Models in Finance - Part 9
 Master in Actuarial Science

João Guerra

ISEG

The Binomial model

- Model in discrete time. The model will seem very simple. However:
- (a) it introduces the key concepts of financial economic pricing and
- (b) it leads us to the celebrated Black-Scholes model as a limiting case.

The Binomial model

- Basic assumptions of the binomial model:
(1) no trading costs or taxes
(2) no minimum or maximum units of trading
(3) stocks and bonds can only be bought and sold at discrete times $t=1,2, \ldots$
(4) The principle of no arbitrage applies.

The Binomial model

- We will use S_{t} to represent the price of a non-dividend-paying stock at discrete time intervals $t(t=0,1,2, \ldots)$. For $t>0, S_{t}$ is random.
- Besides the stock we can also invest in a bond or a cash account which has value B_{t} at time t per unit invested at time 0 . This account is assumed to be risk free and we will assume that it earns interest at the constant risk-free continuously compounding rate of r per annum (p.a.). Thus

$$
\begin{equation*}
B_{t}=e^{r t} \tag{1}
\end{equation*}
$$

(we assume $r>0$).

- there are no constraints (positive or negative) on how much we hold in stock or cash.

One period model

- At time $t=0$ the stock price is S_{0}.
- At time $t=1$, we have two possibilities:

$$
S_{1}=\left\{\begin{array}{c}
S_{0} u \text { if the price goes up } \tag{2}\\
S_{0} d \text { if the price goes down }
\end{array}\right.
$$

where $u>1$ (fixed) and $d<1$ (fixed).

One period model

- Binomial tree:

Figure 1: One-period binomial model for stock prices

One period model

- Proposition: In order to avoid arbitrage we must have

$$
\begin{equation*}
d<e^{r}<u \tag{3}
\end{equation*}
$$

- Proof: Suppose this is not the case:
- (1) Assume first $e^{r}<d<u$.

Then we could borrow the amount S_{0} in Euros and buy a share by S_{0}.

- At time 0 this would have a net cost of $0 €$.
- At time 1 our portfolio would be worth $S_{0} d-e^{r} S_{0}$ or $S_{0} u-e^{r} S_{0}$. In both cases, the value is >0. So, we have an arbitrage opportunity.
- (2) If $d<u<e^{r}$ the cash investment would outperform the share investment in all circumstances.
An investor could (at time 0) sell the share and invest S_{0} in a cash account.
At time 1 he could buy again the share and have a certain positive profit of $S_{0} e^{r}-S_{0} u>0$ or $S_{0} e^{r}-S_{0} d>0$ (arbitrage opportunity).

One period model

- Suppose that we have a derivative which pays c_{u} if the price of the underlying stock goes up and c_{d} if the price of the underlying stock goes down.
- At what price should this derivative trade at time 0 ?
- At time 0 suppose we hold ϕ units of stock and ψ units of cash (portfolio (ϕ, ψ)).
The value of this portfolio at time 0 is V_{0}.
- At time 1 the same portfolio has the value:

$$
V_{1}=\left\{\begin{array}{cc}
\phi S_{0} u+\psi e^{r} & \text { if } S_{1}=S_{0} u \text { (price up) } \tag{4}\\
\phi S_{0} d+\psi e^{r} & \text { if } S_{1}=S_{0} d \text { (price down) }
\end{array}\right.
$$

- We will choose (ϕ, ψ) such that the portfolio replicates the payoff of the derivative, no matter what the outcome of the share price process.

One period model

- Let us choose ϕ and ψ so that $V_{1}=c_{u}$ if the stock price goes up and $V_{1}=c_{d}$ if the stock price goes down.
Then:

$$
\left\{\begin{array}{l}
\phi S_{0} u+\psi e^{r}=c_{u} \tag{5}\\
\phi S_{0} d+\psi e^{r}=c_{d}
\end{array} .\right.
$$

- This choice of ϕ and ψ ensures that the value of the portfolio (ϕ, ψ) is equal to the derivative payoff at time $t=1$ (expiry date).
Then, by the no arbitrage principle, the value of the derivative at time 0 is equal to the value of the portfolio V_{0}.
- Solving eqs. (5), we obtain:

$$
\begin{aligned}
\phi & =\frac{c_{u}-c_{d}}{S_{0}(u-d)}, \\
\psi & =e^{-r}\left[\frac{c_{d} u-c_{u} d}{u-d}\right] .
\end{aligned}
$$

One period model

- Then (Exercise: calculate this):

$$
\begin{aligned}
V_{0} & =\phi S_{0}+\psi=\ldots \\
& =e^{-r}\left[\frac{e^{r}-d}{u-d} c_{u}+\frac{u-e^{r}}{u-d} c_{d}\right]
\end{aligned}
$$

- That is:

$$
\begin{equation*}
V_{0}=e^{-r}\left[q c_{u}+(1-q) c_{d}\right] \tag{6}
\end{equation*}
$$

where:

$$
\begin{equation*}
q=\frac{e^{r}-d}{u-d} \tag{7}
\end{equation*}
$$

- Note that the no arbitrage condition $\left(d<e^{r}<u\right)$ ensures that $0<q<1$.

One period model

- If we "pretend" that q is a probability, we can write (6) in the form

$$
\begin{equation*}
V_{0}=e^{-r} E_{Q}\left[C_{1}\right] \tag{8}
\end{equation*}
$$

i.e., the price of the derivative at $t=0$ is the discounted value of the expected derivative payoff at time $t=1$, if we assume the probability measure Q is such that q is the "new" probability of going "up" and $1-q$ the new probability of "going down".

- But Q is not the "real world" probability.
- If we denote the payoff of the derivative at $t=1$ by the random variable C_{1}, we can write:

$$
\begin{equation*}
V_{0}=e^{-r} E_{Q}\left[C_{1}\right] \tag{9}
\end{equation*}
$$

where Q is an artificial probability measure which gives probability q to an upward move in prices and $1-q$ to a downward move.

Probability measures

- We can see that q depends only upon u, d and r and not upon the potential derivative payoffs c_{u} and c_{d}.
- Any function that assigns a value $q \in[0,1]$ to the up-branch of the tree and a value $1-q$ to the down-branch is a probability measure.
- Q is the particular probability measure, amongst many possible measures, that assigns the probability $q=\frac{e^{r}-d}{u-d}$ to the up-branch of the tree between times 0 and 1 and the probability $1-q$ to the down-branch.
- $E_{Q}\left[C_{1}\right]$ represents the expected payoff of the derivative with respect to the probability measure Q.
- Q is called the risk neutral probability measure.

Replicating portfolio

- (ϕ, ψ) is called a replicating portfolio because it replicates, precisely, the payoff at time 1 on the derivative without any risk. Therefore, any payoff can be replicated by the replicating portfolio and the market is complete.
- This portfolio is also a simple example of a hedging strategy: that is, an investment strategy which reduces the amount of risk carried by the issuer of the contract.
- A hedging strategy is one that reduces the extent of, or in this case eliminates, any variation in the market value of a portfolio.
- In this case: if we hold portfolio (ϕ, ψ) and sell derivative C, then the total value of the portfolio at time 1 will be zero, however the stock price moves from time 0 to time 1 .
- Therefore, by the principle of no arbitrage, the value of the combined portfolio is also zero at time 0 : perfectly hedged position.

Real world probabilty

- The previous hedging analysis would also be true if we sell the replicating portfolio (ϕ, ψ) and hold the derivative C.
- The real world probability measure P : Let the "real-world" probability of an up-movement be p and a down movement be $1-p$: this defines a probability measure P.
- In general, p will not be equal to q. Note that q depends only upon u, d and r and not upon p.
- The real-world probability p is irrelevant to our calculation of the derivative price.
- Expected stock price at time 1 , under P :

$$
E_{P}\left[S_{1}\right]=S_{0}[p u+(1-p) d] .
$$

Risk neutral probability

- Expected stock price at time 1 , under Q :

$$
\begin{aligned}
E_{Q}\left[S_{1}\right] & =S_{0}[q u+(1-q) d]= \\
& =\ldots=S_{0} e^{r}
\end{aligned}
$$

- Under Q we see that the expected return on the risky stock is the same as that on a risk-free investment in cash. In other words under the probability measure Q investors are neutral with regard to risk: they require no additional return for taking on more risk.
- This is why Q is sometimes referred to as a risk-neutral probability measure.
- Under the real-world measure P the expected return on the stock will not normally be equal to the return on risk-free cash. Under normal circumstances investors demand higher expected returns in return for accepting the risk in the stock price. Thus we would normally find that $p>q$.

Numerical example

- $S_{0}=40$, over the single period the stock price can move up to 60 or down to 30 . The actual probability of an up movement is $1 / 2$, cont. compounded risk free interest rate is 5% per time period. Current value of European call option, V_{0}, with exercise price 45.
- Binomial tree:

Numerical example

Numerical example

- $d=\frac{30}{40}=0.75 ; u=\frac{60}{40}=1.5$.
- Risk neutral probability q :

$$
\begin{aligned}
q & =\frac{e^{r}-d}{u-d}=\frac{e^{0.05}-0.75}{1.5-0.75}=0.40169 \\
1-q & =0.59831
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
V_{0} & =e^{-r} E_{Q}\left[C_{1}\right]=e^{-r}\left[q c_{u}+(1-q) c_{d}\right] \\
& =e^{-0.05}[0.40169 \times 15+0.59831 \times 0] \\
& =5.732
\end{aligned}
$$

and $C_{0}=5.732$.

Numerical example

- Exercise: Find the constituents of the replicating portfolio (ϕ, ψ) and show that it costs 5.732 to set up this portfolio.

