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Ordinary differential equations

Deterministic ordinary diff. eqs.:

f
(
t, x (t) , x ′ (t) , x ′′ (t) , . . .

)
= 0, 0 ≤ t ≤ T .

1st order ordinary diff. eq.:

dx (t)

dt
= µ (t, x (t))

or
dx (t) = µ (t, x (t)) dt

Example:
dx (t)

dt
= cx (t)

has solution
x (t) = x (0) ect .
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Stochastic Differential Equations

SDE in differential form

dXt = µ (t,Xt) dt + σ (t,Xt) dBt , (1)

X0 = X0

µ (t,Xt) is the drift coefficient, σ (t,Xt) is the diffusion coefficient.
SDE in integral form

Xt = X0 +
∫ t

0
µ (s,Xs) ds +

∫ t

0
σ (s,Xs) dBs . (2)

To prevent the “explosion” of the solution process (hitting ±∞ in
finite time), a sufficient condition is the linear growth property:

|µ (t, x)|+ |σ (t, x)| ≤ C (1 + |x |) , x ∈ R, t ∈ [0,T ]

A sufficient condition to ensure uniqueness of solutions is the
Lipschitz property:

|µ (t, x)− µ (t, y)|+ |σ (t, x)− σ (t, y)| ≤ D |x − y | , x , y ∈ R.
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Stochastic Differential Equations

Definition

A solution of SDE (1) or (2) is a stochastic process {Xt} which satisfies:

1 {Xt} is an adapted process (to Bm) and has continuous sample paths.

2 The integrals in (2) are well defined

3 {Xt} satisfies the SDE (1) or (2)

The solutions of SDE’s are called diffusions or “diffusion processes”.

A diffusion is “locally” like Brownian motion with drift, but with a
variable drift coefficient µ(x) and diffusion coefficient σ (x) .
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Solving an SDE by Itô formula

Example: Standard model for risky asset price (SDE):

dSt = αStdt + σStdBt (3)

or

St = S0 + α
∫ t

0
Ssds + σ

∫ t

0
SsdBs (4)

How to solve this SDE?

Assume that St = f (t,Bt) with f ∈ C 1,2.
By Itô formula:

St = f (t,Bt) = S0 +
∫ t

0

(
∂f

∂t
(s,Bs) +

1

2

∂2f

∂x2
(s,Bs)

)
ds + (5)

+
∫ t

0

∂f

∂x
(s,Bs) dBs .
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Comparing (4) with (5) then (uniqueness of representation as an itô
process)

∂f

∂s
(s,Bs) +

1

2

∂2f

∂x2
(s,Bs) = αf (s,Bs) , (6)

∂f

∂x
(s,Bs) = σf (s,Bs) . (7)

Differentiating (7) we get

∂2f

∂x2
(s, x) = σ

∂f

∂x
(s, x) = σ2f (s, x)

and replacing in (6) we have(
α− 1

2
σ2

)
f (s, x) =

∂f

∂s
(s, x)
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Separating the variables: f (s, x) = g (s) h (x),
we get

∂f

∂s
(s, x) = g ′ (s) h (x)

and

g ′ (s) =

(
α− 1

2
σ2

)
g (s)

wich is a linear ODE, with solution:

g (s) = g (0) exp

[(
α− 1

2
σ2

)
s

]
Using (7), we get h′ (x) = σh (x) and

f (s, x) = f (0, 0) exp

[(
α− 1

2
σ2

)
s + σx

]
.
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The Geometric Brownian motion

Conclusion:

St = f (t,Bt) = S0 exp

[(
α− 1

2
σ2

)
t + σBt

]
(8)

which is the geometric Brownian motion. Therefore St
S0

has lognormal

distribution with parameters
(
α− 1

2σ2
)
t and σ2t.

Remark: Note that the solution of the SDE was obtained by solving a
deterministic PDE (partial differential equation).

Moreover

E

[
St
S0

]
= eαt , var

[
St
S0

]
= e2αt

(
eσ2t − 1

)
.
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The Geometric Brownian motion

Let us verify that (8) satisfies SDE (3) or (4).

Apllying the Itô formula to St = f (t,Bt)
with

f (t, x) = S0 exp

[(
α− 1

2
σ2

)
t + σx

]
,

we obtain

St = S0 +
∫ t

0

[(
α− 1

2
σ2

)
Ss +

1

2
σ2Ss

]
ds +

∫ t

0
σSsdBs

= S0 + α
∫ t

0
Ssds + σ

∫ t

0
SsdBs

or:
dSt = αStdt + σStdBt .
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Ornstein-Uhlenbeck process (or Langevin equation)

dXt = µXtdt + σdBt

or

Xt = X0 + µ
∫ t

0
Xsds + σ

∫ t

0
dBs .

Let Yt = e−µtXt or Yt = f (t,Xt) with f (t, x) = e−µtx . By Itô
formula,

Yt = Y0 +
∫ t

0

(
−µe−µsXs + µe−µsXs +

1

2
σ2 × 0

)
ds

+
∫ t

0
σe−µsdBs .

Therefore,

Xt = eµtX0 + eµt
∫ t

0
σe−µsdBs .

If X0 =cte., this process is called the Ornstein-Uhlenbeck process.
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The geometric Brownian motion (again)

Let
dSt = αStdt + σStdBt (9)

or

St = S0 + α
∫ t

0
Ssds + σ

∫ t

0
SsdBs . (10)

Assumption
St = eZt .

or
Zt = ln (St) .

By the Itô formula, with f (x) = ln (x), we have

dZt =
1

St
dSt +

1

2

(
−1

S2
t

)
(dSt)

2

=

(
α− 1

2
σ2

)
dt + σdBt .
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The geometric Brownian motion (again)

That is Zt = Z0 +
(
α− 1

2σ2
)
t + σBt (is a Brownian motion with

drift or arithmetic Brownian motion) and

St = S0 exp

[(
α− 1

2
σ2

)
t + σBt

]
.

In general, the solution of the homogeneous linear SDE

dXt = µ (t)Xtdt + σ (t)XtdBt

is

Xt = X0 exp

[∫ t

0

(
µ (s)− 1

2
σ (s)2

)
ds +

∫ t

0
σ (s) dBs

]
.
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Ornstein-Uhlenbeck process with mean reversion

dXt = a (m− Xt) dt + σdBt ,

X0 = x .

a, σ > 0 and m ∈ R.

Solution of the associated ODE dxt = −axtdt is xt = xe−at .

Consider the variable change Xt = Yte
−at or Yt = Xte

at .

By the Itô foemula applied to f (t, x) = xeat , we have

Yt = x +m
(
eat − 1

)
+ σ

∫ t

0
easdBs .
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Ornstein-Uhlenbeck process with mean reversion

Therefore

Xt = m+ (x −m) e−at + σe−at
∫ t

0
easdBs .

This is a Gaussian process, since the random part is
∫ t
0 f (s) dBs ,

where f is deterministic, so it is a Gaussian process.

Mean:
E [Xt ] = m+ (x −m) e−at
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Ornstein-Uhlenbeck process with mean reversion

Covariance: By Itô isometry

Cov [Xt ,Xs ] = σ2e−a(t+s)E

(∫ t

0
eardBr

)(∫ s

0
eardBr

)
= σ2e−a(t+s)

∫ t∧s

0
e2ardr

=
σ2

2a

(
e−a|t−s | − e−a(t+s)

)
.

Note that

Xt ∼ N

[
m+ (x −m) e−at ,

σ2

2a

(
1− e−2at

)]
.
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Ornstein-Uhlenbeck process with mean reversion

When t → ∞, the distribution of Xt converges to

ν := N

[
m,

σ2

2a

]
.

which is the invariant or stationary distribution.

Note that if X0 has distribution ν then the distribution of Xt will be ν
for all t.
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Financial applications of the Ornstein-Uhlenbeck process
with mean reversion

Vasicek model for interest rate:

drt = a (b− rt) dt + σdBt ,

with a, b, σ real constants.

Solution:

rt = b+ (r0 − b) e−at + σe−at
∫ t

0
easdBs .
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Financial applications of the Ornstein-Uhlenbeck process
with mean reversion

Black-Scholes model with stochastic volatility:
assume that volatility σ (t) = f (Yt) is a function of
anOrnstein-Uhlenbeck process with mean reversion :

dYt = a (m− Yt) dt + βdWt ,

where {Wt , 0 ≤ t ≤ T} is a sBm.

The SDE which models the asset price evolution is

dSt = αStdt + f (Yt) StdBt

where {Bt , 0 ≤ t ≤ T} is a sBm
and the sBm’s Wt and Bt may be correlated, i.e.,

E [BtWs ] = ρ (s ∧ t) .
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Important theoretical result

Useful theoretical result:

Let f : [0,+∞)→ R be a deterministic function.
Then

1 Mt = exp
(∫ t

0 f (s)dBs − 1
2

∫ t
0 (f (s))2 ds

)
is a martingale

2
∫ t
0 f (s)dBs has a normal distribution with mean 0 and variance∫ t
0 (f (s))2 ds.

Part 1 is a simple generalization of the fact that exp
(
λBt − 1

2λ2t
)

is
a martingale.

Part 2 follows from 1, because martingales have constant mean and

E [M0] = 1 and E
[

exp
(

λ
∫ t
0 f (s)dBs

)]
= exp

(
1
2λ2

∫ t
0 (f (s))2 ds

)
,

which is the moment generating function of the N
(

0,
∫ t
0 (f (s))2 ds

)
distribution.
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Exam-style problem

A derivatives trader is modelling the volatility of an equity index using
the following time-discrete model (model 1):

σt = 0.12 + 0.4σt−1 + 0.05εt , t = 1, 2, 3, . . .

where σt is the volatility at time t years and ε1, ε2, . . .are a sequence
of i.i.d. random variables with standard normal distribution. The
initial volatility is σ0 = 0.15 (that is, 15%). The trader is developing
a related continuous-time model for use in derivative pricing. The
model is defined by the following SDE (model 2):

dσt = −α (σt − µ) dt + βdBt ,

where σt is the volatility at time t years, Bt is the standard Brownian
motion (sBm) and the parameters α, β and µ all take positive values.
(a) Determine the long-term distribution of σt for model 1.
(b) Show that for model 2 (solve the SDE), we have that

σt = σ0e
−αt + µ

(
1− e−αt

)
+
∫ t

0
βe−α(t−s)dBs .

(c) Determine the numerical value of µ and a relationship between
parameters α and β if it is required that σt has the same long-term mean
and variance under each model (models 1 and 2)
(d) State another consistency property between the two models that could
be used to determine precise numerical values for α and β.
(e) The derivative pricing formula used by the trader involves the squared
volatility Vt = σ2

t , which represents the variance of the returns on the
index. Determine the SDE for Vt in terms of the parameters α, β and µ.
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