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Martingales

Let (Ω,F ,P) be a filtered probability space with filtration (Ft , t ≥ 0).
A stochastic process X = (X (t), t ≥ 0) is adapted to the (Ft , t ≥ 0) if
each X (t) is Ft -measurable
An adapted Lévy process is a Markov process.

Definition

The process X is a martingale if X is adapted to (Ft , t ≥ 0), E [|X (t)|] <∞ for
all t ≥ 0 and

E [X (t) |Fs] = Xs a.s for all s < t .

Theorem
An adapted Lévy process with finite first moment and zero mean is a
martingale (with respect to its natural filtration)

Proof: X adapted, E [|X (t)|] <∞ for all t ≥ 0 and

E [X (t) |Fs] = E [X (s) + X (t)− X (s) |Fs]

= X (s) + E [X (t)− X (s)] = X (s) .
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Martingales

Examples of Lévy processes that are also martingales:
σB (t), B (t) d-dim. BM and σ an r × d matrix.

Ñ (t) = N(t)− λt - compensated Poisson process
Examples of martingales associated to Lévy processes:

exp {iuX (t)− tη (u)} where u ∈ R is fixed and X is a Lévy process with
Lévy symbol η.[
Ñ (t)

]2
− λt

Exercise: Show that exp {iuX (t)− tη (u)} is a martingale.
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Cádlàg paths

f : R+ → R is a càdlàg function if is "continue à droite et limité à gauche"
- right continuous with left limits.
Notation: f (t−) := lim

s↑t
f (s) and ∆f (t) := f (t)− f (t−).

Every Lévy process has a càdlàg modification which is itself a Lévy
process (proof: theorem 2.1.8, pag 87 - Applebaum).
Note: given two processes (X (t) , t ≥ 0) and (Y (t) , t ≥ 0) , we say that
Y is a modification of X if, for each t ≥ 0, P [X (t) 6= Y (t)] = 0. As a
consequence, X and Y have the same finite dimensional distributions.
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Assumptions

From now on, we will always assume that:
(Ω,F ,P) will be a fixed filtered probability space with a filtration
(Ft , t ≥ 0).
Every Lévy process X will be assumed to be Ft -adapted and with càdlàg
sample paths.
X (t)− X (s) is independent of Fs for all s < t .
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4.1 Poisson random measures

The jumps of a Lévy process

The jump process ∆X associated to X is defined by

∆X (t) = X (t)− X (t−) .

Lemma

If X is a Lévy process, then for fixed t > 0, ∆X (t) = 0 a.s.

Proof:
Let (t(n); n ∈ N) be a sequence in R+ with t(n) ↑ t as n→∞.
X has càdlàg paths =⇒ lim

n→∞
X (t(n)) = X (t−).

By the stochastic continuity condition (in the Lévy process definition)
=⇒ X (t(n)) converges in probability to X (t), and so has a subsequence
which converges a.s to X (t). Then, by the uniqueness of the limits X (t) =
X (t−) (a.s.) and ∆X (t) = 0 (a.s.).�
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4.1 Poisson random measures

Poisson random measures

Analytic difficulty in manipulating Lévy processes has to do with the fact
that is possible to have: ∑

0≤s≤t

|∆X (s)| =∞ a.s.

However, we always have that:∑
0≤s≤t

|∆X (s)|2 <∞ a.s.

In order to count jumps of specified size, define (for a set
A ∈ B

(
Rd − {0}

)
):

N(t ,A) = # {0 ≤ s ≤ t : ∆X (s) ∈ A}

=
∑

0≤s≤t

1A (∆X (s))

For each ω ∈ Ω, t ≥ 0, the map A→ N(t ,A) is a counting measure on
B
(
Rd − {0}

)
. (Note: B

(
Rd − {0}

)
is the σ−algebra of Borelian

measurable sets in Rd − {0}).
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4.1 Poisson random measures

Poisson random measures

Then
E [N(t ,A)] =

∫
N(t ,A) (ω) dP (ω)

is a measure on B
(
Rd − {0}

)
.

Notation: µ (·) = E [N(1, ·)] is a measure on B
(
Rd − {0}

)
called the

intensity measure (considers the mean number of jumps until time 1).
We call N(t , ·) a Poisson random measure.
We say that A ∈ B

(
Rd
)

is bounded below if 0 /∈ A (note: A is the closure
of A =all points in A plus the limit points of A).

Lemma

If A is bounded below then N(t ,A) <∞ a.s. for all t ≥ 0.

Proof: See Applebaum, Lemma 2.3.4 - page 101.
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4.1 Poisson random measures

Poisson random measures

If A fails to be bounded below, the Lemma may no longer hold
(accumulation of large numbers of small jumps).

Theorem

1. If A is bounded below, then the process (N(t ,A), t ≥ 0) is a Poisson
process with intensity µ(A).
2. If A1, . . .Am ∈ B

(
Rd − {0}

)
are disjoint then the r.v. N(t ,A1), . . . ,N(t ,Am)

are independent.

Proof: pages 101-103 of Applebaum.
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4.1 Poisson random measures

Poisson random measures

Consequence: µ(A) <∞ whenever A is bounded below.
Main properties of N:

1 For each t and ω ∈ Ω, N (t , ·) (ω) is a counting measure on B
(
Rd − {0}

)
.

2 For each A bounded below, (N(t ,A), t ≥ 0) is a Poisson process with
intensity µ(A) = E [N(1,A)] .

3 The compensated process Ñ(t ,A) = N(t ,A)− tµ(A) is a martingale.
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4.2 Poisson integrals

Poisson integration

Let f be a measurable function from Rd to Rd and let A be bounded
below. Then we may define the Poisson integral of f as the random finite
sum ∫

A
f (x) N (t ,dx) (ω) =

∑
x∈A

f (x) N (t , {x}) (ω) ,

where {x} are the jump sizes of the process (in A), i.e. N (t , {x}) 6= 0
⇐⇒ ∆X (u) = x for some 0 ≤ u ≤ t .
We can also write∫

A
f (x) N (t ,dx) =

∑
0≤u≤t

f (∆X (u)) 1A (∆X (u)) .
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4.2 Poisson integrals

Poisson integration

Theorem
Let A be bounded below. Then:
1.
(∫

A f (x) N (t ,dx) , t ≥ 0
)

is a compound Poisson process with
characteristic function

exp

(
t
∫
Rd

(
ei(u,f (x)) − 1

)
µ (dx)

)
.

2. If f ∈ L1 (A, µ) then

E
[∫

A
f (x) N (t ,dx)

]
= t

∫
A

f (x)µ (dx) .

3. If f ∈ L2 (A, µ) then

Var
(∣∣∣∣∫

A
f (x) N (t ,dx)

∣∣∣∣) = t
∫

A
|f (x)|2 µ (dx) .

João Guerra (CEMAPRE and ISEG, Universidade de Lisboa)Lévy Processes and Applications - Part 4 11 / 14



13

4.2 Poisson integrals

Poisson integration

Sketch of the proof: 1. Assume that f is a simple function: f =
∑n

j=1 cj1Aj

(with the Aj ’s disjoint). Then, by part 2 of the previous theorem, we have that

E
[

exp

{
i
(

u,
∫

A
f (x) N (t ,dx)

)}]
=

n∏
j=1

E
[

exp

{
i
(

u,
∫

A
cjN (t ,Aj )

)}]

=
n∏

j=1

exp
{

t
(

ei(u,cj) − 1
)
µ (Aj )

}
= exp

{
t
∫

A

(
ei(u,f (x)) − 1

)
µ (dx)

}
.

Parts 2. and 3. follow from 1. by differentiation (moments from characteristic
function: E

[
X k
]

= (−i)k Φ(k) (0))�
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4.2 Poisson integrals

Poisson integration

For f ∈ L1(A, µ), we define the compensated Poisson integral by∫
A

f (x) Ñ (t ,dx) =

∫
A

f (x) N (t ,dx)− t
∫

A
f (x)µ (dx) .

The process
(∫

A f (x) Ñ (t ,dx) , t ≥ 0
)

is a martingale.

If f ∈ L2 (A, µ) then

E

[∣∣∣∣∫
A

f (x) Ñ (t ,dx)

∣∣∣∣2
]

= t
∫

A
|f (x)|2 µ (dx) .
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4.2 Poisson integrals

Applebaum, D. (2009). Lévy Processes and Stochastic Caculus. 2nd.
Edition. Cambridge University Press. - Sections 2.1.-2.3., pages 83-112.

Applebaum, D. (2005). Lectures on Lévy Processes, Stochastic Calculus
and Financial Applications, Ovronnaz September 2005, Lecture 2 in
http://www.applebaum.staff.shef.ac.uk/ovron2.pdf

Cont, R. and Tankov, P. (2003). Financial Modelling with jump processes.
CRC Press, see pages 95-99, 259-263.

João Guerra (CEMAPRE and ISEG, Universidade de Lisboa)Lévy Processes and Applications - Part 4 14 / 14


	4.1 Poisson random measures
	4.2 Poisson integrals
	References

