e

Object Oriented Programming

Prof. Carlos J. Costa, PhD
2020

Learning Objectives

 Understand the main concepts related to the object-oriented
approach

* Understand how object-oriented programming is implemented in
Python

* Create a small application with object-oriented programming

Imperative Programming @

e Procedural - instructions grouped into procedures

o Object-Oriented - instructions grouped together with the
part of the state they operate on.

Object oriented Approach @

The main structural components of all systems are:
o Objects
o Class Objects

Object @

Object is something that takes up space in the
real or conceptual world with which somebody
may do things

(Booch et al . 1999)

Object

The objects have :
« Name (or D)
o State
o Operations (or behavior)

Class

Class is the blueprint of an object.

Instance

* An objectis an instance of a class.

Main caracteristics of the approach @

o encapsulation
o abstraction
e inheritance
e polymorphism

Encapsulation

Encapsulation hides the detalls of the implementation of an object.

Abstraction

An abstraction includes the essentigl defoifs relotive to the perspective of the viewer

Abstraction

Abstraction focuses upon the essential characteristics of some object, relative to the
perspective of the viewer.

Inheritance

o Inheritance is the mechanism of making new classes
from existing one.

WE HAVE TUE SAME DNA,SO WORST.
NOVLL PROBABLY GET INHERITANCE,
SOME OF MY FEATURES. EVER.

Beir iy Eanid FRATRALE SyDitaTE 9-5

’
& 1506, BBy B PARDER e

hakbyblues,on

Class Diagrams

« Elements of a class diagram : e
» Classes
« Relations between classes
« Associations ——
« Compositions o]
« Aggregations [—

o« Generalizations

Classe

Campaign

code
description
annual Cost

expected cost

pay()
do Budget()

|ID Class (Class Name)
« Refers to specific objects, but the must abstract

« Nouns associated with the textual description
of a problem

« Choose carefully the names
o using singular

*Attributes
«Values that characterize the objects of a class
oTypes : Real, Integer , Text, Boolean,
Enumerated, ...

*Operations
«Behaviors of the class (service, method)

Relationship

A relationship UML establishes the connection between elements

Class A

Association

Class A

Aggregation

>

Class A

Composition

Class B

Class B

Class B

\J

* Now let’s go to

ﬁ oython
Programming

Class

class Person:

pass

An empty block

Person

Class

class Person:

pass # An empty block

p = Person ()

print (p)

e Result:

< maln .Person object at 0x0000021DSEED6OF0>

Person

Method

e Define class with method

class Person:

def speak(self) : Person

print ('Hello, how are you?’)

* Create object and call method

p = Person ()

p.speak () speak()

init method

« The method init() is a special method,

* |s a method that Python calls when you create a new instance of
this class.

Person

init method

class Person:

o __init_ ()
def 1nit (self, name): speak()

self.name = name

def speak(self):

print ('Hello, my name 1s',
self.name)

p = Person('Carlos')

p.speak ()

self @

The first argument of every class method, including

init, is always a reference to the current instance of
the class.

By convention, this argument is always named self.

Class Pet

class Pet (object):

def

def

def

def

init (self,

name, species):

self.name = name

self.species =

getName (self) :

species

return self.name

getSpecies (self) :

return self.species

str (self) :

return "%s 1s a %s" % (self.name,

self.species)

Inheritance

class Dog (Pet) :

def init (self, name, chases cats):

Pet. init (self, name, "Dog")

self.chases cats = chases cats

def chasesCats(self):

return self.chases cats

Pet

Inheritance

class Cat (Pet) :

def init (self, name, hates dogs):

Pet. init (self, name, "Cat")

self.hates dogs = hates dogs

def hatesDogs (self) :

return self.hates dogs

Pet

Cat

myPet = Pet("Boby", "Dog")
myDog = Dog("Boby", True)
isinstance(myDog, Pet)
isinstance(myDog, Dog)
isinstance(myPet, Pet)
isinstance(myPet, Dog)

Access Modifiers

* Public,
e Private
* Protected

Private

* They can be handled only from within the class.
class Person:
def __init_ (self, name, age):
self. _name=name

self. age=age

p=Person(“David",23)

p.__hame

Public

class Person:
def init_ (self, name, age):
self.name=name
self.age=age

p=Person(“David",23)
p.name

Protected

class Person:
def __init_ (self, name, age):
self._ nhame=name
self. age=age

p=Person(“David",23)
p.name

Conclusions

 Object Oriented Approach
 Concept of Class, Object, Methods, Variables
* Inheritance and Modifiers access

Bibliography

Bennet, S. McRobb, S & Farmer, R., Object Oriented Systems Analysis and Design using UML,
MacGarw-Hill, 1999.

Booch, G., Rumbaugh, J. & Jacobson, |, The Unified Modeling Language User Guide. Addison
Wesley, 1999 (traduc¢ao portuguesa brasileira ; UML Guia do Usuario; Campus, 2000).

Costa, C. Desenvolvimento para Web, ITML Press, 2007

Nunes, M & O Neill, H. Fundamental de UML, FCA, 2001

Silva, A & Videira, C., UML, Metodologias e Ferramentas CASE, Edi¢cdoes Centro Atlantico, 2001
Terry, Q. Visual Modeling With Rational Rose 2000 and UML, Addison-Wesley. 2000.

Oxford Dictionary of Computing, Oxford University Press.

