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hen,GermanyAbstra
t. Statisti
al analysis of data from the �nan
ial markets shows that gen-eralized hyperboli
 (GH) distributions allow a more realisti
 des
ription of asset re-turns than the 
lassi
al normal distribution. GH distributions 
ontain as sub
lasseshyperboli
 as well as normal inverse Gaussian (NIG) distributions whi
h have re-
ently been proposed as basi
 ingredients to model pri
e pro
esses. GH distributionsgenerate in a 
anoni
al way L�evy pro
esses, i.e. pro
esses with stationary and in-dependent in
rements. We introdu
e a model for pri
e pro
esses whi
h is drivenby generalized hyperboli
 L�evy motions. This GH model is a generalization of thehyperboli
 model developed by Eberlein and Keller (1995). It is in
omplete. Wederive an option pri
ing formula for GH driven models using the Ess
her transformas martingale measure and 
ompare the pri
es with 
lassi
al Bla
k-S
holes pri
es.The obje
tive of this study is to examine the 
onsisten
y of our model assumptionswith the empiri
ally observed pri
e pro
esses for underlyings and derivatives. Fi-nally we present a simpli�ed approa
h to the estimation of high-dimensional GHdistributions and their appli
ation to measure risk in �nan
ial markets.1 Introdu
tionGeneralized hyperboli
 (GH) distributions were introdu
ed by Ole E. Barn-dorf-Nielsen (1977) in the 
ontext of the sand proje
t as a varian
e-meanmixture of normal and generalized inverse Gaussian (GIG) distributions.These distributions seem to be tailor-made to des
ribe the statisti
al be-haviour of asset returns. Analyzing �nan
ial time series su
h as sto
k pri
es,indi
es, FX-rates or interest rates, one gets empiri
al distributions with arather typi
al shape. They pla
e substantial probability mass near the ori-gin, have slim 
anks and a number of observations far out in the tails. Thenormal distribution on whi
h the 
lassi
al models in �nan
e are based, failsin all three aspe
ts. How far this deviation from normality goes, depends onthe time s
ale of the underlying data sets.For long term studies based on weekly or even monthly data points theempiri
al distributions are 
lose to the normal. But using s
ar
e data setse�e
tively ignores a lot of information. Daily data is the minimum one hasto 
onsider for most purposes. Analyzing intraday data, i.e. looking at pri
e



2 Ernst Eberlein and Karsten Prausemovements on a mi
ros
opi
 s
ale leads to a deeper understanding of therelevant pro
esses.De�nition 1. For x 2 IR the density of the generalized hyperboli
 distribu-tion is de�ned asgh(x;�; �; �; Æ; �) = a(�; �; �; Æ) �Æ2 + (x� �)2�(��1=2)=2�K��1=2��pÆ2 + (x� �)2 � exp��(x� �)�a(�; �; �; Æ) = (�2 � �2)�=2p2� ���1=2 Æ�K��Æp�2 � �2 � ;where K� denotes the modi�ed Bessel fun
tion of the third kind with index�. The domain of variation of the parameters is 0 � j�j < �, �; � 2 IR andÆ > 0.Thus GH distributions are 
hara
terized by the �ve parameters (�; �; �; Æ; �).Alternative parameters used in the literature are� = Æp�2 � �2; � = �=�;� = (1 + �)�1=2; � = ��;� = �Æ; � = �Æ:These alternative parameters are s
ale- and lo
ation-invariant, i.e. they donot 
hange under aÆne transformations Y = aX + b with a 6= 0 of a givenvariable X . Let � (resp. �) denote the expe
tation (resp. the varian
e) ofthe distribution given by the density above. It 
an be shown that the map-ping (�; �; �; Æ; �) ! (�; �; �; �; �) is bije
tive. Therefore (�; �; �; �; �) where0 � j�j < � < 1 represents a parametrization with a rather intuitive inter-pretation. � is a 
lass parameter, � and � are invariant shape parameterswhereas � (resp. �) are the varian
e (resp. the expe
tation), i.e. they are thes
ale and the lo
ation parameter.The properties of the Bessel fun
tionK� (Abramowitz and Stegun (1968))allow one to �nd simpler expressions for the Lebesgue density if � 2 1=2 Z.For � = 1 we get the hyperboli
 distribution whi
h is 
hara
terized by thefa
t that the log-density is a hyperbola. This sub
lass has the simplest repre-sentation of all GH laws, whi
h is favourable from a numeri
al point of view.For � = �1=2 we get the normal inverse Gaussian (NIG) distribution. Thissub
lass is 
losed under 
onvolution for �xed parameters � and �. See Eber-lein and Keller (1995), Eberlein, Keller, and Prause (1998), Barndor�-Nielsen(1998), Barndor�-Nielsen and Prause (1999) for statisti
al results 
on
erningthe sub
lasses of hyperboli
 (resp. NIG distributions).2 Estimation of DensitiesWe estimate generalized hyperboli
, hyperboli
 and normal inverse Gaussiandistributions from daily as well as from high-frequen
y data. The algorithm



Generalized Hyperboli
 Model 3and the results 
on
erning German sto
k pri
es and NYSE indi
es are de-s
ribed in detail in Prause (1997, 1999). Analogous results are obtained forthe DAX, the German sto
k index (see Figure 1). Let (St)t�0 be the pri
epro
ess for a given �nan
ial instrument. We de�ne the return of this instru-ment for a given time interval �t, e.g. one trading day, asXt = logSt � logSt��t: (1)Thus the return during n periods is the sum of the one period returns. Thenumeri
al estimates for the GH distribution and the sub
lasses are given inTable 1.Table 1. Generalized hyperboli
 parameter estimates for the daily returns of theDAX from De
ember 15, 1993 to November 26, 1997. The parameter � is �xed forthe estimation of the hyperboli
 and the NIG distribution.� � � Æ � Log-LikelihoodGH �2:018 46:82 �24:91 0:0163 0:00336 3138.28Hyperboli
 1 158:87 �29:02 0:0059 0:00374 3135.15NIG �0:5 105:96 �26:15 0:0112 0:00348 3137.33Figure 1 (top) provides a typi
al plot of empiri
al and estimated GHdensities. The plot of the densities shows that the GH, hyperboli
 and NIGdistributions are more peaked and have more mass in the tails than thenormal distribution. Consequently they are mu
h 
loser to the empiri
al dis-tribution of asset returns. Although the di�eren
e between GH, hyperboli
and the NIG distribution is small, it is 
lear that the generalized hyperboli
distributions are superior to those of the sub
lasses.Value-at-Risk (VaR) has be
ome a major tool in the modelling of riskinherent in �nan
ial markets. Essentially VaR is de�ned as the potential lossgiven a level of probability � 2 (0; 1)P [Xt < �VaR�℄ = �: (2)The quantity de�ned here has to be transformed in the proper way if onewants to express VaR in 
urren
y units. The plot of VaR as a fun
tion of �
ould also be used to visualize the tail behaviour of distributions. Note, thatthe 
on
ept of VaR applied only for a single � is not satisfa
tory: VaR doesnot identify extreme risks appearing with a probability smaller than �. Figure1 (bottom) shows that the tails of the generalized hyperboli
 distributions areheavier than the tails of the normal distribution and therefore VaR 
omputed
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Fig. 1. DAX from De
ember 15, 1993 to November 26, 1997, daily pri
es at 12:00h,IBIS data (Karlsruher Kapitalmarktdatenbank).parametri
ally for the GH distribution and its sub
lasses is 
loser to theempiri
ally observed Value-at-Risk.In the global foreign ex
hange (FX) market it is parti
ularly importantto look at pri
e movements on an intraday basis. Many traders 
lose theirpositions over night and try to make a pro�t from intraday trading only.Therefore we examine 6 hours returns of USD/DEM ex
hange rates fromthe HFDF96 dataset provided by Olsen & Asso
iates. See also J.P. Morgan
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Fig. 2. USD/DEM ex
hange rate from January 1 to De
ember 31, 1996,6 hours returns, HFDF96 dataset (Olsen & Asso
iates, Z�uri
h).and Reuters (1996, p. 65) for some remarks 
on
erning the leptokurtosisof daily USD/DEM returns. For high-frequen
y data we follow Guillaume,Da
orogna, Dav�e, M�uller, Olsen, and Pi
tet (1997) in the de�nition of thelog-pri
e p(ti) = [log pask(ti) + log pbid(ti)℄=2 (3)and the 
orresponding returnr(ti) = p(ti)� p(ti��t): (4)We estimate the GH parameters for the in
rements r(ti) after removing allzero-returns. Although this is only a provisional approa
h to fo
us on timeperiods where trading takes pla
e, the results as plotted in Figure 2 providea 
lear pi
ture: The ex
ellent �t of generalized hyperboli
 distributions andthe typi
al di�eren
e to the normal distribution observed for daily returnsis repeated for high-frequen
y data (see also Barndor�-Nielsen and Prause(1999)).3 The Generalized Hyperboli
 ModelWe follow Eberlein and Keller (1995) in the design of the pri
e pro
ess(St)t�0 and the derivation of an option pri
ing formula. First we 
onstru
t
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ess. Generalized hyperboli
 distributions are in�nitely divis-ible (Barndo�-Nielsen and Halgreen (1977)). Therefore they generate a L�evypro
ess (Xt)t�0, i.e. a pro
ess with stationary and independent in
rements,su
h that the distribution of X1 and thus of Xt �Xt�1 is generalized hyper-boli
. We 
all this pro
ess (Xt)t�0 the generalized hyperboli
 L�evy motion.It depends on the �ve parameters (�; �; �; Æ; �) and is purely dis
ontinuous.This property follows from the expli
it form of the L�evy-Khint
hine repre-sentation of the 
hara
teristi
 fun
tion of generalized hyperboli
 distributionswhi
h is given in the appendix. The exponent 
onsists only of a drift termand the integral representing the jumps, but has no Gaussian term �
=2u2.The new model for the pri
e pro
ess itself is de�ned bySt = S0 exp(Xt): (5)Let us emphasize that (5) is only the basi
 model whi
h repla
es the
lassi
al geometri
 Brownian motion introdu
ed by Osborne and Samuelson.During the last 40 years this 
lassi
al Gaussian model, whi
h 
an also bede�ned via the di�usion equationdSt = St(�dt+ �dBt); (6)has been generalized and re�ned in many dire
tions. In its most sophisti-
ated generalization (see e.g. Bakshi, Cao, and Chen (1997)) jumps are addedthrough a Poisson pro
ess, the 
onstant volatility � is repla
ed by a di�usionpro
ess driven by a di�erent Brownian motion and a sto
hasti
 interest rateis 
onsidered, whi
h is typi
ally given in the form of a Cox-Ingersoll-Rossmodel. Taking 
orrelations between the various driving pro
esses into a
ountone has to 
onsider more than ten parameters. Calibration of su
h a modelis not an easy task.Essentially every extension whi
h has been 
onsidered for the geomet-ri
 Brownian motion 
an be applied to the exponential L�evy model (5) aswell. The extension we 
onsider to be 
ru
ial and whi
h improves the model
onsiderably is sto
hasti
 volatility. In (5) this 
an be done by writing Xtin the form �t + �Lt where (Lt)t�0 is a standardized L�evy pro
ess, that isone with mean zero and varian
e one. In this form � 
an be repla
ed byany of the standard models for sto
hasti
 volatility su
h as di�usion mod-els or the Ornstein-Uhlenbe
k-based models 
onsidered by Barndor�-Nielsenand Shephard (2001) and Ni
olato and Prause (1999) or any member of theARCH and GARCH-family. A detailed dis
ussion of this issue supported bya number of empiri
al results will be given in Eberlein, Kallsen, and Kristen(2001).The key property of our model{besides its simpli
ity{is that taking log-returns in (5) one obtains the 
orresponding in
rement of the driving L�evypro
ess (Xt)t�0. For time intervals of length 1 its distribution is by 
on-stru
tion the generating generalized hyperboli
 distribution. Thus the modelprodu
es for time intervals of length 1 exa
tly that distribution whi
h one
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Fig. 3. Siemens, Xetra data from August 28, 1998.gets from �tting data. If, for example, the underlying data set 
onsists of dailypri
es, one trading day in real time 
orresponds to a time interval of length 1in the model. It is not only this reprodu
tion of observed distributions whi
hmakes (5) attra
tive, the model is also 
onsistent in a mu
h deeper sense.If one 
alibrates a model using daily data a natural question is whether thedistribution produ
ed by the model for a weekly horizon is 
lose to the dis-tribution one obtains by �tting the 
orresponding weekly data. This turnsout to be the 
ase to a 
ertain degree of a

ura
y. Of 
ourse the same shouldhold if one goes in the other dire
tion, namely from daily to intraday hourlydata. Re
all that the 
lassi
al Gaussian model produ
es normal log-returnsalong any time interval �t. Detailed results on this 
onsisten
y property inboth dire
tions will appear in a forth
oming joint paper with Fehmi �Ozkan.In this 
ontext let us 
larify that the generalized hyperboli
 model (5) doesnot have anything in 
ommon with the hyperboli
 di�usion model introdu
edby Bibby and S�rensen (1997) and dis
ussed further in Rydberg (1999). Thelatter is a 
lassi
al di�usion model with 
ompletely di�erent statisti
al aswell as path properties.The pri
e pro
ess (5) has purely dis
ontinuous paths as has the drivingL�evy pro
ess. In order to give the reader an idea of what the paths of su
h apro
ess look like, we show in Figure 3 a sample of the intraday pri
e behaviourof sto
ks. To model the mi
rostru
ture of asset pri
es, purely dis
ontinuouspro
esses are more appropriate than the 
lassi
al or the hyperboli
 di�usionpro
esses with 
ontinuous paths.



8 Ernst Eberlein and Karsten PrauseSin
e we are in an in
omplete setting, we have to sele
t a spe
i�
 equiv-alent martingale measure. Arbitrage free pri
es are obtained as expe
tationsunder these measures (Delbaen and S
ha
hermayer (1994)). Note, that itis possible to obtain every pri
e in the full no-arbitrage interval by 
hosingthe proper equivalent martingale measure (Eberlein and Ja
od (1997)). We
hoose the Ess
her equivalent martingale measure P � given bydP � = exp��Xt � t logM(�)�dP: (7)The parameter � is the solution of r = logM(� + 1)� logM(�) where M isthe moment generating fun
tion given in the Appendix and r is the 
onstantinterest rate. The equation for � ensures that the dis
ounted pri
e pro
ess isin fa
t a P �-martingale. Chan (1999) remarked that in a model very simi-lar to the exponential L�evy model (5), the Ess
her transform is the minimalmartingale measure in the sense of F�ollmer and S
hweizer (1991). A mu
hdeeper motivation for the 
hoi
e of this parti
ular martingale measure 
ameout of several re
ent papers, where via duality theory it was shown that the
hoi
e of a minimal martingale measure 
orresponds to maximizing expe
tedutility. More pre
isely, taking the Ess
her transform 
orresponds to maximiz-ing utility with respe
t to the power utility fun
tion u(x) = xp=p. One amongseveral good referen
es for this appli
ation of duality theory to �nan
e is Golland R�us
hendorf (2000).Following the arbitrage pri
ing theory, the pri
e of an option with timeto expiration T and payo� fun
tion H(ST ) is given by e�rTE�[H(ST )℄. Inparti
ular, for a 
all option with strikeK whose payo� is H(ST ) = (ST�K)+we obtain the pri
e formulaS0 Z 1
 gh�T (x; � + 1) dx� e�rTK Z 1
 gh�T (x; �) dx; (8)where 
 = ln(K=S0) and gh�t( � ; �) is the density of the distribution of Xtunder the risk-neutral measure. The density gh�t( � ) of the t-fold 
onvolutionof the generalized hyperboli
 distribution 
an be 
omputed by applying theFourier inversion formula to the 
hara
teristi
 fun
tion. In the 
ase of NIGdistributions one should of 
ourse use the property that this sub
lass is 
losedunder 
onvolution.Figure 4 shows that the di�eren
e of the generalized hyperboli
 optionpri
es to those from the Bla
k-S
holes model resembles the W-shape whi
hwas observed for hyperboli
 option pri
es. Note that for options with shortmaturities the W-shape is more pronoun
ed in the 
ase of the NIG and theGH model.4 Res
aling of Generalized Hyperboli
 DistributionsFor the 
omputation of impli
it volatilities in the GH model we need tores
ale the generalized hyperboli
 distribution while keeping the shape �xed.
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10 Ernst Eberlein and Karsten PrauseAn analogous problem o

urs when 
omputing GH option pri
es for a givenvolatility, e.g. a volatility estimated from histori
al sto
k returns. In thisse
tion we also give some insights into the stru
ture of GH distributions. Theres
aling of generalized hyperboli
 distributions is based on the followingproperty 
on
erning s
ale- and lo
ation-invarian
e.Lemma 1. The terms �, �Æ and �Æ are s
ale- and lo
ation-invariant pa-rameters of the univariate generalized hyperboli
 distribution. The very sameholds for the alternative parametrizations ( �, �) and ( �, �).Proof. A

ording to Bl�sild (1981) a linear transformation Y = aX + b of aGH distributed variable X is again GH-distributed with parameters �+ = �,�+ = �=jaj, �+ = �=jaj, Æ+ = Æjaj and �+ = a�+ b. Obviously �+Æ+ = �Æand �+Æ+ = �Æ.A 
onsequen
e of Lemma 1 is that the varian
e of the generalized hyper-boli
 distribution has the linear stru
ture Var[X1℄ = Æ2C� in Æ2 where C�depends only on the shape, i.e. the s
ale- and lo
ation-invariant parameters(Barndor�-Nielsen and Bl�sild (1981)). Therefore one 
an also use Æ as as
aling parameter. To res
ale the distribution for a given varian
e b�2 oneobtains the new eÆ aseÆ = b� 24K�+1(b�)b�K�(b�) + b�2b�2 � b�2 0�K�+2(b�)K�(b�) � K�+1(b�)K�(b�) !2 1A35�1=2 (9)where (b�; b�; bÆ ) and 
onsequently b� are estimated from a longer time series.To �x the shape of the distribution while res
aling with a new eÆ, one has to
hange the other parameters in the following waye� = b�; e� = b� bÆeÆ ; e� = b� bÆeÆ and e� = b�: (10)Note, that the term in the square bra
kets is s
ale- and lo
ation-invariant.In order to value German sto
k options we use shape parameters estimatedfrom sto
k pri
es from January 1, 1988 to May 24, 1994 and we res
alethe estimated generalized hyperboli
 distributions while feeding in volatilityestimates from shorter time periods.Figure 5 shows the densities and the 
orresponding log-densities of hyper-boli
 distributions. In the �rst row we �x the shape estimated from Bayersto
k pri
es and res
ale the distribution as des
ribed in (10). The se
ondrow of Figure 5 reveals that � des
ribes the kurtosis of the distribution. Forin
reasing � the density be
omes less peaked and 
onverges to the Gaussiandistribution. Log-densities give some insight into the tail behaviour of thedensity. The log-density of the hyperboli
 distribution is a hyperbola whereasthe normal log-density is a parabola. Therefore hyperboli
 distributions pos-sess substantially heavier tails than the normal distribution. Nevertheless, in
ontrast to those of stable distributions, ex
luding the normal distribution,all moments of GH distributions do exist.
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 densities (Æ0 = 
 bÆ with 
onstant shape parametersb� = 0:608; b� = 0:0385 estimated from Bayer sto
k pri
es) and hyperboli
 densitieswith 
onstant varian
e and di�erent shapes.5 Smile Redu
tionThe 
omparison of generalized hyperboli
 pri
es with Bla
k-S
holes pri
esin Se
tion 3 hints at the possibility to 
orre
t the well-known smiles whi
happear in Bla
k-S
holes impli
it volatilities. Impli
it volatilities are 
omputedfrom observed option pri
es by inverting the 
orresponding pri
ing formulawith respe
t to the volatility parameter. Usually all parameters ne
essary foroption pri
ing are known to traders ex
ept the volatility. In the GH modelwe rely on the res
aling me
hanism des
ribed in Se
tion 4 to obtain thevolatility parameter. In this se
tion we 
ompute the impli
it volatilities. Thestudy is based on intraday option and sto
k market data of Bayer, DaimlerBenz, Deuts
he Bank, Siemens and Thyssen from July 1992 to August 1994.The option data set 
ontains all trades reported by the Deuts
he Terminb�orse(sin
e 1998 Eurex Germany) during the period above. The preparation of thedata sets is des
ribed in detail in Eberlein, Keller, and Prause (1998, ChapterIV). The latter arti
le in
ludes also a dis
ussion of impli
it volatilities in thehyperboli
 model and of the di�erent approa
hes to redu
e the smile.



12 Ernst Eberlein and Karsten Prause

50
10

0 
 1

50
tim

e 
to

 m
at

ur
ity

   
   

   
 

0.8 0.9 1 1.1 1.2
stockprice-strike ratio     

 0
0.

2
0.

4
0.

6
0.

8
1

 Black-Scholes implicit volatility

mean= 0.214 / sd= 0.06077

50
10

0  
15

0
tim

e 
to

 m
at

ur
ity

   
   

   
 

0.8 0.9 1 1.1 1.2
stockprice-strike ratio     

-0
.0

5
 0

0.
05

0.
1

BS minus Hyperbolic implicit volatility

mean= 0.0002 / sd= 0.00553

50
10

0  
15

0
tim

e 
to

 m
at

ur
ity

   
   

   
 

0.8 0.9 1 1.1 1.2
stockprice-strike ratio     

-0
.0

5
 0

0.
05

0.
1

BS minus NIG implicit volatility

mean= 0.0002 / sd= 0.00749

50
10

0  
15

0
tim

e 
to

 m
at

ur
ity

   
   

   
 

0.8 0.9 1 1.1 1.2
stockprice-strike ratio     

-0
.0

5
 0

0.
05

0.
1

BS minus GH implicit volatility

mean= -0.0253 / sd= 0.02336Fig. 6. Bla
k-S
holes impli
it volatilities and 
omparison of the impli
it volatilitiesof Bla
k-S
holes, hyperboli
, NIG, and GH pri
es (Daimler Benz 
alls from July1992 to August 1994, 62504 observations).Impli
it volatilities in the Bla
k-S
holes model typi
ally follow a patterndenoted as smile, i.e. they are low for options at the money and the high-est impli
it volatilities are observed for options with short maturities in andout of the money. Figure 6 (top left) shows the impli
it volatilities of Daim-ler Benz 
alls in the Bla
k-S
holes model. To 
ompare these with impli
itvolatilities in the GH model, we 
omputed the di�eren
es and plotted themin Figure 6. The pattern re
e
ts the W-shapes from Figure 4. Obviously weobserve a more pronoun
ed 
orre
tion of the smile e�e
t in the GH model{dueto the heavier tails of the distribution.A di�erent approa
h to analyse the smile behaviour of a parti
ular optionpri
ing model is to �t a linear model for the impli
it volatilities of the form�Imp;i = b0 + b1Ti + b2(�i � 1)2=Ti + ei; (11)where ei is the random error term, �i the sto
kpri
e-strike ratio S=K and ithe number of the trade in the option data set. The 
ross-term (� � 1)2=Tre
e
ts the degression of the smile e�e
t with in
reasing time to maturityT . Table 2 shows the regression 
oeÆ
ients for the Bla
k-S
holes, the GHmodels and the respe
tive symmetri
 
entered versions of ea
h. The values of
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 Model 13Table 2. Fitted 
oeÆ
ients for 
all options from July 1992 to August 1994. SCmarks the results for the symmetri
 
entered versions of the models.b0 b1 b2 R2Daimler Benz Bla
k-S
holes 0:2177 �0:00029 40:53 0:5416Hyperboli
 0:2186 �0:0003 36:89 0:4972Hyperboli
 SC 0:2184 �0:000293 36:33 0:4951NIG 0:2191 �0:000305 35:11 0:4746NIG SC 0:2189 �0:000296 34:48 0:4716GH 0:2207 �0:000321 32:81 0:4378GH SC 0:2201 �0:000306 31:98 0:4343the 
oeÆ
ient for (�� 1)2=T are smaller for hyperboli
, NIG and GH pri
es
ompared to those from Bla
k-S
holes pri
es. Hen
e these new models redu
ethe smile e�e
t. The largest 
orre
tion is observed for the symmetri
 
enteredGH model.6 Multivariate Generalized Hyperboli
 DistributionsIn the previous se
tions we have dis
ussed univariate generalized hyperboli
distributions as the basi
 ingredient for a sto
k pri
e model fo
ussing onoption pri
ing. We shall now look into the estimation of multivariate GHdistributions and its appli
ation to risk measurement.De�nition 2. For x 2 IRd, the d-dimensional generalized hyperboli
 distri-bution (GHd) is de�ned by its Lebesgue density, whi
h is given byghd(x) = ad K��d=2��pÆ2 + (x� �)0��1(x� �) ����1pÆ2 + (x� �)0��1(x� �) �d=2�� exp(�0(x� �));ad = ad(�; �; �; Æ;�) = �p�2 � �0�� ÆÆ��(2�)d=2K��Æp�2 � �0�� �The parameters have the following domain of variation1: � 2 IR; �; � 2IRd; Æ > 0; �0�� < �2. The positive de�nite matrix � 2 IRd�d has a deter-minant j�j = 1.For � = (d+1)=2 we obtain the multivariate hyperboli
 and for � = �1=2the multivariate normal inverse Gaussian distribution. Generalized hyper-boli
 distributions are symmetri
 i� � = (0; : : : ; 0)0.1 We omitted the limiting distributions obtained at the boundary of the parameterspa
e; see e.g. Bl�sild and Jensen (1981).



14 Ernst Eberlein and Karsten PrauseBl�sild and Jensen (1981) introdu
ed alternative parameters �; �; S where� = Æp�2 � �0��, � = ��1=2(�2 � �0��)�1=2 and S = Æ2�. Generalizedhyperboli
 distributions are 
losed under forming marginals, 
onditioning andaÆne transformations (Bl�sild (1981)). For the mean and the varian
e ofX � GHd one obtainsEX = �+ ÆR�(�)��1=2; (12)Var X = Æ2 ���1R�(�)� + S�(�)���1=2�0���1=2��; (13)where in order to simplify notation we introdu
ed R�(x) = K�+1(x)=K�(x)and S�(x) = �K�+2(x)K�(x) �K2�+1(x)�ÆK2�(x).A maximum likelihood estimation of all parameters in higher dimensionsis 
omputationally too demanding sin
e the number of parameters 3+ d(d+5)=2 in
reases rapidly with the number of dimensions. Therefore we proposea simpli�ed algorithm for symmetri
 GH distributions whi
h allows for aneÆ
ient estimation also in higher dimensions. The �rst step of the estimationfollows a method of moments approa
h: we estimate the sample mean b� 2 IRdand the sample dispersion matrix � using 
anoni
al estimators. Sin
e � = 0in the symmetri
 
ase, EX = �, and from (13) we get the following estimatefor � b� = �Æ2R�(�) �: (14)Consequently we 
ompute b� by norming the sample dispersion matrix su
hthat j�j = 1. The se
ond step is to 
omputeyi = (xi � b�)0 b��1(xi � b�) (15)from observations xi 2 IRd; 1 � i � n. Then the log-likelihood fun
tion isgiven asL(x;�; �; Æ) = n�� log(�=Æ)� d2 log(2�)� logK�(Æ�)� (16)+ nXi=1 logK��(d=2)��pÆ2 + yi �+ ��� d2� nXi=1 log�pÆ2 + yiÆ��:The last step is to maximize this log-likelihood fun
tion with respe
t to(�; �; Æ). We have developed eÆ
ient estimation algorithms for hyperboli
and NIG distributions, i.e. for �xed � = 1 and � = �1=2. In the 
ase of arbi-trary � one may en
ounter numeri
al problems due to extremely small valuesof the Bessel fun
tions K�. As in the univariate 
ase the log-likelihood fun
-tion simpli�es for � 2 1=2Z. For NIG distributions, i.e. � = �1=2, the num-ber of Bessel fun
tions K� whi
h have to be 
omputed for the log-likelihoodfun
tion is redu
ed by one. In the 
ase of hyperboli
 and hyperboloid distri-butions we have to 
ompute only one Bessel fun
tion instead of n+ 1. Sin
e
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 Model 15the evaluation of Bessel fun
tions is the time-
onsuming part of the thirdstep, 
omputation is mu
h simpler for hyperboli
 distributions. For �xed � itis also possible to estimate only � in the se
ond step. Nevertheless, we have
hosen to estimate the 
ovarian
e stru
ture in the �rst \method of moments"step and the parameters (�; Æ) 
hara
terizing the kurtosis and the s
ale inthe likelihood step.For a pri
e pro
ess St 2 IRd we de�ne relative returns xt 2 IRd byx(i)t = �S(i)t � S(i)t��t�ÆS(i)t��t � logS(i)t � logS(i)t��t; 1 � i � d; (17)whi
h are approximated by the log-returns de�ned in (1). The motivation to
hoose this de�nition is that the return of a portfolio des
ribed by a ve
torh 2 IRd is then simply given by h0xt. See J.P. Morgan and Reuters (1996,Se
tion 4.1) for a dis
ussion of temporal and 
ross-se
tion aggregation ofasset returns.
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Fig. 7. Marginal density for Thyssen obtained from the 3-dimensional estimate forDaimler Benz{Deuts
he Bank{Thyssen.The marginal densities of the GH distributions 
an be derived using atheorem of Bl�sild (1981). Typi
ally we obtain the pattern shown in Figure7 for the densities and log-densities: The marginal distributions of hyperboli
and NIG distributions are 
loser to the empiri
al distribution than the normaldistribution. In the 
enter, marginals of hyperboli
 distributions are 
loser tothe empiri
al distribution but in the tails, marginals of NIG distributionsprovide a better �t.7 Market Risk MeasurementLet us start with a general result on densities.



16 Ernst Eberlein and Karsten PrauseTheorem 1. Let X be a d-dimensional random variable with symmetri
 gen-eralized hyperboli
 distribution, i.e. with � = (0; : : : ; 0)0, and let h 2 IRdwhere h 6= (0; : : : ; 0)0. The distribution of h0X is univariate generalized hyper-boli
 GHd(��; ��; ��; Æ�; ��), where �� = �; �� = �jh0�hj�1=2; �� = 0;Æ� = Æjh0�hj1=2 and �� = h0�.Proof. Let h1 6= 0 without loss of generality. Apply Theorem I
) of Bl�sild(1981) with A = 0BB�h1 h2 � � � hd0 1 0... . . .0 0 1 1CCA and B = 0BB�0...01CCA : (18)Then proje
t the d-dimensional GH distribution onto the �rst 
oordinateusing Theorem Ia).The latter theorem may be used to 
al
ulate risk measures for a portfolioof d assets with investments given by a ve
tor h 2 IRd. As an example welook at a portfolio 
onsisting of three German sto
ks: Daimler Benz, Deuts
heBank and Thyssen from January 1, 1988 to May 24, 1994. We 
hoose h =(1; 1; 1)0 and show the empiri
al density of the returns h0xt of the portfolioin Figure 8. The previous theorem gives the 
orresponding densities obtainedfrom the d-dimensional estimates of symmetri
 hyperboli
 and symmetri
NIG distributions. Figure 8 shows also the dire
t estimate of the univariateGH distribution from h0xt.The densities and log-densities in Figure 8 indi
ate that symmetri
 GHdistributions enable one to perform more pre
ise modelling of the returndistribution of the portfolio. As a 
onsequen
e one 
an get more realisti
risk measures than the traditional ones based on the normal distribution.Figure 9 shows a risk measure over a 1-day horizon with respe
t to a level ofprobability � 2 (0; 1), namely the shortfall whi
h we de�ne asShortfall�;t = �E�h0xtjh0xt < q(�)�; (19)where q : [0; 1℄! IR is the 
orresponding quantile fun
tion.Note that the shortfall goes 
learly beyond the 
on
ept of VaR be
auseit takes into a

ount the extreme negative returns. The log-density of theempiri
al distribution in Figure 8 shows the magnitude of the negative returnsof multi-asset portfolios in relation to the more frequent small returns.The Basle Committee on Banking Supervision (1995, IV.23) has proposeda ba
ktesting pro
edure to test the quality of Value-at-Risk estimators. Wefollow this pro
edure to 
ompare standard VaR estimation approa
hes withVaR estimators based on GH distributions.2 After 
omputing the VaR forea
h day in the time period from January 1, 1989 to May 24, 1994 we 
ount2 The Basle Committee on Banking Supervision (1995, IV.3) re
ommends a hold-ing period of 10 days. Nevertheless, we 
onsider a 1-day horizon only be
ause
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Fig. 8. Distribution of the returns of a portfolio 
onsisting of Daimler Benz,Deuts
he Bank, and Thyssen (equal weights).the observed losses greater than the Value-at-Risk. Sin
e Value-at-Risk is es-sentially a quantile, the per
entage of ex
ess losses should 
orrespond to thelevel of probability �. One standard method to 
ompute VaR is to simulatethe in
reased number of returns in the observation period allows more a

uratestatisti
al results. Note, that we would not ups
ale a 1-day VaR by multiplyingit with p10. Instead we would use the distribution 
orresponding to 10 days inour model.
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Fig. 9. Shortfall for Daimler Benz{Deuts
he Bank{Thyssen (portfolio with equalweights).the return of the portfolio by the pre
eding 250 observed returns and to takethe quantile of this empiri
al distribution. This is histori
al simulation. Ase
ond simulation te
hnique proposed to fore
ast VaR is Monte Carlo simu-lation. It is 
omputationally intensive for large portfolios. We have not appliedthis method here be
ause distin
t di�eren
es to the Varian
e-Covarian
e ap-proa
h are only obtained for nonlinear portfolios (B�uhler, Korn, and S
hmidt(1998)). However, a full valuation approa
h based on GH distributions, for in-stan
e for portfolios with derivative 
ontra
ts, is easily implemented (Prause(1999)). The mixture representation of GH distributions allows to generaterandom numbers eÆ
iently. We also apply the Varian
e-Covarian
e approa
hwhi
h is based on the multivariate normal distribution.The results given in Table 3 show that the standard estimators for Value-at-Risk underestimate the risk of extreme losses on the relevant level of 1%.This e�e
t is visible in the per
entage of ex
ess losses in the histori
al simula-tion. In the Varian
e-Covarian
e approa
h we observe too high values for thelevel of probability � = 1% and too small values for � = 5%. The per
ent-ages of realized losses greater than VaR are 
loser to the level of probabilityin both 
ases � = 1% and � = 5% for the symmetri
 hyperboli
 and thesymmetri
 NIG distribution.An approa
h similar to the res
aling me
hanism proposed above for theunivariate 
ase is to estimate the shape from a longer time period and to usean up-to-date 
ovarian
e matrix �. This allows one to in
orporate the riskof extreme events, even if they do not o

ur in the pre
eding 250 trading
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 Model 19days, whi
h is the minimum time period proposed by the Basle Committee(1995). Therefore we have to 
hoose a sub
lass, i.e. a parameter � 2 IR, andto �x a long-term estimate for �. We 
ompute the matrix S in the alternativeparametrization by S = Æ2� = �R�(�) �: (20)A further re�nement is possible by 
hoosing an appropriate estimate forthe 
ovarian
e matrix. We sele
t the multivariate IGARCH model of Nelson(1990) in whi
h varian
e �21;t and 
ovarian
e �212;t are given by�21;t = (1� �)Xt�1 �t�1(rt � �r); (21)�212;t = (1� �)Xt�1 �t�1(r1;t � �r1)(r2;t � �r2); (22)where 0 < � < 1 is a de
ay fa
tor, rt; r1;t; r2;t returns of �nan
ial assets and�r; �r1; �r2 the 
orresponding mean values. To allow for a 
omparison, we haveused the de
ay fa
tor � = 0:94 applied in J.P. Morgan and Reuters (1996)for daily returns.Table 3. Ex post evaluation of risk measures: per
entage of losses greater than VaR.Ea
h trading day the Value-at-Risk for a holding period of one day is estimatedfrom the pre
eding 250 trading days (Daimler Benz, Deuts
he Bank, and Thyssenfrom January 1, 1989 to May 24, 1994, Investment of 1DM in ea
h asset).VaR Estimation Method � = 1% � = 5%Histori
al Simulation 2:08 5:79Varian
e-Covarian
e 1:63 4:45RiskMetri
s / IGARCH 1:34 4:75Symmetri
 hyperboli
 1:48 4:9Symmetri
 NIG 1:26 4:75Symmetri
 hyperboli
, long-term � 1:26 4:45Symmetri
 NIG, long-term � 1:04 4:9Hyperboli
 IGARCH, long-term � 1:11 4:82NIG IGARCH, long-term � 1:11 5:341-dimensional Hyperboli
 1:41 4:91-dimensional NIG 1:41 4:97Finally we propose to redu
e the risk measurement problem to one di-mension by 
omputing quantiles for the return h0xt of the whole portfolio.



20 Ernst Eberlein and Karsten PrauseWe estimate hyperboli
 and NIG distributions and derive the 
orrespondingquantiles.The results of the study for a linear portfolio are shown in Table 3. Takentogether, the use of a long-term shape parameter in
orporates the possibilityof extreme events, even if there was no 
rash in the pre
eding 250 tradingdays, whereas the GH-IGARCH approa
h des
ribes the volatility 
lusteringobserved in �nan
ial markets. This yields more a

urate results for GH-basedmodels in the ex-post evaluation of the risk measures.8 Con
lusionIn the �rst part of this paper we presented generalized hyperboli
 distribu-tions resp. their sub
lasses and estimation results 
on
erning daily as wellas high-frequen
y returns. The greater 
exibility of this 
lass of distributionsallows an almost perfe
t �t to empiri
al asset return distributions. Basedon the L�evy pro
esses generated by these in�nitely divisible distributions weintrodu
ed in se
tion 3 the generalized hyperboli
 model as a new way todes
ribe asset pri
es. It is a rather natural model, sin
e it reprodu
es exa
tlythose distributions whi
h one observes in the data. An option pri
ing formula
an be derived using the Ess
her transform as in Eberlein and Keller (1995).Using the res
aling me
hanism of generalized hyperboli
 distributions we an-alyzed impli
it volatilities and pri
es obtained in the GH model. We observeda 
orre
tion of the smile e�e
t in the GH model.Risk measures are used in �nan
ial institutions with two obje
tives. In-ternally they give the management a possibility to allo
ate risk 
apital.Setting limits in terms of risk helps business managers to allo
ate riskto those areas whi
h they feel o�er the most potential, or in whi
htheir �rms' expertise is greatest. This motivates managers of multiplerisk a
tivities to favor risk redu
ing diversi�
ation strategies.3On the other hand regulators as well as the management want to redu
e theprobability of default. Therefore they set limits to the exposure to marketrisk relative to the 
apital of the �rm.Is Value-at-Risk the adequate measure for this purpose? Quantile-basedmethods like VaR have the disadvantage that they do not 
onsider losseso

uring with a probability below a given level of probability. Stress testingo�ers a partial solution to this problem fo
ussing on extreme s
enarios. Toquantify risk properly one has to fore
ast the whole pro�t and loss distri-bution. Regulators should use other risk measures than VaR as well. In this
ontext we also would like to mention the axiomati
 
on
ept of 
oherent riskmeasures developed by Artzner, Delbaen, Eber, and Heath (1999).In the last two se
tions we have shown that it is possible to estimate gen-eralized hyperboli
 distributions in an eÆ
ient way and to 
onstru
t more3 J.P. Morgan and Reuters (1996, p. 33), see also Chart 3.1.
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urate risk measures for multivariate pri
e pro
esses. Symmetri
 hyper-boli
 and symmetri
 NIG distributions are 
hara
terized by the 
ovarian
ematrix and a shape parameter. This simple stru
ture allows a further sophis-ti
ation of GH risk measures by �xing a long-term shape parameter, whi
hdes
ribes the probability of rare events, and 
hoosing a short-term estimatefor the 
ovarian
e matrix. A study in a

ordan
e with the ba
ktesting 
on-
ept required by the Basle Committee on Banking Supervision re
on�rms theex
ellent results 
on
erning VaR estimation for multivariate pri
e pro
esses.Moreover, we have shown that generalized hyperboli
 distributions are alsothe proper building blo
k for risk measures beyond VaR.A
knowledgementWe thank Deuts
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on
ern-ing sto
k and option pri
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h.AppendixMoment Generating and Chara
teristi
 Fun
tionLemma A.1. The moment generating fun
tion of the generalized hyperboli
distribution isM(u) = eu�� �2 � �2�2 � (� + u)2��=2 K�(Æp�2 � (� + u)2 )K�(Æp�2 � �2 ) ; j� + uj < �:Lemma A.2. The 
hara
teristi
 fun
tion of the generalized hyperboli
 dis-tribution is�(u) = ei�u� �2 � �2�2 � (� + iu)2��=2 K�(Æp�2 � (� + iu)2 )K�(Æp�2 � �2 ) :Theorem A.1. The L�evy-Khint
hine representation of �(u) isln�(u) = iu�+ Z �eiux � 1� iux�g(x)dx; (23)with densityg(x) = e�xjxj  Z 10 exp(�p2y + �2 jxj)�2y�J2�(Æp2y) + Y 2� (Æp2y )� dy + 1f��0g �e��jxj!:(24)Here J� and Y� denote Bessel fun
tions of the �rst and se
ond kind.
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