Advanced Econometrics PhD in Economics 2020/2021 Exercise Sheet 3 - Ordered Data and Count Data Models

1. Let Y be a Poisson Random variable with parameter $\mu > 0$. That is

$$\mathcal{P}(Y=k) = \frac{\mu^k e^{-\mu}}{k!}, k = 0, 1, 2, \dots$$

- (a) Use the first order conditions to show that the maximum likelihood estimator of μ is given by $\bar{Y} = \sum_{i=1}^{n} Y_i/n$.
- (b) Show that \overline{Y} satisfy the second order conditions for a local maximum of the log-likelihood objective function.
- (c) Show that

$$\sqrt{n}(\bar{Y}-\mu) \xrightarrow{d} \mathcal{N}(0,\mu).$$

(d) Show that the estimator

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}.$$

for μ is unbiased, that is show that $E(S^2) = \mu$.

(e) It is known that

$$\sqrt{n}[S^2 - \operatorname{Var}(Y)] \xrightarrow{d} \mathcal{N}(0, m_4 - \operatorname{Var}(Y)^2).$$

where $m_4 = E[(Y - E(Y))^4]$. Confirm the result stated by the theory that S^2 cannot be asymptotically more efficient than the maximum likelihood estimator for μ . [**Hint:** in the case of the Poisson random variable $m_4 = E[(Y - E(Y))^4] = 3\mu^2 + \mu$]

2. Consider a count data model that satisfies the conditions

$$E(Y|X) = \exp(X\beta_0),$$

$$Var(Y|X) = f(X)$$

where X is a univariate random variable, β_0 is a parameter and f(X) is a positive function of X. Suppose additionally that a random sample $\{(Y_i, X_i)\}_{i=1}^n$ is available. Obtain the asymptotic variance of the pseudo-maximum likelihood estimator of β_0 based on a likelihood function obtained using:

- (a) the Poisson distribution.
- (b) the normal distribution with variance 1 (the non-linear least squares estimator).

University of Lisbon 2020/2021

- (c) the negative binomial distribution with $\sigma^2 = 1$.
- 3. Define $Y_i = (Y_{i1}, ..., Y_{iT})'$ and $j_i = (j_{i1}, ..., j_{iT})'$, and let

$$P(Y_{it} = j_{it} | \mathbf{X}_i, \varepsilon_i) = \frac{\exp(-\lambda_{it}) \lambda_{it}^{j_{it}}}{j_{it}!}$$
$$\lambda_{it} = \exp(\mathbf{X}'_{it}\beta + \varepsilon_i)$$
$$= \exp(\mathbf{X}'_{it}\beta)\alpha_i, i = 1, ..., n, t = 1, ..., T$$

where ε_i is a random variable and $\alpha_i = \exp(\varepsilon_i)$. Assume strict-exogeneity and independence of the elements of $Y_i = (Y_{i1}, \ldots, Y_{iT})'$, conditional on ε_i and $\mathbf{X}_i = (\mathbf{X}_{i1}, \ldots, \mathbf{X}_{iT})'$. Prove that

$$\mathcal{P}\left(Y_i = j_i \left| \mathbf{X}_i, \varepsilon_i, \sum_{t=1}^T Y_{it} = \sum_{t=1}^T j_{it} \right) = \frac{\left(\sum_{t=1}^T j_{it}\right)!}{\prod_{t=1}^T j_{it}!} \prod_{t=1}^T \left(\frac{\exp(\mathbf{X}'_{it}\beta_0)}{\sum_{t=1}^T \exp(\mathbf{X}'_{it}\beta_0)}\right)^{j_{it}}.$$