstract
 Nouns associated with the textual description
of a problem
 Choose carefully the names
 using singular

•Attributes
Values that characterize the objects of a class
Types : Real, Integer , Text, Boolean ,
Enumerated , ...

•Operations
Behaviors of the class (service, method)

Campaign

expected cost

code

description

annual Cost

pay()

do Budget()

Relationship

• A relationship UML establishes the connection between elements

• Now let’s go to

Class

class Person:
pass # An empty block

Person

Class

class Person:

pass # An empty block

p = Person()

print(p)

• Result:
<__main__.Person object at 0x0000021D9EED60F0>

Person

Method

• Define class with method
class Person:

def speak(self):

print('Hello, how are you?’)

• Create object and call method
p = Person()

p.speak()

Person

speak()

init method

• The method init() is a special method,
• Is a method that Python calls when you create a new instance of

this class.

init method
class Person:

def __init__(self, name):

self.name = name

def speak(self):

print('Hello, my name is',
self.name)

p = Person('Carlos')

p.speak()

Person

speak()

__init__()

self

• The first argument of every class method, including
init, is always a reference to the current instance of
the class.

• By convention, this argument is always named self.

Class Pet

class Pet(object):

def __init__(self, name, species):

self.name = name

self.species = species

def getName(self):

return self.name

def getSpecies(self):

return self.species

def __str__(self):

return "%s is a %s" % (self.name, self.species)

Inheritance

class Dog(Pet):

def __init__(self, name, chases_cats):

Pet.__init__(self, name, "Dog")

self.chases_cats = chases_cats

def chasesCats(self):

return self.chases_cats

Inheritance

class Cat(Pet):

def __init__(self, name, hates_dogs):

Pet.__init__(self, name, "Cat")

self.hates_dogs = hates_dogs

def hatesDogs(self):

return self.hates_dogs

myPet = Pet("Boby", "Dog")
myDog = Dog("Boby", True)
isinstance(myDog, Pet)
isinstance(myDog, Dog)
isinstance(myPet, Pet)
isinstance(myPet, Dog)

Access Modifiers

• Public,
• Private
• Protected

Private

• They can be handled only from within the class.
class Person:

def __init__(self, name, age):
self.__name=name
self.__age=age

p=Person(“David",23)
p.__name

Public

class Person:
def __init__(self, name, age):

self.name=name
self.age=age

p=Person(“David",23)
p.name

Protected

class Person:
def __init__(self, name, age):

self._name=name
self._age=age

p=Person(“David",23)
p.name

Conclusions

• Object Oriented Approach
• Concept of Class, Object, Methods, Variables
• Inheritance and Modifiers access

Bibliography

• Bennet, S. McRobb, S & Farmer, R., Object Oriented Systems Analysis and Design using UML,
MacGarw-Hill, 1999.

• Booch, G., Rumbaugh, J. & Jacobson, I, The Unified Modeling Language User Guide. Addison
Wesley, 1999 (tradução portuguesa brasileira _____; UML Guia do Usuário; Campus, 2000).

• Costa, C. Desenvolvimento para Web, ITML Press, 2007
• Nunes, M & O´Neill, H. Fundamental de UML, FCA, 2001
• Silva, A & Videira, C., UML, Metodologias e Ferramentas CASE, Edições Centro Atlântico, 2001
• Terry, Q. Visual Modeling With Rational Rose 2000 and UML, Addison-Wesley. 2000.
• Oxford Dictionary of Computing, Oxford University Press.

