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Binary Choice Models
Linear Probability Model

In many applications, the variate of interest is binary, i.e., takes only
the values 0 and 1.
Examples:

Labour force participations.

Y =
�

1 if employed
0 otherwise .

We would like to study how labour force participation depends
on the characteristics of the individuals.
House ownership

Y =
�

1 if a person owns her house
0 otherwise .

We would like to study how house ownership depends on the
characteristics of the individuals.
Denote X = (X1, ..., Xk)

0.
The objective of a regression model is to estimate E(YjX).
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Binary Choice Models
Linear Probability Model

E(YjX) = P(Y = 1jX), when Y is a binary variable.
In the linear probability model we assume that

P(Y = 1jX) = β0 + β1X1 + . . . + βkXk.

So, the interpretation of βj is the change in the probability of
success when xj changes:

∂P(Y = 1jX)
∂Xj

= βj, j = 1, ..., k

The predicted Y is the predicted probability of success.
The linear probability model is estimated using OLS, that is
regressing Y on X1, ..., Xk.
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Binary Choice Models
Linear Probability Model (cont)

Potential problem that the fitted values can be outside [0, 1].
Even without predictions outside of [0, 1], we may estimate
effects that imply a change in x changes the probability by more
than +1 or �1.
This model will violate assumption of homoskedasticity, so will
affect inference. Notice that

Var(YjX) = P(Y = 1jX)(1�P(Y = 1jX))
= (β0 + β1X1 + . . . + βkXk)�

(1� β0 � β1X1 � . . . � βkXk).

Therefore we should use the Eicker-Huber-White robust
standard errors to make inference.
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Binary Choice Models
Index Models for Binary Response

An alternative is to assume that
E[YjX] = P(Y = 1jX) = G(X0β0), where the function G(.) is
known 0 < G(.) < 1 thus

Y =
�

1 with probability G(X0β0)
0 with probability 1�G(X0β0)

In most applications, G(.) is a cumulative distribution function.
The framework is similar to the case of the Bernoulli random
variable (conditional on the regressors). The Log-Likelihood
function is given by

logfL(β)g = ∑n
i=1 Yi log(G(X0i β))+∑n

i=1(1�Yi) log(1�G(X0i β)).
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Binary Choice Models
Index Models for Binary Response

Differentiating with respect to β we have that the MLE estimator β̂ML
solves

∂ logfL(β̂ML)g
∂β

= 0

∑n
i=1

(
Yi �G(X0i β̂ML)

G(X0i β̂ML)
�
1�G(X0i β̂ML)

�g(X0i β̂ML)Xi

)
= 0

where g(z) = ∂G(z)/∂z.
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Binary Choice Models
Index Models for Binary Response

Define the generalized residuals as

ε̂G
i =

Yi �G(X0i β̂ML)

G(X0i β̂ML)
�
1�G(X0i β̂ML)

�g(X0i β̂ML)

Likelihood equations are then given by:

∑n
i=1 ε̂G

i Xi = 0.

This condition requires ε̂G
i and Xi are uncorrelated.
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Binary Choice Models

Remarks:

This is a system of non-linear equations hence we have to resort
to numerical methods to solve it. There is no closed form
solution for this estimator.
Consistency and asymptotic normality follow from the general
results described for the Maximum Likelihood estimator under
some regularity conditions.
Essentially the main requirement for consistency is that
E[YjX] = P(Y = 1jX) = G(X0β0).

Note that this implies that

E[
∂ logfL(β0)g

∂β
] = 0.
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Binary Choice Models

Proof:

E[ ∂ logfL(β0)g
∂β ] = ∑n

i=1 E[ Yi�G(X0i β)
G(X0i β)(1�G(X0i β))

g(X0i β)Xi]

= ∑n
i=1 E(E[

Yi �G(X0i β)
G(X0i β)

�
1�G(X0i β)

�g(X0i β)XijXi])| {z }
by the law of iterated expectations

= ∑n
i=1 E( E[YijXi]�G(X0i β)

G(X0i β)(1�G(X0i β))
g(X0i β)Xi)

= 0 as E[YijXi] = G(X0i β0)

Note that if E[YijXi] 6= G(X0i β0)) E[ ∂ logfL(β0)g
∂β ] 6= 0, which can

be shown to imply inconsistency of MLE.
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Binary Choice Models

In correctly specified models β̂ is consistent and asymptotically
normally distributed with variance-covariance matrix�
I(β0)

��1 , that is

p
n(β̂� β0)

D! N (0,
�
I(β0)

��1
)

where

I(β0) = Ef g(X0β0)
2XX0

G(X0β0)[1�G(X0β0)]
g

An estimator for I(β0) is

In(β̂) =
1
n ∑n

i=1f
g(X0i β̂ML)

2XiX0i
G(X0i β̂ML)[1�G(X0i β̂ML)]

g

Inference is done using the Wald, likelihood ratio and Lagrange
multiplier statistics.
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Binary Choice Models
The Logit and Probit Models

The most popular forms of G(X0β0) that are considered in the
literature

The Logit Model:

G(X0β0) =
exp(X0β0)

1+ exp(X0β0)
.

The Probit Model:
G(X0β0) = Φ(X0β0),

where
Φ(z) =

1p
2π

Z z

�∞
e�u2/2du.

is the Standard Normal Distribution Function.

Both the probit and logit models are nonlinear and require
maximum likelihood estimation.
No real reason to prefer one over the other
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Binary Choice Models

Other possible models:

G(X0β0) = exp(� exp(X0β0)) [the log-Weibull distribution]
G(X0β0) = 1� exp(� exp(X0β0)) [the Gompertz distribution,
known as the Complementary log-log model]
G(X0β0) = Φ(X0β0)

τ , τ > 0

G(X0β0) = 1�
�
1+ω exp(X0β0)

�� 1
ω , ω > 0. Note that for ω = 1

we have the logit model and
limω!0 G(X0β0) = 1� exp(� exp(X0β0)).
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Remark on the Logit Model

In statistics a common interpretation of the coefficients is in
terms of marginal effects on the odds ratio rather than on the
probability.

P(Y = 1jx) = exp(X0β0)

1+ exp(X0β0)

) P(Y = 1jx)
1�P(Y = 1jx) = exp(X0β0)

) log(
P(Y = 1jx)

1�P(Y = 1jx) ) = X0β0

P(Y = 1jX)/(1�P(Y = 1jX)) measures the probability that
Y = 1 relative to the probability that Y = 0 and is called the odds
ratio or relative risk.
Example, consider a pharmaceutical drug study where Y = 1
denotes survival and Y = 0 denotes death. An odds ratio of 2
means that the odds of survival are twice those of death.
For the logit model the log-odds ratio is linear in the regressors.
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Latent variable threshold (LVT) model

A possible motivation for the specification
E[YjX] = P(Y = 1jX) = G(X0β0) can be given by considering
the latent variable threshold model
Define a latent random variable:

Y� = X0β0 + ε,

where Y� is unobserved ) latent variable.
Assume: ε independent of X, E[ε] = 0 and var(ε) = σ2 and
distribution function F(.)
Observation rule:

Y =
�

1 if Y� > λ
0 if Y� � λ

.

That is, the option is chosen if Y� > λ, where λ is a threshold
Interpretation: Y� propensity of an individual towards option,
or net benefit from choosing option.
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Latent variable threshold (LVT) model

Probability of choosing the option:

P [Y = 1jX] = P [Y� > λjX]
= P

�
X0β0 + ε > λjX

�
= P

�
ε > �X0β0 + λjX

�
= 1�P

�
ε � �X0β0 + λjX

�
= 1� F

�
�X0β0 + λ

�
.

= G(X0β)

with G(z) = 1� F(�z+ λ).
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Latent variable threshold (LVT) model
First identification problem:

Note that:
P [Y = 1jX] = 1� F

�
�X0β0 + λ

�
If X1 = 1, i.e. there is an intercept in the model, it is not possible
to identify separately the intercept and λ ) solution: set λ = 0.
Remark: If λ = 0 and ε has a symmetric distribution around zero
(as in the Probit or Logit) G(z) = F(z) as in this case
1� F(�z) = F(z)
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Latent variable threshold (LVT) model
Second identification problem:

Divide Y� by a > 0
Y�

a
= X0β�0 +

ε

a
where β�0 = β0 /a
Note that the definition of the observable variable Y doesn’t
change. That is

Y =

�
1 if Y� > 0
0 if Y� � 0

=

�
1 if Y�

a > 0
0 if Y�

a � 0

where β�0 = β0 /a .
This implies that we cannot identify the variance of ε.
For given β�0 , value of β0 depends on a.
β0 identified up to a scale factor.
Solution: normalise distribution of ε- Fix σ2 at a given number
) Assume σ2 is known.
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Latent variable threshold model
Second identification problem:

Example:
Suppose ε � N

�
0, σ2�.

P[Y = 1jX] = Φ(X0 β0
σ ) = Φ(X0β�0).

In the case of Probit model we fix σ2 = 1 thus ε � N (0, 1) and:

P [Y = 1jX] = Φ(X0β0).
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Random utility models

Suppose that an individual has to choose between alternatives a
and b, with utilities Ua and Ub.
The researcher does not observe the utilities, but observes some
characteristics of the observation, and writes

Ua = X0βa + ua,

Ub = X0βb + ub.

The researcher observes the chosen alternative, say a, which is
indicated by Y = 1.
Then, we know that

P (Y = 1jX) = P
�

Ua > UbjX
�
= Pr

�
X0βa + ua > X0βb + ubjX

�
= P

�
ua � ub > X0 (βb � βa) jX

�
= P

�
ε > �X0β0jX

�
= 1� F

�
�X0β0

�
.

where ε = ua � ub and β0 = βa � βb

Whatever the interpretation, we have to make inference about
P (Y = 1jx).
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Binary Choice Models
Interpretation of Binary Choice models

In general we care about the effect of X on
E(YjX) = P(Y = 1jX), that is, we care about ∂P(Y = 1jX)/∂Xj,
j = 2, ..., k
For the linear case, this is easily computed as the coefficient on Xj

For the nonlinear probit and logit models, it’s more complicated:
∂P(Y = 1jX)/∂Xj = g(X0β0)β0j, where g(z) is ∂G(z)/∂z and β0j
is the element j of β0.
Clear that it’s incorrect to just compare the coefficients across
different models
Can compare sign and significance (based on a standard t test) of
coefficients, though
To compare the magnitude of effects, need to calculate the
derivatives, say at the means of the regressors
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Simple specification tests

As pointed out above if G(.) is misspecified, then β̂ML is inconsistent.
Some simple specification tests are available:

A RESET-type test can be performed by testing H0 : δ1 = δ2 = 0
in the model

E[YijXi] = G(X0i β0 + δ1(X0i β̂ML)
2 + δ2(X0i β̂ML)

3), i = 1, ..., n

* This is actually a normality test in the probit.
The model can be tested against more general parametric
specifications, which include additional shape parameters.
Examples:

Consider G(X0β0) = Φ(X0β0)
τ , and use the score statistic to test

H0 : τ = 1 (Probit)

Consider G(X0β0) = 1�
�
1+ω exp(X0β0)

�� 1
ω , ω > 0. and use the

score statistic to test H0 : ω = 1 (Logit).
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Simple specification tests
Heteroskedasticity

Note that heteroskedasticity in the LVT model leads to
misspecification of the conditional mean of Y: Define a latent random
variable:

Y� = X0β0 + k� h(Z0γ0)ε,

where Y� is unobserved. Assume ε independent of X, E[ε] = 0 and
var(ε) = 1 and distribution function F(.), Z are a vector function of X
of size d and h any function with h > 0, h(0) = 1, h0(0) 6= 0

k = 1 for probit; k =
p

π2/3 for logit.
Observation rule:

Y =
�

1 if Y� > 0
0 if Y� � 0 .
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Simple specification tests
Heteroskedasticity

In this case

P [Y = 1jX] = P [Y� > 0jX]
= P

�
X0β0 + kh(Z0γ0)ε > 0jX

�
= P

h
ε > � X0β0

kh(Z0γ0)
jX
i

= 1�P
h
ε � � X0β0

kh(Z0γ0)
jX
i

= 1� F
�
� X0β0

kh(Z0γ0)

�
.

= G( X0β0
kh(Z0γ0)

) 6= G(X0β0)

To test the hypothesis H0 : γ0 = 0 (homoskedasticity), we can
construct a LM test based on the so called generalized residuals

Author: Paulo M.D.C. Parente 23 / 48



Simple specification tests
Heteroskedasticity

LM test statistic can be calculated as

ξLM = ι0S(S0S)�1S0ι � χ2(d)

where ith row of S equal to

Si = (ε̂
G
i X0i , ε̂G

i (X
0
i β̂ML)Z

0
i)

where ε̂G
i are the Generalised residuals.

This is asymptotically equivalent to testing H0 : γ0 = 0 in the
model

E[YijXi] = G(X0i β0 + (X
0
i β̂ML)Z

0
iγ0)), i = 1, ..., n.
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Binary Choice Models
Goodness of Fit

Unlike the Linear Probability Model, where we can compute an
R2 to judge goodness of fit, we need new measures of goodness
of fit
One possibility is a pseudo R2 based on the log likelihood and
defined as 1� log(Lur)/log(Lr). Where log(Lr) corresponds to
the log-likelihood computed only with the intercept.
Can also look at the percent correctly predicted – if predict a
probability > .5 then that matches Y = 1 and vice versa.
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Multinomial choice models
Introduction

Two ways to extend the binary response: unordered and ordered
outcomes. In both cases, it is convenient to label the possible
outcomes on Y as f0, 1, ..., Jg, so Y takes on J+ 1 different values.
In the unordered (or nominal) case, the labeling of outcomes is
totally arbitrary. For example, if Y is mode of transportation to
work, we might use the follow labels: 0 is by car without
pooling, 1 is car pooling, 2 is bus, and 3 is rapid transit (metro).
Nothing changes if we switch the labels.
Another example of an unordered outcome is different kinds of
health insurance.
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Multinomial choice models

In other cases the order matters. For example, each person
applying for a mortgage is given a credit rating in the set
f0, 1, 2, 3, 4, 5, 6g. The fact that a credit rating of 5 is better than 4,
and that 1 is better than 0, is important.
In this chapter we will discuss the estimation of unordered
response models and leave the discussion of ordered response
models for the next chapter.
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Multinomial Logit

Start with the case where Y is an unordered outcome taking on
values in f0, 1, ..., Jg. Assume we have conditioning variables, X,
that change with the unit (i.e. observation) but not with the
alternative.
For example, in modeling type of health insurance, we include
observable characteristics of the individual but not
characteristics of the different kinds of health plans. For
occupational choice, X can include years of schooling, age,
gender, and so on – but not characteristics of the occupations.
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Multinomial Logit

In this setting, we are interested in the response probabilities,

pj(X) = P(Y = jjX), j = 0, ..., J.

Because one and only one choice is possible,

p0(X) + p1(X) + . . .+ pJ(X) = 1 for all X

We are interested in how changing elements of X affects the
response probabilities.
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Multinomial Logit

In the basic multinomial logit (MNL) model, the response
probabilities are

P(Y = jjX) =
exp(X0βj)h

1+∑J
h=1 exp(X0βh)

i , j = 1, ..., J

P(Y = 0jX) = 1h
1+∑J

h=1 exp(X0βh)
i

where in almost all applications X1 � 1 (the first element of X).
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Multinomial Logit

Unless J = 1 (binary response logit), the partial effects on the pj(�)
are complicated. For a continuous Xk (kth element of X),

∂pj(X)
∂Xk

= pj(X)

8<:βjk �

h
∑J

h=1 βhk exp(X0βh)
i

h
1+∑J

h=1 exp(X0βh)
i
9=; ,

where βhk is the kth element of βh. ∂pj(X)/∂Xk might not have the
same sign as βjk.

Easier to interpret is the response on pj(X) relative to p0(X):

rj(X) �
pj(X)
p0(X)

= exp(X0βj)

∂rj(X)
∂Xk

= βjk exp(X0βj)
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Multinomial Logit

The log odds of response j relative to response 0 is

logoddsj(X) � log

"
pj(X)
p0(X)

#
= X0βj,

and so βjk measures the partial effect of xk on the log odds of j
relative to outcome 0:

∂logoddsj(X)
∂Xk

= βjk.
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Multinomial Logit

A key feature of the MNL model is that if we condition on the
even that Y can take on any of two outcomes, the resulting model
for choosing between the outcomes is a binary response logit.
Formally, suppose we condition on the event that Y 2 fj, hg:

P(Y = jjY = j or Y = h) = pj(X, β)/[pj(X, β) + ph(X, β)]

=
exp(X0βj)

[exp(X0βj) + exp(X0βh)]
=

exp[X0(βj � βh)]

f[exp[X0(βj � βh)] + 1g
= Λ[X0(βj � βh)]

where Λ[a] = exp(a)/[1+ exp(a)].
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Multinomial Logit

The previous formula shows that P(Y = jjY = j or Y = h) has
the logit form with parameter vector βj � βh.

If we set h = 0 it follows that P(Y = jjY = j or Y = 0) = Λ(X0βj),
which means we can estimate βj by using a binary response logit
on the sample of people choosing either 0 or j.
This simplification is an artifact of the MNL functional form.
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Multinomial Logit

Full maximum likelihood estimation of the βj is straightforward.
The log likelihood function is:

log L(β) =
n

∑
i=0

J

∑
j=0

1[Yi = j] log[pj(Xi, β)].

Inference is standard. The expected Hessian given Xi is easy to
compute.
In terms of goodness of fit and prediction, the MNL model often
works well. We can choose X to be flexible functions of
underlying explanatory variables.
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Probabilistic Choice Models

Again, let there be J+ 1 choices, but now explicitly view the
response (choice) as maximizing underlying utility. For a random
draw i, the latent utilities are

Uij = X0ijβ+ aij, j = 0, ..., J,

where Xij can vary by unit (i) and choice (j). Notice that β, in this
formulation, does not depend on j. It is almost always true that
Xij includes unity.
Example: Xij can include the costs of various modes of
transportation j for each unit i. Its coefficient measures the effect
of cost on utility across any mode of transportation.
Sometimes a variable will change only by choice and not
individual (such as the price of a car if geographic homogeneity
is assumed).
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Probabilistic Choice Models

Let Xi include all nonredundant elements of (Xi0, Xi1, ..., XiJ)
0. Let

ai = (ai0, ai1, ..., aiJ)
0 and assume ai is independent of Xi

(exogeneity).
The observed choice Yi 2 f0, 1, ..., Jg is the one that maximizes
utility:

Yi = argmax
j2f0,1,...,Jg

�
Uij
	

;

that is, Yi = j if choice j yields the highest utility.
McFadden (1974) showed that if the faij : j = 0, 1, ..., Jg are
independent, identically distributed with the type I extreme value
distribution, that is, with cdf F(a) = exp[� exp(�a)], then it can
be shown that

P(Yi = jjXi) =
exp(X0ijβ)h

1+∑J
h=1 exp(X0ihβ)

i , j = 0, 1, ..., J,

where this expression uses a normalization Xi0 � 0.
(Equivalently, the covariates of choices j = 1, ..., J are measured
net of Xi0.)
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Probabilistic Choice Models

Often it is useful to write

P(Yi = jjXi) =
exp(X0ijβ)h

∑J
h=0 exp(X0ihβ)

i , j = 0, 1, ..., J,

in which case the Xij are not measured net of Xi0.
In the context of probabilistic choice models, this is usually called
the conditional logit (CL) model (the name given by McFadden).
Fairly easy to estimate β by MLE, even for lots of choices.

Author: Paulo M.D.C. Parente 38 / 48



Probabilistic Choice Models

The type I extreme value distribution is perhaps not natural
because it is not symmetric – it has a thicker right tail.
The density for the type I extreme value distribution is

f (a) = exp(�a) exp(� exp(�a))

0
.1

.2
.3

.4

f(a)

­4 ­2 0 2 4
a

Type I Extreme Value PDF
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Probabilistic Choice Models

The MNL model can be shown to be a special case of the CL
model.
Suppose we have an MNL model with covariates Wi and
parameters δ1, δ2, ..., δJ. Let djh be a dummy variable equal to 1
when j = h and zero otherwise. Define
Xij = (d1jWi, d2jWi, ..., dJjWi)

0 and β = (δ01, δ02, ..., δ0J)
0.

Therefore for j = 1, ..., J we have X0ijβ = W0
iδj.

Consequently the focus is often on CL model.

Remark: McFadden shared the 2000 Nobel Memorial Prize in
Economic Sciences with James Heckman. McFadden’s share of the
prize was “for his development of theory and methods for analyzing
discrete choice”.

Author: Paulo M.D.C. Parente 40 / 48



Probabilistic Choice Models

This model has the Independence of Irrelevant Alternatives (IIA)
property which means that for any pair (j, l) the odds ratio

Pr(Yi = jjXi)

Pr(Yi = `jXi)
=

exp(X0ijβ)

exp(X0i`β)

does not depend on the characteristics or availability of any
other options.
This is called the independence from irrelevant alternatives (IIA)
assumption because it implies that adding another alternative or
changing the characteristics of a third alternative does not affect
the relative odds between alternatives.
IIA can have unattractive implications for the probabilities when
alternatives are similar, and for predicting substitution patterns
when new alternatives are introduced or old choices are taken
away.
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Probabilistic Choice Models

Red Bus/Blue Bus example:
Commuters face a decision between car and red bus.
Suppose that a commuter chooses between these two options with
equal probability,0.5, so that the odds ratio equals 1.
Now suppose a third mode, blue bus, is added. Assuming bus
commuters do not care about the color of the bus, they are
expected to choose between bus and car still with equal
probability, so the probability of car is still 0.5, while the
probability of each of the two bus types is 0.25.
IIA implies that this is not the case: for the odds ratio between car
and red bus to be preserved, and the odds of red and blue bus to be
equal The new probabilities must be car 0.33; red bus 0.33; blue bus
0.33.

Another way to characterize the problem: In

Uij = X0ijβ+ aij, j = 0, ..., J,

the aij, j = 0, 1, ..., J, are assumed to be independent. This is
unrealistic when some choices are similar.
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Probabilistic Choice Models
Relaxing IIA

The IIA property is driven partly by the specific form of the type
I extreme value distribution, but more importantly by the
independence of the aij across j. (Independence across i is a given
with random sampling.)
There are a number of ways to relax IIA. All effectively relax the
independence of the errors but in different ways
We consider here two: the Multinomial Probit. and Nested Logit.
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Multinomial Probit.

Directly allow correlation among the faij : j = 0, 1, ..., Jg.
Usually done by specifying multivariate normal. That is, assume
ai =

�
ai1, ..., aiJ

�
has a multivariate normal distribution (with unit

variances) and an unrestricted correlation matrix Σ. Leads to the
multinomial probit model. (A better name is conditional
probit, in the spirit of the probabilistic choice framework.)
Multinomial probit is computationally very difficult for even a
handful of alternatives.
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Probabilistic Choice Models
Multinomial Probit

To see this note that

P(Yi = jjXi) = P
�
Uij > Ui`; ` = 0, ..., J; ` 6= j

�
= P(X0ijβ+ aij > X0i`β+ ai`; ` = 0, ..., J; ` 6= j)

= P(aij � ai` >
�
Xi` � Xij

�0
β; ` = 0, ..., J; ` 6= j)

= P(εi,j,` > Z0i,j `β; ` = 0, ..., J; ` 6= j)

where εi,j,` = aij � ai`, and Zi,j ` =
�
Xi` � Xij

�
. Write

εi,j =
�
εi,j,1, εi,j,2, ..., εi,j,j�1,εi,j,j+1,, ..., εi,j,J

�0 and consider the subset

of RJ : Γi,j (β) = ∏J
`=0,` 6=j

�
Z0i,j,`β,+∞

�
(Cartesian product).
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Probabilistic Choice Models
Multinomial Probit

Therefore we need to compute the multiple integral:

P(εi,j,` > Z0i,j `β; ` = 0, ..., J; ` 6= j) =
Z

Γi,j(β)
f (εi,j)dεi,j,

where f (εi,j) is the density function of εi,j.
We need to resort to numerical integration or simulation
methods to compute this integral.
If we only ever observe a single choice for each unit, it is difficult
to estimate the matrix Σ when the choice set is large.
This can be partly overcome by assuming a special structure of
the correlation matrix Σ.

Author: Paulo M.D.C. Parente 46 / 48



Probabilistic Choice Models
Nested Logit

McFadden (1981) proposed the Nested Logit Model.
Suppose we can group alternatives into S groups of “similar”
alternatives. Let there be Gs alternatives in subgroup s,
s = 1, ..., S. Now specify a nested structure:

P(Y 2 GsjX) =

n
αs

h
∑j2Gs exp(ρ�1

s X0j β)
iρs
o

∑S
r=1 αr

h
∑j2Gr exp(ρ�1

r X0j β)
iρr

P(Y = jjY 2 Gs, X) =
exp(ρ�1

s X0j β)h
∑h2Gs exp(ρ�1

s X0hβ)
i

Notice that P(Y = jjX) = P(Y = jjY 2 Gs, X)P(Y 2 GsjX)
The second probability is a CL model conditional on being in
subgroup s.
The first probability gives the probability that the outcome is in
group s (conditional on X);
Need a normalization, usually α1 = 1.
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Probabilistic Choice Models
Nested Logit

Important Issue: How can the nesting structure be chosen? Gets
even more complicated with more than one level of nesting.
Structure leads to a simple two-step estimation method. Let
λs = ρ�1

s β, s = 1, ..., S. These can be easily estimated by applying
conditional logit within each subgroup s. Let bλs be the estimator of
λs.
Then estimate the αs and ρs by maximizing

n

∑
i=1

S

∑
s=1

1[Yi 2 Gs] log[qs(Xi; bλs, α, ρ)],

where qs(X; λ, α, ρ) is P(Y 2 GsjX).
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