Lévy Processes and Applications - Part 4

João Guerra

CEMAPRE and ISEG, Universidade de Lisboa

Martingales

- Let (Ω, \mathcal{F}, P) be a filtered probability space with filtration $(\mathcal{F}_t, t \geq 0)$.
- A stochastic process $X = (X(t), t \ge 0)$ is adapted to the $(\mathcal{F}_t, t \ge 0)$ if each X(t) is \mathcal{F}_t -measurable
- An adapted Lévy process is a Markov process.

Definition

The process X is a martingale if X is adapted to $(\mathcal{F}_t, t \ge 0)$, $E[|X(t)|] < \infty$ for all $t \ge 0$ and

$$E[X(t)|\mathcal{F}_s] = X_s$$
 a.s for all $s < t$.

Theorem

An adapted Lévy process with finite first moment and zero mean is a martingale (with respect to its natural filtration)

Proof: X adapted, $E[|X(t)|] < \infty$ for all $t \ge 0$ and

$$E[X(t) | \mathcal{F}_{s}] = E[X(s) + X(t) - X(s) | \mathcal{F}_{s}]$$

= $X(s) + E[X(t) - X(s)] = X(s)$.

Martingales

Examples of Lévy processes that are also martingales:

- $\sigma B(t)$, B(t) d-dim. BM and σ an $r \times d$ matrix.
- $\widetilde{N}(t) = N(t) \lambda t$ compensated Poisson process

Examples of martingales associated to Lévy processes:

- $\exp\{iuX(t)-t\eta(u)\}$ where $u\in\mathbb{R}$ is fixed and X is a Lévy process with Lévy symbol η .
- Exercise: Show that $\exp \{iuX(t) t\eta(u)\}\$ is a martingale.

Cádlàg paths

- f: R⁺ → R is a càdlàg function if is "continue à droite et limité à gauche"
 right continuous with left limits.
- Notation: $f(t-) := \lim_{s \uparrow t} f(s)$ and $\Delta f(t) := f(t) f(t-)$.
- Every Lévy process has a càdlàg modification which is itself a Lévy process (proof: theorem 2.1.8, pag 87 - Applebaum).
- Note: given two processes $(X(t), t \ge 0)$ and $(Y(t), t \ge 0)$, we say that Y is a modification of X if, for each $t \ge 0$, $P[X(t) \ne Y(t)] = 0$. As a consequence, X and Y have the same finite dimensional distributions.

Assumptions

From now on, we will always assume that:

- (Ω, \mathcal{F}, P) will be a fixed filtered probability space with a filtration $(\mathcal{F}_t, t \geq 0)$.
- Every Lévy process X will be assumed to be \mathcal{F}_t -adapted and with càdlàg sample paths.
- X(t) X(s) is independent of \mathcal{F}_s for all s < t.

The jumps of a Lévy process

• The jump process ΔX associated to X is defined by

$$\Delta X(t) = X(t) - X(t-).$$

Lemma

If X is a Lévy process, then for fixed t > 0, $\Delta X(t) = 0$ a.s.

Proof:

- Let $(t(n); n \in N)$ be a sequence in \mathbb{R}^+ with $t(n) \uparrow t$ as $n \to \infty$.
- X has càdlàg paths $\Longrightarrow \lim_{n \to \infty} X(t(n)) = X(t-)$.
- By the stochastic continuity condition (in the Lévy process definition) $\Longrightarrow X(t(n))$ converges in probability to X(t), and so has a subsequence which converges a.s to X(t). Then, by the uniqueness of the limits X(t) = X(t-) (a.s.) and $\Delta X(t) = 0$ (a.s.).

 Analytic difficulty in manipulating Lévy processes has to do with the fact that is possible to have:

$$\sum_{0 \le s \le t} |\Delta X(s)| = \infty$$
 a.s.

However, we always have that:

$$\sum_{0 \le s \le t} \left| \Delta X(s) \right|^2 < \infty \quad \text{a.s.}$$

• In order to count jumps of specified size, define (for a set $A \in \mathcal{B}(\mathbb{R}^d - \{0\})$):

$$N(t, A) = \# \{0 \le s \le t : \Delta X(s) \in A\}$$
$$= \sum_{0 \le s \le t} \mathbf{1}_{A}(\Delta X(s))$$

• For each $\omega \in \Omega$, $t \geq 0$, the map $A \to N(t, A)$ is a counting measure on $\mathcal{B}\left(\mathbb{R}^d - \{0\}\right)$. (Note: $\mathcal{B}\left(\mathbb{R}^d - \{0\}\right)$ is the σ -algebra of Borelian measurable sets in $\mathbb{R}^d - \{0\}$).

Then

$$E[N(t,A)] = \int N(t,A)(\omega) dP(\omega)$$

is a measure on $\mathcal{B}(\mathbb{R}^d - \{0\})$.

- Notation: $\mu(\cdot) = E[N(1, \cdot)]$ is a measure on $\mathcal{B}(\mathbb{R}^d \{0\})$ called the intensity measure (considers the mean number of jumps until time 1).
- We call $N(t, \cdot)$ a Poisson random measure.
- We say that $A \in \mathcal{B}\left(\mathbb{R}^d\right)$ is bounded below if $0 \notin \overline{A}$ (note: \overline{A} is the closure of A =all points in A plus the limit points of A).

Lemma

If A is bounded below then $N(t, A) < \infty$ a.s. for all $t \ge 0$.

Proof: See Applebaum, Lemma 2.3.4 - page 101.

 If A fails to be bounded below, the Lemma may no longer hold (accumulation of large numbers of small jumps).

Theorem

- 1. If A is bounded below, then the process $(N(t, A), t \ge 0)$ is a Poisson process with intensity $\mu(A)$.
- 2. If $A_1, \ldots A_m \in \mathcal{B}\left(\mathbb{R}^d \{0\}\right)$ are disjoint then the r.v. $N(t, A_1), \ldots, N(t, A_m)$ are independent.

Proof: pages 101-103 of Applebaum.

- Consequence: μ(A) < ∞ whenever A is bounded below.
- Main properties of N:
 - For each t and $\omega \in \Omega$, $N(t, \cdot)(\omega)$ is a counting measure on $\mathcal{B}(\mathbb{R}^d \{0\})$.
 - 2 For each A bounded below, $(N(t, A), t \ge 0)$ is a Poisson process with intensity $\mu(A) = E[N(1, A)]$.
 - 1 The compensated process $N(t, A) = N(t, A) t\mu(A)$ is a martingale.

• Let f be a measurable function from \mathbb{R}^d to \mathbb{R}^d and let A be bounded below. Then we may define the Poisson integral of f as the random finite sum

$$\int_{A} f(x) N(t, dx) (\omega) = \sum_{x \in A} f(x) N(t, \{x\}) (\omega),$$

where $\{x\}$ are the jump sizes of the process (in A), i.e. $N(t, \{x\}) \neq 0$ $\iff \Delta X(u) = x$ for some $0 \leq u \leq t$.

We can also write

$$\int_{A} f(x) N(t, dx) = \sum_{0 \le u \le t} f(\Delta X(u)) \mathbf{1}_{A}(\Delta X(u)).$$

Theorem

Let A be bounded below. Then:

1. $(\int_A f(x) N(t, dx), t \ge 0)$ is a compound Poisson process with characteristic function

$$\exp\left(t\int_{\mathbb{R}^d}\left(e^{i(u,f(x))}-1\right)\mu\left(dx\right)\right).$$

2. If $f \in L^1(A, \mu)$ then

$$\mathbb{E}\left[\int_{A}f(x)N(t,dx)\right]=t\int_{A}f(x)\mu(dx).$$

3. If $f \in L^2(A, \mu)$ then

$$\operatorname{Var}\left(\left|\int_{A}f\left(x\right)N\left(t,dx\right)\right|\right)=t\int_{A}\left|f\left(x\right)\right|^{2}\mu\left(dx\right).$$

Sketch of the proof: 1. Assume that f is a simple function: $f = \sum_{j=1}^{n} c_j \mathbf{1}_{A_j}$ (with the A_i 's disjoint). Then, by part 2 of the previous theorem, we have that

$$E\left[\exp\left\{i\left(u,\int_{A}f\left(x\right)N\left(t,dx\right)\right)\right\}\right] = \prod_{j=1}^{n}E\left[\exp\left\{i\left(u,\int_{A}c_{j}N\left(t,A_{j}\right)\right)\right\}\right]$$
$$= \prod_{j=1}^{n}\exp\left\{t\left(e^{i\left(u,c_{j}\right)}-1\right)\mu\left(A_{j}\right)\right\} = \exp\left\{t\int_{A}\left(e^{i\left(u,f\left(x\right)\right)}-1\right)\mu\left(dx\right)\right\}.$$

Parts 2. and 3. follow from 1. by differentiation (moments from characteristic function: $E\left[X^{k}\right]=\left(-i\right)^{k}\Phi^{(k)}\left(0\right)$

• For $f \in L^1(A, \mu)$, we define the compensated Poisson integral by

$$\int_{A} f(x) \widetilde{N}(t, dx) = \int_{A} f(x) N(t, dx) - t \int_{A} f(x) \mu(dx).$$

- The process $\left(\int_{A} f(x) \widetilde{N}(t, dx), t \geq 0\right)$ is a martingale.
- If $f \in L^2(A, \mu)$ then

$$E\left[\left|\int_{A}f\left(x\right)\widetilde{N}\left(t,dx\right)\right|^{2}\right]=t\int_{A}\left|f\left(x\right)\right|^{2}\mu\left(dx\right).$$

Applebaum, D. (2005). Lectures on Lévy Processes, Stochastic Calculus and Financial Applications, Ovronnaz September 2005, Lecture 2 in http://www.applebaum.staff.shef.ac.uk/ovron2.pdf

Cont, R. and Tankov, P. (2003). Financial Modelling with jump processes. CRC Press, see pages 95-99, 259-263.