Advanced Econometrics PhD in Economics 2020/2021 Exercise Sheet 1 - Maximum Likelihood

1. Let $Y \sim \mathcal{N}(\mu, \sigma^2)$, that is Y has density function

$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\}, \text{ where } \sigma^2 > 0$$

Note that $E(Y) = \mu$, $Var(Y) = \sigma^2$, $E[(Y - \mu)^3] = 0$ and $E[(Y - \mu)^4] = 3\sigma^4$.

- (a) Find the maximum likelihood estimator $(\hat{\mu}, \hat{\sigma}^2)$ of (μ, σ^2) , of based on a random sample $(Y_1, ..., Y_n)$ using the first order conditions.
- (b) Derive $E(\hat{\mu})$, and $var(\hat{\mu})$
- (c) Derive $E(\hat{\sigma}^2)$ and $var(\hat{\sigma}^2)$. [Hints:1 $\mathcal{V} = \sum_{i=1}^n (Y_i \bar{Y})^2 / \sigma^2 \sim \chi^2(n-1)$ and if $X \sim \chi^2(k)$, E(X) = k and Var(X) = 2k].
- (d) Show that the expected value of the score vector is zero.
- (e) Compute the Cramér–Rao lower bound for any regular consistent asymptotically normal estimators of (μ, σ^2) .
- (f) Show that the Information Identity holds.
- (g) Let q_{α} be the quantile of order α of the standard normal random variable, that is $\Phi(q_{\alpha}) = \alpha$, where $\Phi(.)$ is the cumulative distribution of the standard normal random variable. Denote \tilde{q}_{α} be the quantile of order α of Y, that is the constant such that $\mathcal{P}(Y \leq \tilde{q}_{\alpha}) = \alpha$. What is the maximum likelihood estimator of \tilde{q}_{α} ?
- 2. Consider the simple linear model

$$y_i = \alpha + \beta x_i + u_i, \qquad i = 1, \dots, n$$

where α and β are scalar parameters, and where the error terms u_i are independently identically normally distributed with mean zero and variance σ^2 and Cov(x, u) = 0.

- (a) Write the likelihood function for this model and derive $s_i(\theta) = \partial \log L_i(\theta)/\partial \theta$, where $\theta = (\alpha, \beta, \sigma^2)'$. Show that each element of this vector has expected value equal to zero when evaluated at the true values of the parameters.
- (b) Derive the Maximum Likelihood estimators of α , β and σ^2 , using the first order conditions and compare these with the corresponding Ordinary Least Squares estimators.
- (c) Explain and discuss the general properties of Maximum Likelihood estimators
- (d) Suppose you want to test the null hypothesis $H_0: \beta = 0$ in the above model. Discuss how you would test this hypothesis by conducting a Likelihood-Ratio test. Derive the expression for the test statistic in terms of the ratio of the sum of squared residuals from the restricted and unrestricted model.

University of Lisbon 2020/2021

(e) Explain and contrast the general principles that underlie the Likelihood-Ratio, Wald and Lagrange Multiplier tests. Briefly discuss how you would construct a test for omitted variables in the linear model

 $y_i = \alpha + \beta x_i + \gamma z_i + u_i, \qquad i = 1, \dots, n$

where α , β and γ are scalar parameters, and where the error terms u_i are independently identically normally distributed with mean zero and variance σ^2 .