

Mean-Variance Theory (MVT) Mean-variance Approach

Mean-Variance Theory (MVT) Mean-variance Approach

Mean variance analysis

MVT has its flaws, but it provides a good starting point for portfolio theory. It is still the most commonly used tool for portfolio construction.

MVT assumptions

- Investors only care about the mean and variance of future returns.
 - Investors prefer higher means to lower means.
 - Investors prefer lower variances to higher variances.
- ² We know the means, variances and covariances of future returns for the assets we can invest

Investor Preferences

On Assumption 1:

- Clearly, in general, investors do not care only about mean and variance of future returns.
- Most investor worry about bad outcomes, i.e. also care about the left tail of return distributions. Investors may want to impose, for instance, safety restrictions.
- Most investor preferences cannot be represented just in terms of mean and variance of returns.
- However assumption 1 gets to be automatically satisfied if:
 - If investor with guadratic utility function (or approximately); OR
 - The mean and variance are sufficient statistics to the future return distribution.

Raquel M. Gaspar Investments and Portfolio Management ISEG – ULisboa Raquel M. Gaspar Investments and Portfolio Management

ADD ARD ARD ARD R SOON

Mean-Variance Theory (MVT) Mean-variance Approach

MVT estimation of inputs

On Assumption 2:

• In a world with *n* risky assets. The MVT inputs are a vector of future expected returns.

$$\bar{R} = \begin{pmatrix} R_1 \\ \bar{R}_2 \\ \vdots \\ \bar{R} \end{pmatrix}$$

and the future variance-covariance matrix (recall $V_{ii} = \sigma_{ii}$)

$$V = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_n^2 \end{pmatrix}$$

- They are not things we can observe in the market.
- Historical data only tell us about past realised returns, not future

returns .	< □	• • • •	◆ 豊 ▶ → 豊 ▶	E
Raquel M. Gaspar	Investments and Portfolio Management		ISEG – ULisboa	41 / 187

Mean-Variance Theory (MVT) Mean-variance Approach

Efficient portfolios

Definition (Efficiency)

A portfolio is *efficient* provided

- No other portfolio has at least as much expected return and lower standard deviation. and
- No other portfolio has higher expected return and standard deviation which is smaller or equal.
- So no other portfolio does at least as well on both risk and return, and better on one of them.
- We get the same set of portfolios if we replace standard deviation by variance in the definition.
- MVT Assumption 1 implies investors only want efficient portfolios.

ADD ARD ARD ARD R AND

Mean-Variance Theory (MVT) The two-assets case

The two assets case

- Let us consider there are only two assets C and S, both are risky.
- All possible combinations of C and S consist of investing fractions x_S and x_C such that

$$x_{S} + x_{C} = 1.$$

• Because we can always write $x_C = 1 - x_S$, the return of all portfolios can be described in terms of only the variable which is the fraction of investments put into C

$$R_P = x_c R_c + (\underbrace{1 - x_c}_{x_s}) R_s$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

ISEG – ULisboa 47 / 187

ISEG – ULisboa 49 / 187

• This means that the opportunity set will be one dimensional.

Mean-Variance Theory (MVT) The two-assets case

The two assets case: mean and variance

• The expected return of any combination of *C* and *S* can be written as

$$\bar{R}_P = \mathbb{E}(R_P) = x_C \mathbb{E}(R_C) + (1 - x_C) \mathbb{E}(R_S),$$

$$= x_C (\mathbb{E}(R_C) - \mathbb{E}(R_S)) + \mathbb{E}(R_S)$$

$$= x_C (\bar{R}_C - \bar{R}_S) + \bar{R}_S .$$

• The variance of any combination of C and S can be written as

$$\sigma_P^2 = \mathbb{E}\left[\left(R_p - \bar{R}_p\right)^2\right] = x_C^2 \sigma_C^2 + (1 - x_C)^2 \sigma_S^2 + 2x_C (1 - x_C) \sigma_{CS}$$

OBS: The expected return is linear in x_C whilst the variance is quadratic.

Investments and Portfolio Management

I. Gaspar Investments and Portfolio Management ISEG – ULis

Shape

• To represent all combinations of C and S in the space (σ, \overline{R}) .

Mean-Variance Theory (MVT) The two-assets case

• We need to solve

Raquel M. Gaspar

$$\begin{cases} \bar{R}_{P} = x_{C}(\bar{R}_{C} - \bar{R}_{S}) + \bar{R}_{S} \\ \sigma_{P}^{2} = x_{C}^{2}\sigma_{C}^{2} + (1 - x_{C})^{2}\sigma_{S}^{2} + 2x_{C}(1 - x_{C})\sigma_{CS} \end{cases}$$

• We can solve for x_C in terms of the expected return, provided the two assets have different expected returns, and we get x_C is a linear function on the expected return \bar{R}_p :

$$x_C = \frac{\bar{R}_P - \bar{R}_S}{\bar{R}_C - \bar{R}_S}.$$

• If one substitutes this back into the expression for variance, one gets the investment opportunity curve

$$\sigma_P^2 = \alpha \bar{R}_P^2 + \beta \bar{R}_P + \gamma$$

for some constants $\alpha,\,\beta$ and γ that depend only on the MVT inputs.

Raquel M. Gaspar

Investments and Portfolio Management

Mean-Variance Theory (MVT) The two-assets case

Minimal variance portfolio

Raquel M. Gaspar

• The variance of all combinations of C and S is given by

$$\sigma_P^2 = x_C^2 \sigma_C^2 + (1 - x_C)^2 \sigma_S^2 + 2x_C (1 - x_C) \sigma_{CS}$$

• To find the minimum variance portfolio (MV) we can solve

$$\frac{\partial \sigma_P^2}{\partial x_c} = 0$$

to find the value of x_c^* that gives least variance,

$$x_C^{MV} = \frac{\sigma_S^2 - \sigma_{CS}}{\sigma_C^2 + \sigma_S^2 - 2\sigma_{CS}} = \frac{\sigma_S^2 - \sigma_C \sigma_S \rho_{CS}}{\sigma_C^2 + \sigma_S^2 - 2\sigma_C \sigma_S \rho_{CS}}.$$

• In the two risky assets case, the portfolio of minimal variance will always be efficient.

iel M. Gaspar

ADD ARD ARD ARD R AND

Mean-Variance Theory (MVT) The two-assets case

Special cases

Raquel M. Gaspar

0.14

0.12

0.08 0.06 0.04 0.02 0 -0.02

-0.04

expected return

- Having done a little work on the general case for two assets, we now study some special cases in order to develop some intuition.
- For illustration purposes we consider the following parameters
 - $\sigma_{S} = 15\%,$ $\sigma_{C} = 10\%,$ $\bar{R}_{S} = 6\%,$ $\bar{R}_{C} = 5\%.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

05

ISEG – ULisboa 51 / 187

• What will change across cases is the correlation parameter ρ_{CS} .

Investments and Portfolio Management

Mean-Variance Theory (MVT) The two-assets case

 $\rho = 1$: investment opportunity curve in (σ, \overline{R})

$\rho = 1$: two perfectly correlated assets

- If the assets are perfectly correlated, i.e. $\rho_{CS} = 1$
- The variance of any combination is

$$\sigma_P^2 = x_C^2 \sigma_C^2 + (1 - x_C)^2 \sigma_S^2 + 2x_C (1 - x_C) \sigma_C \sigma_S, = (x_C \sigma_C + (1 - x_C) \sigma_S)^2,$$

which implies

Raquel M. Gaspar

$$\sigma_P = |x_C \sigma_C + (1 - x_C) \sigma_S|$$

The opportunity set is describe by two a straight lines in (σ, \overline{R}) space, reflecting at the zero volatility axis, since standard deviation is always positive.

• If shortselling is not allowed, there is no risk reduction arising from diversification, because in this case both the volatility and expected returns are linear functions of x_C.

Investments and Portfolio Management

Mean-Variance Theory (MVT) The two-assets case

$$\rho = -1$$
: perfect negative correlation

• Suppose we have $\rho_{CS} = -1$.

• We have

$$\sigma_P^2 = x_C^2 \sigma_C^2 + (1 - x_C)^2 \sigma_S^2 - 2x_C (1 - x_C) \sigma_C \sigma_S,$$

= $(x_C \sigma_C - (1 - x_C) \sigma_S)^2.$

This implies

$$\sigma_P = |x_C \sigma_C - (1 - x_C) \sigma_S|.$$

• In this case, even without assuming shortselling positions, there will be a point where the two pieces of risk cancel each other out and we obtain zero risk.

・ロト・クト・ミン・ミン・ミン・ミン・ミン・ミン・シン・マン・ Raguel M. Gaspar Investments and Portfolio Management ISEG – Ill isboa 53 / 187					
Requel M. Gaspar Investments and Portfolio Management ISEG – III isboa 53 / 187		. ₹	□ ► <i>< @</i> ►	◆注→ ◆注→	≣ ୬९୯
	Raquel M. Gaspar	Investments and Portfolio Management		ISEG – ULisboa	53 / 187

0.3

standard deviation

• The red portion is the opportunity curve without shortselling.

0.4

Raquel M. Gaspar

(ロ) (日) (日) (日) (日) (日) (日) (日)

ISEG – ULisboa

52 / 187

Mean-Variance Theory (MVT) The two-assets case

Real-life two-assets investment curves

Theory questions

Obscribe the shape of the graph of expected return of two asset portfolios as a function of the investment fraction.

Mean-Variance Theory (MVT) The two-assets case

- Obscribe the shape of the graph of standard deviation of two asset portfolios as a function of the expected return.
- Oerive an expression for the composition of the minimal variance portfolio for possible investment assets.
- Will the minimal variance portfolio always be efficient?
- What does it mean for a graph to be concave? Convex? Is the efficient frontier convex and/or concave in general?

Theory questions

- What are the assumptions of mean-variance portfolio theory?
- What does it mean for an asset to be mean-variance efficient?
- Obfine the opportunity set and efficient frontier in mean-variance analysis? How do they relate to each other?
- If a portfolio is efficient and we add in a new asset to invest in will the original portfolio remain efficient?
- If a portfolio is efficient and we discard one of its elements from the set of possible assets, will the part of the portfolio excluding this element always be efficient?
- Derive expressions for the variance and expected returns of a portfolio of two assets in terms of the amount invested in the first, their expected returns, their variances and covariance.

Investments and Portfolio Management

Mean-Variance Theory (MVT) Including the riskless asset

2.3 Including the riskless asset

- Recap
- Learning objectives
- The risk-free asset

Raquel M. Gaspar

- The investment opportunity set
- The efficient frontier

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

・ロト ・西ト ・ヨト ・ヨト ・ヨー のへで

ISEG – ULisboa

64 / 187

Mean-Variance Theory (MVT) Including the riskless asset

Recap

Up to now, we studied efficiency for two risky assets:

- The investment opportunity set is a hyperbola in (σ, \overline{R}) space.
- The efficient frontier is the upper part of the hyperbola in (σ, \overline{R}) . space.
- Expected return of any combinations is linear in the portfolio weight of one of the assets.
- Variance of any combination is quadratic in the portfolio weight of one of the assets
- Variance of any combination of the two assets is quadratic in its own expected return.

Mean-Variance Theory (MVT) Including the riskless asset

Learning objectives

- define a riskless asset,
- identify the opportunity set with a riskless asset and one risky asset,
- define and compute the market price of risk,
- prove that an efficient portfolio containing a riskless asset remains efficient after the riskless asset has been discarded,
- sketch the efficient set when there is a riskless asset,
- state and prove the Tobin separation theorem,
- discuss why tangency is required for optimality,
- show how the investment line with three assets meets the opportunity set with two assets.

Raquel M. Gaspar Investments and Portfolio Management ISEG – ULisboa 67 / 187

Mean-Variance Theory (MVT) Including the riskless asset

Risk-free asset

Definition

An asset whose return is known in advance is said to be risk-free. An asset, F, is *risk-free* if and only if

- The variance of its returns is zero ($\sigma_f^2 = 0$)
- \Rightarrow The standard deviation of returns is zero ($\sigma_f = 0$).

Result:

All risk-free assets have the same return.

If there would be two risk-free assets with different returns, then everyone would sell the risk-free asset with lower return and buy the one with higher return until the returns agreed.

Mean-Variance Theory (MVT) Including the riskless asset

The opportunity set with a risk-free asset

Consider one risk-free asset F with return R_f and one risky asset (or portfolio) A with expected return \overline{R}_A and volatility σ_A .

- If our portfolio P is 1 x units of the risk-free asset, F and x units of some risky asset A,
- its expected return is

$$ar{R}_P = (1-x)R_f + xar{R}_A$$
,

• its variance is given by

$$Var R_p = Var(xR_A),$$

$$\sigma_P^2 = x^2 \sigma_A^2.$$

 $\sigma_P = |x|\sigma_A.$

• So, taking square roots.

I M. Gaspar Ir

 Investments and Portfolio Management
 ISEG

EG – ULisboa 70 / 187

Mean-Variance Theory (MVT) Including the riskless asset

The investment line

• If we restrict to x > 0 (positive investment risky asset), we have from the previous slide

$$\mathbf{x} = \frac{\sigma_P}{\sigma_A}.$$

i.e., the investment fraction in A is the ratio of the portfolio's standard deviation to the risky asset's standard deviation.

• This implies

Raquel M. Gaspar

$$ar{\mathsf{R}}_{\mathsf{P}} = \left(1 - rac{\sigma_{\mathsf{P}}}{\sigma_{\mathsf{A}}}
ight)\mathsf{R}_{\mathsf{f}} + rac{\sigma_{\mathsf{P}}}{\sigma_{\mathsf{A}}}ar{\mathsf{R}}_{\mathsf{A}}$$

• Hence all combinations of the risk-free asset F with the risky asset Aare represented by a straight line

$$\bar{R}_p = R_f + \frac{\bar{R}_A - R_f}{\sigma_A} \sigma_P.$$

Q: What would mean an x < 0? How can that be represented graphically? Is that ever efficient?

> ★□▶ ★課▶ ★注▶ ★注▶ 注目 - わへで Investments and Portfolio Management

Mean-Variance Theory (MVT) Including the riskless asset

Example of market price of risk

If we have

$$R_f = 3\%,$$

 $\sigma_A = 12\%,$
 $\bar{R}_A = 12\%$

The market price of risk for A is

$$\theta_A = \frac{12\% - 3\%}{12\%} = \frac{3}{4} = 0.75$$

Q: Consider another risky asset *B* has $\bar{R}_B = 15\%$, and $\sigma_B = 6\%$. What is the market price of risk for B? In which asset would you rather invest? Why?

Mean-Variance Theory (MVT) Including the riskless asset

Interpreting the line

• All the efficient combinations of a riskless asset and a risky asset are

$$\bar{R}_P = R_f + \frac{\bar{R}_A - R_f}{\sigma_A} \sigma_P.$$

which is a straight line in the space (σ, \overline{R}) .

- The line goes trough *F* and *A*.
- Its y-cross is R_f .
- Its slope

$$\theta_A = \frac{\bar{R}_A - R_f}{\sigma_A}$$

is the market price of risk of asset A, and it represents the excess expected return per unit of risk of the risky asset A.

• θ_A is also know as the Sharpe ratio of asset A.

Mean-Variance Theory (MVT) Including the riskless asset

Investments and Portfolio Management

Interpreting the line

Raquel M. Gaspar

We can interpret the line as follows:

- Between the two points F and A, i.e. desired risk levels between $[0, \sigma_A]$, we are dividing our portfolio into the risk-free asset and the risky-asset.
- Above the risky point A, we are short-selling the risk-free asset, and putting more money into the risky asset, to be able to reach volatilities above σ_A .

Q: What exactly does it mean to shortsell the risk-free asset?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 つへで Investments and Portfolio Management ISEG – ULisboa

ISEG – ULisboa 71 / 187

・ロト ・西ト ・ヨト ・ヨト ・ヨー のへで

Learning objectives

- Be able to use graphs and formulas to find the minimal variance portfolio, tangent portfolio and efficient frontiers.
- Sketch and derive the efficient frontier with two risky assets and one riskless asset with:
 - equal lending and borrowing rates => Scenario 1
 - equal lending and borrowing rates, but no shortselling => Scenario 2
 - one riskless asset, but no borrowing => Scenario 3
 - different different borrowing and lending rates => Scenario 4
- Be able to find efficient portfolios for a specified level of expected returns, under different market scenarios.
- Understand how different shortselling restrictions impact the investment opportunity sets and efficient frontiers.

Scenario 1: two risky assets and one R_f

Scenario1

Consider two risky assets A and B with some \bar{R}_A , \bar{R}_B , σ_A , σ_B and σ_{AB} , and a riskless asset F with return R_f , that can be used to both lending and borrowing.

- Combinations of two risky assets give us an hyperbola.
- Combining a riskless asset with any risky portfolio, give us straight lines passing through F and the risky portfolio.

Raquel M. Gaspar Investments and Portfolio Management ISEG – ULisboa Investments and Portfolio Management Mean-Variance Theory (MVT) Two risky assets with the riskless asset Mean-Variance Theory (MVT) Two risky assets with the riskless asset Scenario 1: Illustration Scenario 1: Illustration • From the previous picture, we see the efficient frontier must be the straight line going through the riskless asset F and the risky portfolio G. • Combining F with any other combination of just risky assets is not efficient. • G can be characterised as the combination of risky assets with the highest slope. It is also the portfolio tangent to the hyperbola - so it is common to denote it by T (instead of G) to highlight that fact. Tasks: R_F What can you say about the investment opportunity set? **2** Find the so-called tangent portfolio T. Compute its expected return, \bar{R}_{T} and volatility σ_{T} . • Write down the efficient frontier equation and interpret it. σ ▲ (B) > → (E) > → (E) Investments and Portfolio Manage Investments and Portfolio Management

ヘロン 人間 とくほとう ほん

Scenario 1: the efficient set is a straight line

- We showed that if we took a portfolio of risky assets *T*, then by combining with the risk-free asset *F* we got a straight line.
- So, if we have an efficient portfolio P

 $P = x_f F + (1 - x_f) T,$

then the entire line through the points $(0, R_f)$ and $(\sigma_T, \overline{R}_T)$ including P can be interpreted as combinations of T and F.

• In fact, this entire line is efficient.

Theorem (Investment line)

If there is a risk-free asset, all efficient portfolios lie on a straight line in (σ, \bar{R}) space.

Investments and Portfolio Management

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

Scenario 1: Investors

Raquel M. Gaspar

- All efficient portfolios can be obtained as a mixture of a single portfolio of risky assets *T* and the risk-free asset *F*.
- So all mean-variance investors with the same investment situation, will hold the same portfolio of risky assets *T*, but may hold differing proportions of *T*.
- The crucial point here is that the investors have to have the same views (expectations) in terms of the MVT inputs (expected returns, variances and covariances).
- But, they don't have to have the same risk preferences.

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

Proof.

- If we had an efficient portfolio not on this line \Rightarrow the entire line through it and $(0, R_f)$ would also be in the investment opportunity set.
- Two straight lines through R_f will:
 - either be the same, or
 - one will be below the other for all $\sigma_P > 0$.
- In the segund case, this means none of the portfolios on the longer line is efficient.

Investments and Portfolio Management

• So, the two lines must be the same.

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

A D A A R A R A R A R A R A

ISEG – ULisboa

Scenario 1: Tobin separation theorem

Theorem (Tobin separation theorem)

Raquel M. Gaspar

Two mean-variance investors facing the same investment situation will hold the same portfolio of risky assets (uniqueness).

- Note that up to now we have not proven that the tangent portfolio *T* is unique i.e. that it is the only combination of just risky assets that is efficient.
- However, T will be generally unique (think graphically).
- *HW*: One exception occurs when it is possible to make a risk-free asset from a combination of risky assets. Think about this situation. When can it happen?

What can you conclude about the efficient frontier in that case?

Scenario 1: investment opportunity set

1

- It is the cone with vertice at the riskless asset *F* and with limiting lines tangent to the hyperbola that is the investment opportunity set of just risky investments.
- Because you can both lend and borrow at the same rate R_f it is an open set.
- Sketch the investment opportunity set:

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

Scenario 1: efficient frontier shape and portfolio T

- So, if we have a risk-free asset, F, with return R_f , and two risky assets.
- And additionally, we know portfolio E is efficient.
- Then, from before, we know we can write E in the form

 $E = x_f F + (1 - x_f) T,$

for some portfolio of risky assets, T.

• Thus, we just need to know how to find the tangent portfolio T.

Q: *Why*? *What can you say about T*?

Investments and Portfolio Management

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

Investments and Portfolio Management

Scenario 1: finding T

Raquel M. Gaspa

We know T is the portfolio with the highest Sharpe ratio. So, it must be the portfolio P that solves the following optimisation problem

$$\max_{x_A, x_B} \quad \theta = \frac{\bar{R}_p - R_f}{\sigma_p}$$

s.t.

$$\bar{R}_{p} = x_{A}\bar{R}_{A} + x_{B}\bar{R}_{B}$$

$$\sigma_{p} = \left(x_{A}^{2}\sigma_{A}^{2} + x_{B}^{2}\sigma_{B}^{2} + 2x_{A}x_{B}\sigma_{AB}\right)^{\frac{1}{2}}$$

$$x_{A} + x_{B} = 1$$

Investments and Portfolio Management

Scenario 1: finding T

Including the restrictions:

- We can substitute the expressions for \bar{R}_P and σ_P in the objective function.
- Also, we have $R_f = (x_A + x_B)R_f$, because $x_A + x_B = 1$.

So, the original problem is equivalent to the following unrestricted problem

$$\max_{x_A, x_B} \qquad \theta = \frac{x_A \bar{R}_A + x_B \bar{R}_B - R_f(x_A + x_B)}{\left(x_A^2 \sigma_A^2 + x_B^2 \sigma_B^2 + 2x_A x_B \sigma_{AB}\right)^{\frac{1}{2}}}$$

And to get the optimal, we need to solve the FOC:

$$\begin{cases} \frac{\partial \theta}{\partial x_A} = 0\\ \frac{\partial \theta}{\partial x_B} = 0 \end{cases}$$

ISEG – ULisboa

▲ロ ト 4 冊 ト 4 差 ト 4 差 ト 差 少 Q (や ISEG – ULisboa 89 / 187

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

ISEG – ULisboa

Raquel M. Gaspar

Scenario 1: finding T

• Note the objective function is symmetric in A and B. So we can solve 2 for A (and it will be similar for B)

$$\frac{\partial \theta}{\partial x_{A}} = \frac{\left(\bar{R}_{A} - R_{f}\right)\sigma_{p} - \frac{1}{2}\sigma_{p}^{-1}\left(2x_{A}\sigma_{A}^{2} + 2x_{B}\sigma_{AB}\right)\left(\bar{R}_{p} - R_{f}(x_{A} + x_{B})\right)}{\sigma_{p}^{2}}$$

where the blue terms depend on x_A and x_B . ЪA

• By setting
$$\frac{\partial \sigma}{\partial x_A} = 0$$
, and recalling $x_A + x_B = 1$, we get

$$\frac{(\bar{R}_A - R_f) \sigma_p - \frac{1}{2} \sigma_p^{-1} (2x_A \sigma_A^2 + 2x_B \sigma_{AB}) (\bar{R}_p - R_f)}{\sigma_p^2} = 0$$

$$(\bar{R}_A - R_f) \sigma_p - (x_A \sigma_A^2 + x_B \sigma_{AB}) \frac{\bar{R}_p - R_f}{\sigma_p} = 0$$

$$(\bar{R}_A - R_f) - \frac{\bar{R}_p - R_f}{\sigma_p^2} (x_A \sigma_A^2 + x_B \sigma_{AB}) = 0$$

$$(\bar{R}_A - R_f) - \frac{\bar{R}_p - R_f}{\sigma_p^2} (x_A \sigma_A^2 + x_B \sigma_{AB}) = 0$$

$$(\bar{R}_A - R_f) - \frac{\bar{R}_p - R_f}{\sigma_p^2} (x_A \sigma_A^2 + x_B \sigma_{AB}) = 0$$

$$(\bar{R}_A - R_f) - \frac{\bar{R}_p - R_f}{\sigma_p^2} (x_A \sigma_A^2 + x_B \sigma_{AB}) = 0$$

$$(\bar{R}_A - R_f) - \frac{\bar{R}_p - R_f}{\sigma_p^2} (x_A \sigma_A^2 + x_B \sigma_{AB}) = 0$$

$$(\bar{R}_A - R_f) - \frac{\bar{R}_p - R_f}{\sigma_p^2} (x_A \sigma_A^2 + x_B \sigma_{AB}) = 0$$

$$(\bar{R}_A - R_f) - \frac{\bar{R}_p - R_f}{\sigma_p^2} (x_A \sigma_A^2 + x_B \sigma_{AB}) = 0$$

$$(\bar{R}_A - R_f) - \frac{\bar{R}_p - R_f}{\sigma_p^2} (x_A \sigma_A^2 + x_B \sigma_{AB}) = 0$$

$$(\bar{R}_A - R_f) - \frac{\bar{R}_p - R_f}{\sigma_p^2} (x_A \sigma_A^2 + x_B \sigma_{AB}) = 0$$

$$(\bar{R}_A - R_f) - \frac{\bar{R}_p - R_f}{\sigma_p^2} (x_A \sigma_A^2 + x_B \sigma_{AB}) = 0$$

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

Scenario 1: finding T

 In vector notation is 2

$$\begin{pmatrix} \bar{R}_A - R_f \\ \bar{R}_B - R_f \end{pmatrix} = \begin{pmatrix} \sigma_A^2 & \sigma_{AB} \\ \sigma_{AB} & \sigma_B^2 \end{pmatrix} \begin{pmatrix} z_A \\ z_B \end{pmatrix}$$

• Denoting $\tilde{R} = \bar{R} - R_f$, we can write the solution as

$$\tilde{R} = VZ \quad \Leftrightarrow \quad Z = V^{-1}\tilde{R}$$

• Since $Z = \lambda X$, the tangent portfolio weights follow from

$$x_A^T = \frac{z_A}{z_A + z_B}$$
 and $x_B^T = \frac{z_B}{z_A + z_B}$

and we finally reached the composition of the tangent portfolio T,

 $X_T = \begin{pmatrix} x_A' \\ x_T^T \end{pmatrix}$

Investments and Portfolio Management

Scenario 1: finding T

• For any concrete portfolio *P* (including the optimal/tangent portfolio) 2 the ratio $(\bar{R}_p - R_f)/\sigma_p^2$ is a constant.

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

• So we can define $\lambda = (\bar{R}_p - R_f)/\sigma_p^2$ and do a change of variable

$$z_i = \lambda x_i$$
, for $i = A, B$

where the z values are proportional to x, but do not add up to 1. $\partial \theta$

• Using the variable z,
$$\frac{\partial \sigma}{\partial x_A} = 0$$
 becomes
 $(\bar{R}_A - R_f) - (z_A \sigma_A^2 + z_B \sigma_{AB}) = 0$
 $\bar{R}_A - R_f = z_A \sigma_A^2 + z_B \sigma_{AB}$

• By symmetry, solving the FOC is equivalent to

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

Scenario 1: efficient frontier

Raguel M. Gaspa

• The tangent portfolio \mathcal{T} , expected return and variance are give by 3

$$ar{R}_T = x_A^Tar{R}_A + x_B^Tar{R}_B \ ar{R}_T = X_T'ar{R}$$

$$\sigma_T^2 = (x_A^T)^2 \sigma_A^2 + (x_B^T)^2 \sigma_B^2 + 2x_A^T x_B^T \sigma_{AB}$$
$$\sigma_T^2 = X_T' V X_T$$

- The efficient frontier contains only combinations of the riskless asset Fwith the tangent portfolio T.
- Its equation in the (σ, \overline{R}) space is

$$\bar{R}_{p} = R_{f} + \frac{\bar{R}_{T} - R_{f}}{\sigma_{T}} \sigma_{p}$$

ISEG – ULisboa

Investments and Portfolio Management

Scenario 2: two risky assets and one R_f , no shortselling

What if shortselling is not allowed?

Scenario2

Consider two risky assets A and B with some \bar{R}_A , \bar{R}_B , σ_A , σ_B and σ_{AB} , and a riskless asset F with return R_f , that can be used to both lending and borrowing. Suppose you are not allowed no shortselling the risky assets A and B.

- What can you say about the investment opportunity set.
- **2** What can you say about the tangent portfolio T.
- What can you say about the efficient frontier.

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

Scenario 2: investment opportunity set

- Opportunity set:
- Recall, that the possible combinations of the two risky assets are just a small portion of the hyperbola.
- Including the riskless asset with a fixed R_f to lending and borrowing allows to consider all combinations of the riskless asset with all feasible portfolios.
- The investment opportunity set will be a cone tangent from above and from bellow to portion of the hyperbola that do not require shortselling.
- It is still and open set.

HW: Sketch this in the (σ, \overline{R}) space. Make sure you know how to determine the lines limiting the cone.

 Raquel M. Gaspar
 Investments and Portfolio Management
 ISEG – ULisboa
 95 / 187

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

Scenario 2: tangent portfolio T

The unrestricted solution

• If none of the two "no shortselling restrictions" is binding \Rightarrow the solution to the restricted problem is the solution to the unrestricted problem.

Or, the trivial solution

- If the optimal solution of the unrestricted problem requires shortselling of the risky asset A, then the restrict solution implies zero investment in that asset $x_A = 0$. This holds in general, i.e. also for more than two risky assets, i.e. for $n \ge 2$.
- And the tangent portfolio implies full investment in the other asset B,
 i.e. trivially x_B = 1. This part of the solution only hold for n = 2.

OBS: In the two risky assets case we can deal with shortselling restrictions.

Investments and Portfolio Manage

Scenario 2: tangent portfolio T

2 To find the tangent portfolio T we have the usual problem

$$\max_{x_A, x_B} \quad \theta = \frac{\bar{R}_p - R_f}{\sigma_p}$$

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

s.t.

$$\bar{R}_{p} = x_{A}\bar{R}_{A} + x_{B}\bar{R}_{B}$$

$$\sigma_{p} = \left(x_{A}^{2}\sigma_{A}^{2} + x_{B}^{2}\sigma_{B}^{2} + 2x_{A}x_{B}\sigma_{AB}\right)^{\frac{1}{2}}$$

$$x_{A} + x_{B} = 1$$

$$x_{A} \ge 0$$

$$x_{B} \ge 0$$

with two inequality (because we just have two risky assets) additional restrictions.

Raquel	М.	Gaspar

Scenario 4: $R_f^p < R_f^a \Rightarrow$ two tangent portfolios T, T'

- When we buy the risk-less bond we are lending at the risk-less rate to an essentially risk-less counterparty: the government.
- When we borrow, we are charged a risk premium.
- So the borrowing rate R_{f}^{a} (active rate) should be higher than the lending rate R_f^p (passive rate).
- To obtain the efficient frontier we have to compute two tangent portfolios – one using the passive rate (T) and another using the active rate (T').
- **1** *HW*: Sketch the full investment opportunity set.

Raquel M. Gaspar

2 OBS: Note that we already know hold to find both T and T'.

Scenario 4: efficient frontier

- **3** The efficient frontier will be in three pieces:
- the straight line to the tangent portfolio with riskless asset with the low lending late \Rightarrow investment line
- the hyperbola between tangency portfolio (T) with the low lending rate and the tangent portfolio with high borrowing rate (T'),
- the investment line beyond the tangent portfolio for the high borrowing rate \Rightarrow borrowing line

$$\begin{split} \tilde{R}_{p} &= R_{f}^{p} + \frac{\bar{R}_{T} - R_{f}^{p}}{\sigma_{T}} \sigma_{p} \quad \sigma_{p} < \sigma_{T} \\ hyperbola & \sigma_{T} \leq \sigma_{p} \leq \sigma_{T'} , \ \bar{R}_{p} \geq \bar{R}_{T} \\ \bar{R}_{p} &= R_{f}^{a} + \frac{\bar{R}_{T'} - R_{f}^{a}}{\sigma_{T'}} \sigma_{p} \quad \sigma_{p} > \sigma_{T'} \end{split}$$

Investments and Portfolio Management

イロト (例) イヨト (ヨト) ヨー のなべ ISEG – ULisboa

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

Efficient frontier with different borrowing and lending rates

Investments and Portfolio Management

Mean-Variance Theory (MVT) Two risky assets with the riskless asset

Example: bond and stock funds

Suppose we can invest in a bond fund, *B*, and an index tracker on the stock market, S We want to find the efficient frontier.

Bonds offer lower returns but also lower volatility than stocks. The two funds are correlated since both are affected by the overall economy.

> $\bar{R}_{S} = 10.3\%$ $\sigma_{S} = 12.2\%$ $\rho_{S,B} = 0.34,$ $\bar{R}_{B} = 6.2\%$ $\sigma_{B} = 5.5\%$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

ISEG – ULisboa

111 / 187

Mean-Variance Theory (MVT) Two risky assets with the riskless asset Theory questions
 I how would borrowing and lending rates vary for most investors? What is the shape of the efficient frontier with two risky assets and one riskless asset, if no borrowing is possible? What is the shape of the efficient frontier with two risky assets and one riskless asset, with different borrowing and lending rates? Describe how to find the weights in all efficient portfolios with two risky assets and different borrowing and lending rates.
Raquel M. Gaspar Investments and Portfolio Management ISEG – ULisboa 120 / 18 Mean-Variance Theory (MVT) The general case
 understand the impact of three or more risky assets in the investment opportunity set and the efficient frontier find the efficient frontier under various market conditions find the tangent portfolio(s) in the multi-asset case, find the minimal variance portfolio in the multi-asset case, describe the geometry of the efficient frontier in weight space with and without a risk-free asset, solve problems which involve finding a portfolio prescribed expected

Tangent portfolios

• Shortselling allowed

If X is a vector of portfolio weights, \overline{R} is the vector of the assets' expected returns and V is the variance-covariance matrix, we have for all risky portfolios P

$$ar{R}_{p} = \langle X, ar{R}
angle, ext{ and } \sigma_{p} = (X'VX)^{rac{1}{2}}$$

So we must maximize

$$\theta(X) = \frac{\langle X, R \rangle - R_f}{(X'VX)^{\frac{1}{2}}}$$

Investments and Portfolio Management

Mean-Variance Theory (MVT) The general case

subject to $\sum x_i = 1$

ADA ARA ARA ARA RA ARA

ISEG – ULisboa

127 / 187

Tangent portfolios

Raquel M. Gaspai

Note that if we set

 $\mathbb{1}'=(1,1,\ldots,1),$

we can rewrite the algorithm as

• Set

$$\tilde{R} = \bar{R} - R_f \mathbb{1},$$

• Put

Let

 $X = Z \langle Z, \mathbb{1} \rangle^{-1}.$

 $Z = V^{-1} \tilde{R} = V^{-1} \bar{R} - R_f V^{-1} \mathbb{1}$

So every value is equal to the fixed vector $V^{-1}\overline{R}$ plus a varying multiple of $V^{-1}\mathbb{1}$. So all values of Z lies on a straight line. We only need to compute $V^{-1}\overline{R}$ and $V^{-1}\mathbb{1}$ once to get all values of Z.

Raquel M. Gaspar

Mean-Variance Theory (MVT) The general case

Tangent portfolios

OBS: Note that this is not harder than the n = 2 case we studied before.

From before we actually know:

- how to include the restriction in the objective function
- how all parcial derivatives $\frac{\partial \theta}{\partial x}$ look like,
- that solving the the FOC is equivalent to solving the system

$$\tilde{R} = VZ \qquad \Leftrightarrow Z = V^{-1}\tilde{R}$$

where \tilde{R} is a column vector with entries $\tilde{R}_i = \bar{R}_i - R_f$, and $Z = \lambda X$ with λ constant.

• So, from Z we can obtain the individual weights as

 $x_i = rac{Z_i}{\sum\limits_{j=1}^n Z_j}.$ Investments and Portfolio Management

Mean-Variance Theory (MVT) The general case

Tangent portfolios

• Shortselling not allowed

As before, we must maximize

$$\theta(X) = \frac{\bar{R}_p - R_f}{\sigma_p} = \frac{\langle X, \bar{R} \rangle - R_f}{(X'VX)^{\frac{1}{2}}}$$

such that

$$\sum_{x_i} x_i = \langle X, \mathbb{1} \rangle = 1,$$

$$x_i \ge 0 \quad \text{for all} \quad i = 1, 2, \cdots, n$$

Additional *n* inequality restrictions. We have to rely on numerical solutions.

11

Raquel M. Gaspar

Investments and Portfolio Management

<□> < 部> < 書> < 書> < 書> ● 書 ● の() ISEC III inhora 120 / 1

= nar

No shortselling illustration

Raquel M. Gaspar

Impact of no shortselling on the frontier of the investment opportunity set

Investments and Portfolio Management

ISEG – ULisboa

133 / 187

Mean-Variance Theory (MVT) The general case

Tangent portfolios

Raquel M. Gaspar

Investments and Portfolio Management

Raquel M. Gaspar

Investments and Portfolio Management ISEG – ULisboa 137 / 187

Raquel M. Gaspar

Investments and Portfolio Management

ISEG – ULisboa 138 / 187

Minimum variance portfolio

• Or, one could explicitly solve the optimization problem:

$$\min_{X} \qquad \sigma_{P}^{2} = X' V X \\ \text{s.t.} \qquad \sum x_{i} = 1 ,$$

using the Lagrangean to get the same solution.

• In the case of no shortselling or real-life shortselling restrictions we would need to include additional short selling conditions and solve the problem numerically.

HW: How to interpret the MV in the case of Lintner portfolios ? How to determine its composition? Mean-Variance Theory (MVT) The general case

Efficient risky portfolio for fixed \bar{R}_P

Consider only the *n* risky assets.

Often we are given a predetermined level of expected return \overline{R}_P and our task is to find, among all risky portfolios with that specific expected return, the only efficient one.

I.e, we need to solve the optimization problem:

$$\begin{array}{ll} \min_{X} & \sigma_{p}^{2} = X'VX \\ \text{s.t.} & \sum_{X_{i}} x_{i} = 1 \\ & \langle X, \bar{R} \rangle = \bar{R}_{p}^{*} \end{array}$$

Raquel M. Gaspar Investments and Portfolio Management ISEG – ULisboa Investments and Portfolio Management ISEG – ULisboa Mean-Variance Theory (MVT) The general case Mean-Variance Theory (MVT) The general case The envelop Hyperbola The envelop Hyperbola Theorem (Envelop) "Two tangents strategy" to find the outer hyperbola: When there are n risky assets. The investment opportunity set is limited: • From the outside by an hyperbola that is the envelop to all • Choose two fictitious values for the return of the riskless asset, R_h hyperbolas combining any two points in the set. and R_{σ} • If shotselling is allowed there is re no inner limits **②** Find the two tangent portfolios, H and G associated with each of the • If shortselling is not allowed it the limited from bellow by a set of fictitious riskless returns. hyperbolas. **3** Determine $\bar{R}_H, \bar{R}_G, \sigma_H, \sigma_G, \sigma_{HG}$ Oerive the expression for the hyperbola that represents all 1L combinations of H and G. This is the envelop hyperbola! The efficient frontier is the upper-part of some enveloping Hyperbola. 11 That hyperbola is nothing but our Envelop Hyperbola! OBS: To get the exact expression of an hyperbola it is enough to know two portfolios on that hyperbola and their return covariance. ロト (日) (三) (三) (三) (0) 141 / 187 Investments and Portfolio Management ISEG – ULisboa Investments and Portfolio Management

The envelop Hyperbola

For the case of unlimited shortselling be get:

$$\sigma_P^2 = \frac{A\bar{R}_P^2 - 2B\bar{R}_P + C}{AC - B^2}$$

where A, B, C are the scalars

$$A = \mathbb{1}' V^{-1} \mathbb{1}$$
 $B = \mathbb{1}' V^{-1} \overline{R}$ $C = \overline{R}' V^{-1} \overline{R}$

Using this simpler notation the minimum variance portfolio is

$$X_{MV} = \frac{1}{A}V^{-1}\mathbb{1}$$

OBS: For a particular instance with $n \ge 3$ check that the hyperbola you get from the above expression is the same as the hyperbola you get from the previous slide "two tangents strategy".

	< □ ▶ < ₫	■▶ 《理》 《理》	E nac
Raquel M. Gaspar	Investments and Portfolio Management	ISEG – ULisboa	143 / 187

Mean-Variance Theory (MVT) The general case

Example

We are given

Asset	Ŕ	σ
A	15%	10%
В	10%	6%
С	20%	15%
R_{f}	3%	

and pairwise correlations $\rho_{AB} = 0.4$, $\rho_{BC} = 0.3$, and $\rho_{AC} = 0.5$.

Setup A

- there is a single risk-free rate R_f for both lending and borrowing,
- shortselling is allowed.

 <□>
 <</td>
 >
 <</td>
 >
 <</td>
 >
 <</td>
 <</td>

 <</td>

 </t

Raquel M. Gaspar

Investments and Portfolio Management ISEG – ULisboa

Mean-Variance Theory (MVT) The general case

The two-fund theorem

Theorem

Two efficient funds (portfolios) can be established so that any efficient portfolio can be duplicated, in terms of mean and variance, as a combination of these two. In other words, all investors seeking efficient portfolios need only invest in combinations of these funds.

Example

Raquel M. Gaspar

To get the covariance matrix, we multiply each element of the correlation matrix by the standard deviations for each of the corresponding assets:

Mean-Variance Theory (MVT) The general case

$egin{pmatrix} 1 imes (10\%)^2\ 0.4 imes 10\% imes 6\%\ 0.5 imes 10\% imes 15\% \end{cases}$	$\begin{array}{c} 0.4 \times 10\% \times 6\% \\ 1 \times (6\%)^2 \\ 0.3 \times 6\% \times 15\% \end{array}$	$\begin{array}{c} 0.5 \times 10\% \times 15\% \\ 0.3 \times 6\% \times 15\% \\ 1 \times (15\%)^2 \end{array} \right)$
		$= \begin{pmatrix} 0.01 & 0.024 & 0.075 \\ 0.024 & 0.036 & 0.027 \\ 0.075 & 0.027 & 0.0225 \end{pmatrix}$
		 < (0) > < (0) > <

Investments and Portfolio Management

ISEG – ULisboa

146 / 187

Example

We have

$$ar{R}=egin{pmatrix} 15\%\ 10\%\ 20\% \end{pmatrix},$$

this implies that

$$\tilde{R} = \begin{pmatrix} 15\% - 3\% \\ 10\% - 3\% \\ 20\% - 3\% \end{pmatrix} = \begin{pmatrix} 12\% \\ 7\% \\ 17\% \end{pmatrix}$$

The equation to solve is therefore

$$\begin{pmatrix} 0.01 & 0.024 & 0.075 \\ 0.024 & 0.036 & 0.027 \\ 0.075 & 0.027 & 0.0225 \end{pmatrix} \begin{pmatrix} z_A \\ z_B \\ z_C \end{pmatrix} = \begin{pmatrix} 0.12 \\ 0.07 \\ 0.17 \end{pmatrix}.$$

Mean-Variance Theory (MVT) The general case

Investments and Portfolio Management

Example

Raquel M. Gaspar

Substitute to get that the standard deviation is $\sigma_T = \sqrt{X'_T V X_T} = 6.722\%$ and the expected return is $\bar{R}_T = X'_T \bar{R} = 13.145\%$.

The efficient line goes through F and T, i.e in the space (σ, \overline{R}) passes the points

(0,3%) and (6.722%, 13.145%).

The slope of the line is
$$\frac{0.13145 - 0.03}{0.06722} = 1.509$$
 .

The efficient frontier has equation

$$\bar{R}_p = 0.03 + 1.509 \sigma_p$$

and we are done!

All efficient portfolios can be seen as combinations of F and T.

Raquel M. Gaspar

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

ISEG – ULisboa 147 / 187

Mean-Variance Theory (MVT) The general case

Example

The solution is

$$\begin{pmatrix} z_A \\ z_B \\ z_C \end{pmatrix} = \begin{pmatrix} 5.962 \\ 12.410 \\ 4.079 \end{pmatrix}$$

We need the weights x_i to add up to one.

Since we know the weights x_i are proportional to z_i , and $\sum z_i = 22.45$, we just need to compute

 $X_{T} = \begin{pmatrix} x_{A}^{T} \\ x_{B}^{T} \\ x_{C}^{T} \end{pmatrix} = \begin{pmatrix} \frac{Z_{A}}{\sum z_{i}} \\ \frac{Z_{B}}{\sum z_{i}} \\ \frac{Z_{C}}{\sum z_{i}} \end{pmatrix} = \begin{pmatrix} 0.2656 \\ 0.5528 \\ 0.1817 \end{pmatrix}$ Raquel M. Gaspar Investments and Portfolio Management ISEG – ULisboa 148 / 187

Example

What if shortselling is not allowed?

Setup B

• there is a single risk-free rate R_f for both deposit and lending,

Mean-Variance Theory (MVT) The general case

• shortselling not allowed.

OBS: Given the data in our Example, this is trivial! Why?

Example

What if lending is possible at R_f but not borrowing ?

Setup C

- riskless rate R_f only available for lending.
- shortselling allowed.

Raquel M. Gaspai

- The tangent portfolio is the same, but for volatility levels higher than $\sigma_T = 6.722\%$ it is not efficient to invest in the riskless asset.
- The efficient portfolios for higher volatilities lie on the hyperbola (just risky assets).

Mean-Variance Theory (MVT) The general case

Investments and Portfolio Management

Example

What if the active riskless rate differs from the passive riskless rate? \Downarrow

Setup D

- active riskless rate R_f^a differs from the passive riskless rate R_f^p ,
- shortselling allowed.

Let us keep $R_f^p = 3\%$ and set $R_f^a = 7\%$.

- The tangent portfolio T was found maximizing the slope $\frac{\bar{R}_P 3\%}{\sigma_P}$;
- We now need to find the second tangent portfolio T' and, thus, maximize $\frac{\bar{R}_P 7\%}{\sigma_P}$

Raquel M. Gaspar

Investments and Portfolio Management ISEG – ULisboa 153 /

◆□ > ◆母 > ◆臣 > ◆臣 > □ = − つへで

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

ISEG – ULisboa 151 / 187

Mean-Variance Theory (MVT) The general case

Example

To get the hyperbola equation we can use

$$\sigma_P^2 = \frac{A\bar{R}^2 - 2B\bar{R} + C}{AC - B^2}\sigma_P$$

and for our case we have

 $A = \mathbb{1}' V^{-1} \mathbb{1} = 291.039$ $B = \mathbb{1}' V^{-1} \overline{R} = 31.1828$ $C = \overline{R}' V^{-1} \overline{R} = 3.8866$

And we can conclude our efficient frontier is

$$\begin{cases} \bar{R}_{p} = 0.03 + 1.509 \ \sigma_{p} & \sigma_{p} < 6.722\% \\ \sigma_{p}^{2} = 1.8327 \bar{R}_{p}^{2} - 0.3927 \bar{R}_{p} + 0.0245 & \sigma_{p} \ge 6.722\% \ , \ \bar{R}_{p} \ge 13.245\% \end{cases}$$
Raquel M. Gaspar Investments and Portfolio Management ISEG – ULisboa 152 / 187

Mean-Variance Theory (MVT) The general case

Example

Solving for T'

$$Z = V^{-1} \left[\bar{R} - R_{\rm f} \mathbb{1} \right] = \begin{pmatrix} 4.4140\\ 2.3746\\ 4.0215 \end{pmatrix}$$

Since we know the weights x_i are proportional to z_i , and $\sum z_i = 10.81$, we just need to compute

$$X_{T'} = \begin{pmatrix} 0.4083\\ 0.2197\\ 0.3720 \end{pmatrix}$$

and for our second tangent portfolio we have $\sigma_{T'} = \sqrt{X'_{T'}VX_{T'}} = 9\%$, $\bar{R}_{T'} = X'_{T'}\bar{R} = 15.76\%$.

The straight line passing through $(0, R_f^a)$ and $(\sigma_{T'}, \bar{R}_{T'})$ is:

$$ar{R}_{p} = 0.07 + 0.9732 \; \sigma_{p}$$

Raquel M. Gaspar

Investments and Portfolio Management

Example

The efficient frontier comes in three pieces

$$\begin{cases} \bar{R}_p = 0.03 + 1.509 \ \sigma_p & \sigma_p < 6.722\% \\ \sigma_p^2 = 1.8327 \bar{R}_p^2 - 0.3927 \bar{R}_p + 0.0245 & 6.722\% \le \sigma_p \le 9\% \\ \bar{R}_p \ge 13.245\% \\ \bar{R}_p = 0.07 + 0.9732 \ \sigma_p & \sigma_p > 9\% \end{cases}$$

OBS: Make sure you understand how to explain and compute the composition of all possible efficient portfolios.
HW: Determine the efficient portfolios with
$$\bar{R}_{p} = 10\%$$
. 15% or 20%

(ロト イラト イヨト ヨーション マン Investments and Portfolio Management ISEG - ULisboa 155 / 187

Mean-Variance Theory (MVT) The general case

HW Challengue

Raquel M. Gaspa

Consider the following data:

Expected return 1	14.00			Japan	Market	Pacific	Europe	Stock
	14.00	6.50	11.00	14.00	16.00	18.00	12.00	17.00
Standard deviation 1	18.50	5.00	16.00	23.00	30.00	26.00	20.00	24.00
		C	Correlation	Coefficie	nts			
S&P	1.00	0.45	0.70	0.20	0.64	0.30	0.61	0.79
Bonds		1.00	0.27	-0.01	0.41	0.01	0.13	0.28
Canadian			1.00	0.14	0.51	0.29	0.48	0.59
Japan				1.00	0.25	0.73	0.56	0.13
Emerging Market					1.00	0.28	0.61	0.75
Pacific						1.00	0.54	0.16
Europe							1.00	0.44
Small stock								1.00

Mean-Variance Theory (MVT) The general case

HW: Check that although close, asset *B* does not belong to the hyperbola. Even it would belong, it would not be efficient. Why?

Investments and Portfolio Management

0.1

HW Challengue

Raquel M. Gaspar

Raquel M. Gaspar

Example

25%

20%

15%

10%

5%

0%

- Find the combination of risky assets with the lowest possible risk, MV.
- 2 Take $R_f^p = 5\%, R_f^a = 8\%$.
 - Determine the two tangent portfolios T and T'.
 - Find the efficient frontier. Interpret.

0.05

Mean-Variance Theory (MVT)

The general case

0.15

0.2

0.25

156 / 187

・ロト ・御 ト ・ヨト ・ヨト ・ヨー のへで

ISEG – ULisboa

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

ISEG – ULisboa

158 / 187

- Show the minimum variance portfolio MV is no longer efficient.
- $\bullet\,$ Consider an investor who wants the risk level $\sigma^*=15\%.$ How should he invest.
- Find the efficient portfolio with $\bar{R}_p^* = 15\%$.
- For which risk levels is it efficient to lend at least part of the initial wealth?
- For which risk levels is it efficient to borrow to invest more than the initial wealth in risky assets?

OBS: It is recommended the usage of matrix notation and Excel (or a matrix calculator)

Investments and Portfolio Management

Mean-Variance Theory (MVT) The general case Mean-Variance Theory (MVT) Safety Criteria 2.6 Portfolio Protection Theory questions What data is required to compute tangent portfolios? Q Give the algorithm for finding the tangent portfolio. Give the algorithm for finding the minimal variance portfolio. • Learning objectives How do the risky assets investment opportunities set looks like in Safety criteria (σ, \overline{R}) space for $n \geq 3$? Roy criteria **(9)** What shape does the efficient frontier take if there are n > 3 risky Kataoka criteria assets and no-risk-free asset in weight space and in (σ, \overline{R}) space? Telser criteria **(6)** What shape does the efficient frontier take if there are n > 3 risky • Mean-variance representation assets and a risk-free asset in weight space and in (σ, \bar{R}) space Questions O How does shortselling constraints affect the risky assets investment opportunity set? **1** What is the connection of Lintner definition of a portfolio with shortselling restrictions? ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで (ロ) (四) (三) (三) (三) (三) (○) (○) Raquel M. Gaspar Investments and Portfolio Management ISEG – ULisboa 159 / 187 Investments and Portfolio Management ISEG – ULisboa Mean-Variance Theory (MVT) Safety Criteria Mean-Variance Theory (MVT) Safety Criteria Learning objectives Safety criteria • To evaluate portfolio risk we may be interested in knowing more than just its volatility. • Understand the role of portfolio protection in portfolio management • Many times criteria of some sort of portfolio protection are imposed • Identify and interpret the safety criteria of Roy, Kataoka and Telser by managers and/or investors. • For normally distributed returns and pre-defined market conditions : • In typical situations one may wish to exclude from the analysis portfolios that do not satisfy some safety criteria. • represent safety criteria in the plane (σ, \bar{R}) • determine and compare the optimal portfolios of Roy, Kataoka and • Our notion of "safety" may differ. We may want to, Telser. • minimize the likelihood of returns below a give threshold R_l ; • establish a limit to what happens in the worst α % worst scenarios; • exclude from the analysis all portfolios that have a probability higher than α % of returns below a given threshold R_L . ▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで ・ロット (四) ・ (日) ・ (日) ・ (日) ・ (0) Investments and Portfolio Management ISEG – ULisboa Investments and Portfolio Management

Mean-Variance Theory (MVT) Safety Criteria

Roy criterion

- An investor may wish to minimize the risk of returns below a pre-defined threshold R_L .
- According to this criterion the best portfolio is the one that solves:

 $\min_{P} \Pr(R_P < R_L)$

• The threshold is pre-determined, it can take all sort of values:

$$R_L = \cdots, -10\%, \cdots, 0, \cdots, R_f, \cdots, 5\%, \cdots$$

• In general this criterion cannot be represented on the plane (σ, \overline{R}) .

Mean-Variance Theory (MVT) Safety Criteria

Roy criterion: Gaussian returns

• If, however we assume that all risky asset returns are normally distributed, then also the returns of any portfolio *P* are normally distributed:

$$\Pr(R_P < R_L) = \Pr\left(\frac{R_P - \bar{R}_P}{\sigma_P} < \frac{R_L - \bar{R}_P}{\sigma_P}\right)$$
$$= \Pr\left(z < \frac{R_L - \bar{R}_P}{\sigma_P}\right)$$
$$= \Phi\left(\frac{R_L - \bar{R}_P}{\sigma_P}\right)$$

where $\Phi(\cdot)$ is the standard Gaussian distribution function.

Mean-Variance Theory (MVT) Safety Criteria

Safety-first criteria: MV comparison

- The criteria definitions are independent of our market setup.
- I.e., for any investment opportunity set and associated efficient frontier, one can always determine the safest portfolios according to Roy, Kataoka and Telser.
- In the slides above the criteria were explained considering as investments opportunity sets of just risky assets.
- Whenever the riskless asset exists, some of the solutions to safety first criteria may be trivial.
- *HW*: Sketch the Roy, Kataoka and Telser solutions for the safest portfolios considering the various possible scenarios of two-risky assets and the riskless asset.

Mean-Variance Theory (MVT) Safety Criteria

Questions

- Why is portfolio protection important?
- What are the similarities and differences between the safety criteria of Roy, Kataoka and Telser?
- In general are safety criteria mean-variance efficient? Why or why not?
- For Gaussian returns, how to represent the Roy criterion in the (σ, \overline{R}) plane? What gets to be pre-determined?
- For Gaussian returns, how to represent the Kataoka criterion in the (σ, \bar{R}) plane? What gets to be pre-determined?
- For Gaussian returns, how to represent the Telser criterion in the (σ,\bar{R}) plane?
- For Gaussian returns, how to compare the safest portfolios of Roy, Kataoka and Telser?

Mean-Variance Theory (MVT) International Diversification

International investments

Most portfolio managers have for decades routinely invested a large fraction of their portfolio in securities that were issued in other countries or in foreign currency.

Hence it is important to know how a world market will affect

Mean-Variance Theory (MVT) International Diversification

The allocation decision: international correlations

On the one hand, inclusion of foreign assets is good because

- It augments the investment opportunity set.
- Correlations across returns from different countries tend to be lower than domestic correlations. => from a diversification point of view, we want a portfolio with the lowest possible average correlation.

Mean-Variance Theory (MVT) International Diversification

The allocation decision: exchange rate risk

On the other hand, inclusion of foreign assets is bad because

- Foreign assets bear exchange rate risk.
- Exchange rates affect: expected returns, volatilities and even correlations.
- The same set of basic assets *A*, *B*, *C*, *D* may have very different representations in the planes:

$$(\sigma, \bar{R})^{\in}$$
 $(\sigma, \bar{R})^{\$}$ $(\sigma, \bar{R})^{\$}$

Mean-Variance Theory (MVT) International Diversification

Investing in a foreign asset

Foreign assets can be understood as portfolios of

- The foreign currency
- The asset its self (as it would be seen by a domestic investor)

Take the case of an European investor, going long on a US stock:

$$W_{0}^{\textcircled{e}} \to W_{0}^{\textcircled{s}} = W_{0}^{\textcircled{e}} \times E_{0}^{\$/\textcircled{e}} \to W^{\clubsuit} = (1+R^{\$})W_{0}^{\clubsuit} \to W^{\textcircled{e}} = \frac{W^{\clubsuit}}{E^{\$/\textcircled{e}}}$$

$$(1+R^{\textcircled{e}})W_{0}^{\textcircled{e}} = W^{\textcircled{e}}$$

$$= \frac{W^{\$}}{E^{\$/\textcircled{e}}}$$

$$= \frac{(1+R^{\$})W_{0}^{\And}}{E^{\$/\textcircled{e}}}$$

$$= \frac{(1+R^{\$})W_{0}^{\textcircled{e}} \times E_{0}^{\$/\textcircled{e}}}{E^{\$/\textcircled{e}}}$$
Regul M. Gaspar Interms and Portfolio Management ISEG - ULisboa 182 / 187

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 つへで

Mean-Variance Theory (MVT) International Diversification

Investing in a foreign asset

Using
$$E^{\$/\textcircled{e}} = 1/E^{\textcircled{e}/\$}$$
 and $E_0^{\textcircled{e}/\$}(1+R^{\textcircled{e}/\$})$:
 $1+R^{\Huge{e}} = (1+R^\$)(1+R^{\Huge{e}/\$})$

The expected return in euros is thus

$$1+\bar{R}^{\in}=$$
 $\mathbb{E}\left[(1+R^{\$})(1+R^{\in/\$})\right]$

- $\mathsf{product} \to \mathsf{covariance} \ \mathsf{dependent}$
- Even the €- expected return (R[€]) of investing in a \$ denominated asset, depends on the covariance between returns of exchange rates and returns in the foreign stock market.
- The same is true for variances any any covariances.

	< □		≣
Raquel M. Gaspar	Investments and Portfolio Management	ISEG – ULisboa	183 / 187

Investing in a foreign asset: Example

Taking the perspective of a US investor:

Stocks	Domestic Risk	Exchange Risk	Total Risk
Australia	13.94	8.66	17.92
Austria	24.80	10.59	24.50
Belgium	16.15	10.21	15.86
Canada	15.02	4.40	17.13
France	18.87	10.61	17.76
Germany	20.41	10.55	20.13
Hong Kong	29.75	0.43	29.79
Italy	24.55	11.13	25.29
Japan	22.04	12.46	25.70
Netherlands	16.04	10.59	15.50
Spain	22.99	11.18	23.27
Sweden	24.87	11.18	24.21
Switzerland	17.99	11.61	17.65
U.K.	14.45	10.10	15.59
United States	13.59	0.00	13.59
Equally Weighted			
Index (Non-U.S.)	21.57	10.03	23.43
Value-Weighted			
Index (Non-U.S.)			16.70

OBS: Notice that risk must be computed from the investor point of view, including exchange risk and its possible covariance with market risk.

	۹ 🗆		≣ *) Q (*
Raquel M. Gaspar	Investments and Portfolio Management	ISEG – ULisboa	184 / 187

Mean-Variance Theory (MVT) International Diversification

The World Portfolio: Example

Again from the perspective of a US investor:

Area or Country	Percent of Total ^a		
Austria	0.1%		
Belgium	0.4%		
Denmark	0.4%		
Finland	1.6%		
France	5.5%		
Germany	4.3%		
Ireland	0.2%		
Italy	2.1%		
Netherlands	2.5%		
Norway	0.2%		
Portugal	0.2%		
Spain	1.3%		
Sweden	1.6%		
Switzerland	2.8%		
U.K.	9.7%		
Europe	32.8%		
Australia	1.1%		
Hong Kong	1.0%		
Japan	12.6%		
Malaysia	0.5%		
New Zealand	0.1%		
Singapore	0.4%		
Pacific	15.5%		
Canada	2.1%		
United States	49.5%		
North America	51.6%		
Total	100.0%		= 000
			± •)⊄(•
Investments and	Portfolio Management	ISEG – ULisboa	186 / 187

Mean-Variance Theory (MVT) International Diversification

Questions

- Explain how lower average correlations between assets denominated in different currencies may affect the allocation decision?
- How does the inclusion of foreign assets influence:
 - the determination of mean-variance inputs?
 - the investment opportunity set?
 - the efficient frontier?
- Will two investors facing the same set of assets denominated in a variety of currencies always choose the same world portfolio? Why or why not?

Raquel M. Gaspar Investments and Portfolio Management ISEG – ULisboa 187 / 187		< □		≣ • ୬ ∢.Թ
	Raquel M. Gaspar	Investments and Portfolio Management	ISEG – ULisboa	187 / 187