Advanced Econometrics
 PhD in Economics
 2020/2021

Exercise Sheet 3 - Ordered Data and Count Data Models

1. Let Y be a Poisson Random variable with parameter $\mu>0$. That is

$$
\mathcal{P}(Y=k)=\frac{\mu^{k} e^{-\mu}}{k!}, k=0,1,2, \ldots
$$

(a) Use the first order conditions to show that the maximum likelihood estimator of μ is given by $\bar{Y}=\sum_{i=1}^{n} Y_{i} / n$.
(b) Show that \bar{Y} satisfy the second order conditions for a local maximum of the log-likelihood objective function.
(c) Show that

$$
\sqrt{n}(\bar{Y}-\mu) \xrightarrow{d} \mathcal{N}(0, \mu) .
$$

(d) Show that the estimator

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} .
$$

for μ is unbiased, that is show that $\mathrm{E}\left(S^{2}\right)=\mu$.
(e) It is known that

$$
\sqrt{n}\left[S^{2}-\operatorname{Var}(Y)\right] \xrightarrow{d} \mathcal{N}\left(0, m_{4}-\operatorname{Var}(Y)^{2}\right) .
$$

where $m_{4}=\mathrm{E}\left[(Y-\mathrm{E}(Y))^{4}\right]$. Confirm the result stated by the theory that S^{2} cannot be asymptotically more efficient than the maximum likelihood estimator for μ. [Hint: in the case of the Poisson random variable $m_{4}=\mathrm{E}\left[(Y-\mathrm{E}(Y))^{4}\right]=$ $3 \mu^{2}+\mu$]
2. Consider a count data model that satisfies the conditions

$$
\begin{aligned}
\mathrm{E}(Y \mid X) & =\exp \left(X \beta_{0}\right), \\
\operatorname{Var}(Y \mid X) & =f(X)
\end{aligned}
$$

where X is a univariate random variable, β_{0} is a parameter and $f(X)$ is a positive function of X. Suppose additionally that a random sample $\left\{\left(Y_{i}, X_{i}\right)\right\}_{i=1}^{n}$ is available. Obtain the asymptotic variance of the pseudo-maximum likelihood estimator of β_{0} based on a likelihood function obtained using:
(a) the Poisson distribution.
(b) the normal distribution with variance 1 (the non-linear least squares estimator).
(c) the negative binomial distribution with $\sigma^{2}=1$.
3. Define $Y_{i}=\left(Y_{i 1}, \ldots, Y_{i T}\right)^{\prime}$ and $j_{i}=\left(j_{i 1}, \ldots, j_{i T}\right)^{\prime}$, and let

$$
\begin{aligned}
P\left(Y_{i t}\right. & \left.=j_{i t} \mid \mathbf{X}_{i}, \varepsilon_{i}\right)=\frac{\exp \left(-\lambda_{i t}\right) \lambda_{i t}^{j_{i t}}}{j_{i t}!} \\
\lambda_{i t} & =\exp \left(\mathbf{X}_{i t}^{\prime} \beta+\varepsilon_{i}\right) \\
& =\exp \left(\mathbf{X}_{i t}^{\prime} \beta\right) \alpha_{i}, i=1, \ldots, n, t=1, \ldots, T
\end{aligned}
$$

where ε_{i} is a random variable and $\alpha_{i}=\exp \left(\varepsilon_{i}\right)$. Assume strict-exogeneity and independence of the elements of $Y_{i}=\left(Y_{i 1}, \ldots, Y_{i T}\right)^{\prime}$, conditional on ε_{i} and $\mathbf{X}_{i}=$ $\left(\mathbf{X}_{i 1}, \ldots, \mathbf{X}_{i T}\right)^{\prime}$. Prove that

$$
\mathcal{P}\left(Y_{i}=j_{i} \mid \mathbf{X}_{i}, \varepsilon_{i}, \sum_{t=1}^{T} Y_{i t}=\sum_{t=1}^{T} j_{i t}\right)=\frac{\left(\sum_{t=1}^{T} j_{i t}\right)!}{\prod_{t=1}^{T} j_{i t}!} \prod_{t=1}^{T}\left(\frac{\exp \left(\mathbf{X}_{i t}^{\prime} \beta_{0}\right)}{\sum_{t=1}^{T} \exp \left(\mathbf{X}_{i t}^{\prime} \beta_{0}\right)}\right)^{j_{i t}}
$$

