
The Generalized Hyperboli Model:Finanial Derivatives and Risk MeasuresErnst Eberlein1 and Karsten Prause21 Institute for Mathematial Stohastis and Freiburg Center for Data Analysisand Modelling (FDM), University of Freiburg, Ekerstr. 1, D-79104 Freiburg,Germany2 HypoVereinsbank, Credit Risk Controlling, Arabellastr. 12, D-81925 M�unhen,GermanyAbstrat. Statistial analysis of data from the �nanial markets shows that gen-eralized hyperboli (GH) distributions allow a more realisti desription of asset re-turns than the lassial normal distribution. GH distributions ontain as sublasseshyperboli as well as normal inverse Gaussian (NIG) distributions whih have re-ently been proposed as basi ingredients to model prie proesses. GH distributionsgenerate in a anonial way L�evy proesses, i.e. proesses with stationary and in-dependent inrements. We introdue a model for prie proesses whih is drivenby generalized hyperboli L�evy motions. This GH model is a generalization of thehyperboli model developed by Eberlein and Keller (1995). It is inomplete. Wederive an option priing formula for GH driven models using the Essher transformas martingale measure and ompare the pries with lassial Blak-Sholes pries.The objetive of this study is to examine the onsisteny of our model assumptionswith the empirially observed prie proesses for underlyings and derivatives. Fi-nally we present a simpli�ed approah to the estimation of high-dimensional GHdistributions and their appliation to measure risk in �nanial markets.1 IntrodutionGeneralized hyperboli (GH) distributions were introdued by Ole E. Barn-dorf-Nielsen (1977) in the ontext of the sand projet as a variane-meanmixture of normal and generalized inverse Gaussian (GIG) distributions.These distributions seem to be tailor-made to desribe the statistial be-haviour of asset returns. Analyzing �nanial time series suh as stok pries,indies, FX-rates or interest rates, one gets empirial distributions with arather typial shape. They plae substantial probability mass near the ori-gin, have slim anks and a number of observations far out in the tails. Thenormal distribution on whih the lassial models in �nane are based, failsin all three aspets. How far this deviation from normality goes, depends onthe time sale of the underlying data sets.For long term studies based on weekly or even monthly data points theempirial distributions are lose to the normal. But using sare data setse�etively ignores a lot of information. Daily data is the minimum one hasto onsider for most purposes. Analyzing intraday data, i.e. looking at prie



2 Ernst Eberlein and Karsten Prausemovements on a mirosopi sale leads to a deeper understanding of therelevant proesses.De�nition 1. For x 2 IR the density of the generalized hyperboli distribu-tion is de�ned asgh(x;�; �; �; Æ; �) = a(�; �; �; Æ) �Æ2 + (x� �)2�(��1=2)=2�K��1=2��pÆ2 + (x� �)2 � exp��(x� �)�a(�; �; �; Æ) = (�2 � �2)�=2p2� ���1=2 Æ�K��Æp�2 � �2 � ;where K� denotes the modi�ed Bessel funtion of the third kind with index�. The domain of variation of the parameters is 0 � j�j < �, �; � 2 IR andÆ > 0.Thus GH distributions are haraterized by the �ve parameters (�; �; �; Æ; �).Alternative parameters used in the literature are� = Æp�2 � �2; � = �=�;� = (1 + �)�1=2; � = ��;� = �Æ; � = �Æ:These alternative parameters are sale- and loation-invariant, i.e. they donot hange under aÆne transformations Y = aX + b with a 6= 0 of a givenvariable X . Let � (resp. �) denote the expetation (resp. the variane) ofthe distribution given by the density above. It an be shown that the map-ping (�; �; �; Æ; �) ! (�; �; �; �; �) is bijetive. Therefore (�; �; �; �; �) where0 � j�j < � < 1 represents a parametrization with a rather intuitive inter-pretation. � is a lass parameter, � and � are invariant shape parameterswhereas � (resp. �) are the variane (resp. the expetation), i.e. they are thesale and the loation parameter.The properties of the Bessel funtionK� (Abramowitz and Stegun (1968))allow one to �nd simpler expressions for the Lebesgue density if � 2 1=2 Z.For � = 1 we get the hyperboli distribution whih is haraterized by thefat that the log-density is a hyperbola. This sublass has the simplest repre-sentation of all GH laws, whih is favourable from a numerial point of view.For � = �1=2 we get the normal inverse Gaussian (NIG) distribution. Thissublass is losed under onvolution for �xed parameters � and �. See Eber-lein and Keller (1995), Eberlein, Keller, and Prause (1998), Barndor�-Nielsen(1998), Barndor�-Nielsen and Prause (1999) for statistial results onerningthe sublasses of hyperboli (resp. NIG distributions).2 Estimation of DensitiesWe estimate generalized hyperboli, hyperboli and normal inverse Gaussiandistributions from daily as well as from high-frequeny data. The algorithm



Generalized Hyperboli Model 3and the results onerning German stok pries and NYSE indies are de-sribed in detail in Prause (1997, 1999). Analogous results are obtained forthe DAX, the German stok index (see Figure 1). Let (St)t�0 be the prieproess for a given �nanial instrument. We de�ne the return of this instru-ment for a given time interval �t, e.g. one trading day, asXt = logSt � logSt��t: (1)Thus the return during n periods is the sum of the one period returns. Thenumerial estimates for the GH distribution and the sublasses are given inTable 1.Table 1. Generalized hyperboli parameter estimates for the daily returns of theDAX from Deember 15, 1993 to November 26, 1997. The parameter � is �xed forthe estimation of the hyperboli and the NIG distribution.� � � Æ � Log-LikelihoodGH �2:018 46:82 �24:91 0:0163 0:00336 3138.28Hyperboli 1 158:87 �29:02 0:0059 0:00374 3135.15NIG �0:5 105:96 �26:15 0:0112 0:00348 3137.33Figure 1 (top) provides a typial plot of empirial and estimated GHdensities. The plot of the densities shows that the GH, hyperboli and NIGdistributions are more peaked and have more mass in the tails than thenormal distribution. Consequently they are muh loser to the empirial dis-tribution of asset returns. Although the di�erene between GH, hyperboliand the NIG distribution is small, it is lear that the generalized hyperbolidistributions are superior to those of the sublasses.Value-at-Risk (VaR) has beome a major tool in the modelling of riskinherent in �nanial markets. Essentially VaR is de�ned as the potential lossgiven a level of probability � 2 (0; 1)P [Xt < �VaR�℄ = �: (2)The quantity de�ned here has to be transformed in the proper way if onewants to express VaR in urreny units. The plot of VaR as a funtion of �ould also be used to visualize the tail behaviour of distributions. Note, thatthe onept of VaR applied only for a single � is not satisfatory: VaR doesnot identify extreme risks appearing with a probability smaller than �. Figure1 (bottom) shows that the tails of the generalized hyperboli distributions areheavier than the tails of the normal distribution and therefore VaR omputed
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Fig. 1. DAX from Deember 15, 1993 to November 26, 1997, daily pries at 12:00h,IBIS data (Karlsruher Kapitalmarktdatenbank).parametrially for the GH distribution and its sublasses is loser to theempirially observed Value-at-Risk.In the global foreign exhange (FX) market it is partiularly importantto look at prie movements on an intraday basis. Many traders lose theirpositions over night and try to make a pro�t from intraday trading only.Therefore we examine 6 hours returns of USD/DEM exhange rates fromthe HFDF96 dataset provided by Olsen & Assoiates. See also J.P. Morgan



Generalized Hyperboli Model 5
de

ns
ity

-0.006 -0.004 -0.002 0.0 0.002 0.004 0.006

0
50

10
0

15
0

20
0

25
0

30
0

empirical

normal

hyperbolic

NIG

GH

Densities 

Fig. 2. USD/DEM exhange rate from January 1 to Deember 31, 1996,6 hours returns, HFDF96 dataset (Olsen & Assoiates, Z�urih).and Reuters (1996, p. 65) for some remarks onerning the leptokurtosisof daily USD/DEM returns. For high-frequeny data we follow Guillaume,Daorogna, Dav�e, M�uller, Olsen, and Pitet (1997) in the de�nition of thelog-prie p(ti) = [log pask(ti) + log pbid(ti)℄=2 (3)and the orresponding returnr(ti) = p(ti)� p(ti��t): (4)We estimate the GH parameters for the inrements r(ti) after removing allzero-returns. Although this is only a provisional approah to fous on timeperiods where trading takes plae, the results as plotted in Figure 2 providea lear piture: The exellent �t of generalized hyperboli distributions andthe typial di�erene to the normal distribution observed for daily returnsis repeated for high-frequeny data (see also Barndor�-Nielsen and Prause(1999)).3 The Generalized Hyperboli ModelWe follow Eberlein and Keller (1995) in the design of the prie proess(St)t�0 and the derivation of an option priing formula. First we onstrut



6 Ernst Eberlein and Karsten Prausethe driving proess. Generalized hyperboli distributions are in�nitely divis-ible (Barndo�-Nielsen and Halgreen (1977)). Therefore they generate a L�evyproess (Xt)t�0, i.e. a proess with stationary and independent inrements,suh that the distribution of X1 and thus of Xt �Xt�1 is generalized hyper-boli. We all this proess (Xt)t�0 the generalized hyperboli L�evy motion.It depends on the �ve parameters (�; �; �; Æ; �) and is purely disontinuous.This property follows from the expliit form of the L�evy-Khinthine repre-sentation of the harateristi funtion of generalized hyperboli distributionswhih is given in the appendix. The exponent onsists only of a drift termand the integral representing the jumps, but has no Gaussian term �=2u2.The new model for the prie proess itself is de�ned bySt = S0 exp(Xt): (5)Let us emphasize that (5) is only the basi model whih replaes thelassial geometri Brownian motion introdued by Osborne and Samuelson.During the last 40 years this lassial Gaussian model, whih an also bede�ned via the di�usion equationdSt = St(�dt+ �dBt); (6)has been generalized and re�ned in many diretions. In its most sophisti-ated generalization (see e.g. Bakshi, Cao, and Chen (1997)) jumps are addedthrough a Poisson proess, the onstant volatility � is replaed by a di�usionproess driven by a di�erent Brownian motion and a stohasti interest rateis onsidered, whih is typially given in the form of a Cox-Ingersoll-Rossmodel. Taking orrelations between the various driving proesses into aountone has to onsider more than ten parameters. Calibration of suh a modelis not an easy task.Essentially every extension whih has been onsidered for the geomet-ri Brownian motion an be applied to the exponential L�evy model (5) aswell. The extension we onsider to be ruial and whih improves the modelonsiderably is stohasti volatility. In (5) this an be done by writing Xtin the form �t + �Lt where (Lt)t�0 is a standardized L�evy proess, that isone with mean zero and variane one. In this form � an be replaed byany of the standard models for stohasti volatility suh as di�usion mod-els or the Ornstein-Uhlenbek-based models onsidered by Barndor�-Nielsenand Shephard (2001) and Niolato and Prause (1999) or any member of theARCH and GARCH-family. A detailed disussion of this issue supported bya number of empirial results will be given in Eberlein, Kallsen, and Kristen(2001).The key property of our model{besides its simpliity{is that taking log-returns in (5) one obtains the orresponding inrement of the driving L�evyproess (Xt)t�0. For time intervals of length 1 its distribution is by on-strution the generating generalized hyperboli distribution. Thus the modelprodues for time intervals of length 1 exatly that distribution whih one
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Fig. 3. Siemens, Xetra data from August 28, 1998.gets from �tting data. If, for example, the underlying data set onsists of dailypries, one trading day in real time orresponds to a time interval of length 1in the model. It is not only this reprodution of observed distributions whihmakes (5) attrative, the model is also onsistent in a muh deeper sense.If one alibrates a model using daily data a natural question is whether thedistribution produed by the model for a weekly horizon is lose to the dis-tribution one obtains by �tting the orresponding weekly data. This turnsout to be the ase to a ertain degree of auray. Of ourse the same shouldhold if one goes in the other diretion, namely from daily to intraday hourlydata. Reall that the lassial Gaussian model produes normal log-returnsalong any time interval �t. Detailed results on this onsisteny property inboth diretions will appear in a forthoming joint paper with Fehmi �Ozkan.In this ontext let us larify that the generalized hyperboli model (5) doesnot have anything in ommon with the hyperboli di�usion model introduedby Bibby and S�rensen (1997) and disussed further in Rydberg (1999). Thelatter is a lassial di�usion model with ompletely di�erent statistial aswell as path properties.The prie proess (5) has purely disontinuous paths as has the drivingL�evy proess. In order to give the reader an idea of what the paths of suh aproess look like, we show in Figure 3 a sample of the intraday prie behaviourof stoks. To model the mirostruture of asset pries, purely disontinuousproesses are more appropriate than the lassial or the hyperboli di�usionproesses with ontinuous paths.



8 Ernst Eberlein and Karsten PrauseSine we are in an inomplete setting, we have to selet a spei� equiv-alent martingale measure. Arbitrage free pries are obtained as expetationsunder these measures (Delbaen and Shahermayer (1994)). Note, that itis possible to obtain every prie in the full no-arbitrage interval by hosingthe proper equivalent martingale measure (Eberlein and Jaod (1997)). Wehoose the Essher equivalent martingale measure P � given bydP � = exp��Xt � t logM(�)�dP: (7)The parameter � is the solution of r = logM(� + 1)� logM(�) where M isthe moment generating funtion given in the Appendix and r is the onstantinterest rate. The equation for � ensures that the disounted prie proess isin fat a P �-martingale. Chan (1999) remarked that in a model very simi-lar to the exponential L�evy model (5), the Essher transform is the minimalmartingale measure in the sense of F�ollmer and Shweizer (1991). A muhdeeper motivation for the hoie of this partiular martingale measure ameout of several reent papers, where via duality theory it was shown that thehoie of a minimal martingale measure orresponds to maximizing expetedutility. More preisely, taking the Essher transform orresponds to maximiz-ing utility with respet to the power utility funtion u(x) = xp=p. One amongseveral good referenes for this appliation of duality theory to �nane is Golland R�ushendorf (2000).Following the arbitrage priing theory, the prie of an option with timeto expiration T and payo� funtion H(ST ) is given by e�rTE�[H(ST )℄. Inpartiular, for a all option with strikeK whose payo� is H(ST ) = (ST�K)+we obtain the prie formulaS0 Z 1 gh�T (x; � + 1) dx� e�rTK Z 1 gh�T (x; �) dx; (8)where  = ln(K=S0) and gh�t( � ; �) is the density of the distribution of Xtunder the risk-neutral measure. The density gh�t( � ) of the t-fold onvolutionof the generalized hyperboli distribution an be omputed by applying theFourier inversion formula to the harateristi funtion. In the ase of NIGdistributions one should of ourse use the property that this sublass is losedunder onvolution.Figure 4 shows that the di�erene of the generalized hyperboli optionpries to those from the Blak-Sholes model resembles the W-shape whihwas observed for hyperboli option pries. Note that for options with shortmaturities the W-shape is more pronouned in the ase of the NIG and theGH model.4 Resaling of Generalized Hyperboli DistributionsFor the omputation of impliit volatilities in the GH model we need toresale the generalized hyperboli distribution while keeping the shape �xed.
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10 Ernst Eberlein and Karsten PrauseAn analogous problem ours when omputing GH option pries for a givenvolatility, e.g. a volatility estimated from historial stok returns. In thissetion we also give some insights into the struture of GH distributions. Theresaling of generalized hyperboli distributions is based on the followingproperty onerning sale- and loation-invariane.Lemma 1. The terms �, �Æ and �Æ are sale- and loation-invariant pa-rameters of the univariate generalized hyperboli distribution. The very sameholds for the alternative parametrizations ( �, �) and ( �, �).Proof. Aording to Bl�sild (1981) a linear transformation Y = aX + b of aGH distributed variable X is again GH-distributed with parameters �+ = �,�+ = �=jaj, �+ = �=jaj, Æ+ = Æjaj and �+ = a�+ b. Obviously �+Æ+ = �Æand �+Æ+ = �Æ.A onsequene of Lemma 1 is that the variane of the generalized hyper-boli distribution has the linear struture Var[X1℄ = Æ2C� in Æ2 where C�depends only on the shape, i.e. the sale- and loation-invariant parameters(Barndor�-Nielsen and Bl�sild (1981)). Therefore one an also use Æ as asaling parameter. To resale the distribution for a given variane b�2 oneobtains the new eÆ aseÆ = b� 24K�+1(b�)b�K�(b�) + b�2b�2 � b�2 0�K�+2(b�)K�(b�) � K�+1(b�)K�(b�) !2 1A35�1=2 (9)where (b�; b�; bÆ ) and onsequently b� are estimated from a longer time series.To �x the shape of the distribution while resaling with a new eÆ, one has tohange the other parameters in the following waye� = b�; e� = b� bÆeÆ ; e� = b� bÆeÆ and e� = b�: (10)Note, that the term in the square brakets is sale- and loation-invariant.In order to value German stok options we use shape parameters estimatedfrom stok pries from January 1, 1988 to May 24, 1994 and we resalethe estimated generalized hyperboli distributions while feeding in volatilityestimates from shorter time periods.Figure 5 shows the densities and the orresponding log-densities of hyper-boli distributions. In the �rst row we �x the shape estimated from Bayerstok pries and resale the distribution as desribed in (10). The seondrow of Figure 5 reveals that � desribes the kurtosis of the distribution. Forinreasing � the density beomes less peaked and onverges to the Gaussiandistribution. Log-densities give some insight into the tail behaviour of thedensity. The log-density of the hyperboli distribution is a hyperbola whereasthe normal log-density is a parabola. Therefore hyperboli distributions pos-sess substantially heavier tails than the normal distribution. Nevertheless, inontrast to those of stable distributions, exluding the normal distribution,all moments of GH distributions do exist.
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Generalized Hyperboli Model 13Table 2. Fitted oeÆients for all options from July 1992 to August 1994. SCmarks the results for the symmetri entered versions of the models.b0 b1 b2 R2Daimler Benz Blak-Sholes 0:2177 �0:00029 40:53 0:5416Hyperboli 0:2186 �0:0003 36:89 0:4972Hyperboli SC 0:2184 �0:000293 36:33 0:4951NIG 0:2191 �0:000305 35:11 0:4746NIG SC 0:2189 �0:000296 34:48 0:4716GH 0:2207 �0:000321 32:81 0:4378GH SC 0:2201 �0:000306 31:98 0:4343the oeÆient for (�� 1)2=T are smaller for hyperboli, NIG and GH priesompared to those from Blak-Sholes pries. Hene these new models reduethe smile e�et. The largest orretion is observed for the symmetri enteredGH model.6 Multivariate Generalized Hyperboli DistributionsIn the previous setions we have disussed univariate generalized hyperbolidistributions as the basi ingredient for a stok prie model foussing onoption priing. We shall now look into the estimation of multivariate GHdistributions and its appliation to risk measurement.De�nition 2. For x 2 IRd, the d-dimensional generalized hyperboli distri-bution (GHd) is de�ned by its Lebesgue density, whih is given byghd(x) = ad K��d=2��pÆ2 + (x� �)0��1(x� �) ����1pÆ2 + (x� �)0��1(x� �) �d=2�� exp(�0(x� �));ad = ad(�; �; �; Æ;�) = �p�2 � �0�� ÆÆ��(2�)d=2K��Æp�2 � �0�� �The parameters have the following domain of variation1: � 2 IR; �; � 2IRd; Æ > 0; �0�� < �2. The positive de�nite matrix � 2 IRd�d has a deter-minant j�j = 1.For � = (d+1)=2 we obtain the multivariate hyperboli and for � = �1=2the multivariate normal inverse Gaussian distribution. Generalized hyper-boli distributions are symmetri i� � = (0; : : : ; 0)0.1 We omitted the limiting distributions obtained at the boundary of the parameterspae; see e.g. Bl�sild and Jensen (1981).



14 Ernst Eberlein and Karsten PrauseBl�sild and Jensen (1981) introdued alternative parameters �; �; S where� = Æp�2 � �0��, � = ��1=2(�2 � �0��)�1=2 and S = Æ2�. Generalizedhyperboli distributions are losed under forming marginals, onditioning andaÆne transformations (Bl�sild (1981)). For the mean and the variane ofX � GHd one obtainsEX = �+ ÆR�(�)��1=2; (12)Var X = Æ2 ���1R�(�)� + S�(�)���1=2�0���1=2��; (13)where in order to simplify notation we introdued R�(x) = K�+1(x)=K�(x)and S�(x) = �K�+2(x)K�(x) �K2�+1(x)�ÆK2�(x).A maximum likelihood estimation of all parameters in higher dimensionsis omputationally too demanding sine the number of parameters 3+ d(d+5)=2 inreases rapidly with the number of dimensions. Therefore we proposea simpli�ed algorithm for symmetri GH distributions whih allows for aneÆient estimation also in higher dimensions. The �rst step of the estimationfollows a method of moments approah: we estimate the sample mean b� 2 IRdand the sample dispersion matrix � using anonial estimators. Sine � = 0in the symmetri ase, EX = �, and from (13) we get the following estimatefor � b� = �Æ2R�(�) �: (14)Consequently we ompute b� by norming the sample dispersion matrix suhthat j�j = 1. The seond step is to omputeyi = (xi � b�)0 b��1(xi � b�) (15)from observations xi 2 IRd; 1 � i � n. Then the log-likelihood funtion isgiven asL(x;�; �; Æ) = n�� log(�=Æ)� d2 log(2�)� logK�(Æ�)� (16)+ nXi=1 logK��(d=2)��pÆ2 + yi �+ ��� d2� nXi=1 log�pÆ2 + yiÆ��:The last step is to maximize this log-likelihood funtion with respet to(�; �; Æ). We have developed eÆient estimation algorithms for hyperboliand NIG distributions, i.e. for �xed � = 1 and � = �1=2. In the ase of arbi-trary � one may enounter numerial problems due to extremely small valuesof the Bessel funtions K�. As in the univariate ase the log-likelihood fun-tion simpli�es for � 2 1=2Z. For NIG distributions, i.e. � = �1=2, the num-ber of Bessel funtions K� whih have to be omputed for the log-likelihoodfuntion is redued by one. In the ase of hyperboli and hyperboloid distri-butions we have to ompute only one Bessel funtion instead of n+ 1. Sine



Generalized Hyperboli Model 15the evaluation of Bessel funtions is the time-onsuming part of the thirdstep, omputation is muh simpler for hyperboli distributions. For �xed � itis also possible to estimate only � in the seond step. Nevertheless, we havehosen to estimate the ovariane struture in the �rst \method of moments"step and the parameters (�; Æ) haraterizing the kurtosis and the sale inthe likelihood step.For a prie proess St 2 IRd we de�ne relative returns xt 2 IRd byx(i)t = �S(i)t � S(i)t��t�ÆS(i)t��t � logS(i)t � logS(i)t��t; 1 � i � d; (17)whih are approximated by the log-returns de�ned in (1). The motivation tohoose this de�nition is that the return of a portfolio desribed by a vetorh 2 IRd is then simply given by h0xt. See J.P. Morgan and Reuters (1996,Setion 4.1) for a disussion of temporal and ross-setion aggregation ofasset returns.

x

de
ns

ity

-0.06 -0.04 -0.02 0.0 0.02 0.04 0.06

0
10

20
30

empirical
normal
sym. hyperbolic
sym. NIG

Thyssen density and marginals (DAI-DBK-THY)

x

lo
g-

de
ns

ity

-0.10 -0.05 0.0 0.05 0.100.
00

1
0.

01
0.

1
1

10

Thyssen logdensity and marginals (DAI-DBK-THY)

empirical
normal
sym. hyperbolic
sym. NIG

Fig. 7. Marginal density for Thyssen obtained from the 3-dimensional estimate forDaimler Benz{Deutshe Bank{Thyssen.The marginal densities of the GH distributions an be derived using atheorem of Bl�sild (1981). Typially we obtain the pattern shown in Figure7 for the densities and log-densities: The marginal distributions of hyperboliand NIG distributions are loser to the empirial distribution than the normaldistribution. In the enter, marginals of hyperboli distributions are loser tothe empirial distribution but in the tails, marginals of NIG distributionsprovide a better �t.7 Market Risk MeasurementLet us start with a general result on densities.



16 Ernst Eberlein and Karsten PrauseTheorem 1. Let X be a d-dimensional random variable with symmetri gen-eralized hyperboli distribution, i.e. with � = (0; : : : ; 0)0, and let h 2 IRdwhere h 6= (0; : : : ; 0)0. The distribution of h0X is univariate generalized hyper-boli GHd(��; ��; ��; Æ�; ��), where �� = �; �� = �jh0�hj�1=2; �� = 0;Æ� = Æjh0�hj1=2 and �� = h0�.Proof. Let h1 6= 0 without loss of generality. Apply Theorem I) of Bl�sild(1981) with A = 0BB�h1 h2 � � � hd0 1 0... . . .0 0 1 1CCA and B = 0BB�0...01CCA : (18)Then projet the d-dimensional GH distribution onto the �rst oordinateusing Theorem Ia).The latter theorem may be used to alulate risk measures for a portfolioof d assets with investments given by a vetor h 2 IRd. As an example welook at a portfolio onsisting of three German stoks: Daimler Benz, DeutsheBank and Thyssen from January 1, 1988 to May 24, 1994. We hoose h =(1; 1; 1)0 and show the empirial density of the returns h0xt of the portfolioin Figure 8. The previous theorem gives the orresponding densities obtainedfrom the d-dimensional estimates of symmetri hyperboli and symmetriNIG distributions. Figure 8 shows also the diret estimate of the univariateGH distribution from h0xt.The densities and log-densities in Figure 8 indiate that symmetri GHdistributions enable one to perform more preise modelling of the returndistribution of the portfolio. As a onsequene one an get more realistirisk measures than the traditional ones based on the normal distribution.Figure 9 shows a risk measure over a 1-day horizon with respet to a level ofprobability � 2 (0; 1), namely the shortfall whih we de�ne asShortfall�;t = �E�h0xtjh0xt < q(�)�; (19)where q : [0; 1℄! IR is the orresponding quantile funtion.Note that the shortfall goes learly beyond the onept of VaR beauseit takes into aount the extreme negative returns. The log-density of theempirial distribution in Figure 8 shows the magnitude of the negative returnsof multi-asset portfolios in relation to the more frequent small returns.The Basle Committee on Banking Supervision (1995, IV.23) has proposeda baktesting proedure to test the quality of Value-at-Risk estimators. Wefollow this proedure to ompare standard VaR estimation approahes withVaR estimators based on GH distributions.2 After omputing the VaR foreah day in the time period from January 1, 1989 to May 24, 1994 we ount2 The Basle Committee on Banking Supervision (1995, IV.3) reommends a hold-ing period of 10 days. Nevertheless, we onsider a 1-day horizon only beause
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Fig. 8. Distribution of the returns of a portfolio onsisting of Daimler Benz,Deutshe Bank, and Thyssen (equal weights).the observed losses greater than the Value-at-Risk. Sine Value-at-Risk is es-sentially a quantile, the perentage of exess losses should orrespond to thelevel of probability �. One standard method to ompute VaR is to simulatethe inreased number of returns in the observation period allows more auratestatistial results. Note, that we would not upsale a 1-day VaR by multiplyingit with p10. Instead we would use the distribution orresponding to 10 days inour model.
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Fig. 9. Shortfall for Daimler Benz{Deutshe Bank{Thyssen (portfolio with equalweights).the return of the portfolio by the preeding 250 observed returns and to takethe quantile of this empirial distribution. This is historial simulation. Aseond simulation tehnique proposed to foreast VaR is Monte Carlo simu-lation. It is omputationally intensive for large portfolios. We have not appliedthis method here beause distint di�erenes to the Variane-Covariane ap-proah are only obtained for nonlinear portfolios (B�uhler, Korn, and Shmidt(1998)). However, a full valuation approah based on GH distributions, for in-stane for portfolios with derivative ontrats, is easily implemented (Prause(1999)). The mixture representation of GH distributions allows to generaterandom numbers eÆiently. We also apply the Variane-Covariane approahwhih is based on the multivariate normal distribution.The results given in Table 3 show that the standard estimators for Value-at-Risk underestimate the risk of extreme losses on the relevant level of 1%.This e�et is visible in the perentage of exess losses in the historial simula-tion. In the Variane-Covariane approah we observe too high values for thelevel of probability � = 1% and too small values for � = 5%. The perent-ages of realized losses greater than VaR are loser to the level of probabilityin both ases � = 1% and � = 5% for the symmetri hyperboli and thesymmetri NIG distribution.An approah similar to the resaling mehanism proposed above for theunivariate ase is to estimate the shape from a longer time period and to usean up-to-date ovariane matrix �. This allows one to inorporate the riskof extreme events, even if they do not our in the preeding 250 trading



Generalized Hyperboli Model 19days, whih is the minimum time period proposed by the Basle Committee(1995). Therefore we have to hoose a sublass, i.e. a parameter � 2 IR, andto �x a long-term estimate for �. We ompute the matrix S in the alternativeparametrization by S = Æ2� = �R�(�) �: (20)A further re�nement is possible by hoosing an appropriate estimate forthe ovariane matrix. We selet the multivariate IGARCH model of Nelson(1990) in whih variane �21;t and ovariane �212;t are given by�21;t = (1� �)Xt�1 �t�1(rt � �r); (21)�212;t = (1� �)Xt�1 �t�1(r1;t � �r1)(r2;t � �r2); (22)where 0 < � < 1 is a deay fator, rt; r1;t; r2;t returns of �nanial assets and�r; �r1; �r2 the orresponding mean values. To allow for a omparison, we haveused the deay fator � = 0:94 applied in J.P. Morgan and Reuters (1996)for daily returns.Table 3. Ex post evaluation of risk measures: perentage of losses greater than VaR.Eah trading day the Value-at-Risk for a holding period of one day is estimatedfrom the preeding 250 trading days (Daimler Benz, Deutshe Bank, and Thyssenfrom January 1, 1989 to May 24, 1994, Investment of 1DM in eah asset).VaR Estimation Method � = 1% � = 5%Historial Simulation 2:08 5:79Variane-Covariane 1:63 4:45RiskMetris / IGARCH 1:34 4:75Symmetri hyperboli 1:48 4:9Symmetri NIG 1:26 4:75Symmetri hyperboli, long-term � 1:26 4:45Symmetri NIG, long-term � 1:04 4:9Hyperboli IGARCH, long-term � 1:11 4:82NIG IGARCH, long-term � 1:11 5:341-dimensional Hyperboli 1:41 4:91-dimensional NIG 1:41 4:97Finally we propose to redue the risk measurement problem to one di-mension by omputing quantiles for the return h0xt of the whole portfolio.



20 Ernst Eberlein and Karsten PrauseWe estimate hyperboli and NIG distributions and derive the orrespondingquantiles.The results of the study for a linear portfolio are shown in Table 3. Takentogether, the use of a long-term shape parameter inorporates the possibilityof extreme events, even if there was no rash in the preeding 250 tradingdays, whereas the GH-IGARCH approah desribes the volatility lusteringobserved in �nanial markets. This yields more aurate results for GH-basedmodels in the ex-post evaluation of the risk measures.8 ConlusionIn the �rst part of this paper we presented generalized hyperboli distribu-tions resp. their sublasses and estimation results onerning daily as wellas high-frequeny returns. The greater exibility of this lass of distributionsallows an almost perfet �t to empirial asset return distributions. Basedon the L�evy proesses generated by these in�nitely divisible distributions weintrodued in setion 3 the generalized hyperboli model as a new way todesribe asset pries. It is a rather natural model, sine it reprodues exatlythose distributions whih one observes in the data. An option priing formulaan be derived using the Essher transform as in Eberlein and Keller (1995).Using the resaling mehanism of generalized hyperboli distributions we an-alyzed impliit volatilities and pries obtained in the GH model. We observeda orretion of the smile e�et in the GH model.Risk measures are used in �nanial institutions with two objetives. In-ternally they give the management a possibility to alloate risk apital.Setting limits in terms of risk helps business managers to alloate riskto those areas whih they feel o�er the most potential, or in whihtheir �rms' expertise is greatest. This motivates managers of multiplerisk ativities to favor risk reduing diversi�ation strategies.3On the other hand regulators as well as the management want to redue theprobability of default. Therefore they set limits to the exposure to marketrisk relative to the apital of the �rm.Is Value-at-Risk the adequate measure for this purpose? Quantile-basedmethods like VaR have the disadvantage that they do not onsider lossesouring with a probability below a given level of probability. Stress testingo�ers a partial solution to this problem foussing on extreme senarios. Toquantify risk properly one has to foreast the whole pro�t and loss distri-bution. Regulators should use other risk measures than VaR as well. In thisontext we also would like to mention the axiomati onept of oherent riskmeasures developed by Artzner, Delbaen, Eber, and Heath (1999).In the last two setions we have shown that it is possible to estimate gen-eralized hyperboli distributions in an eÆient way and to onstrut more3 J.P. Morgan and Reuters (1996, p. 33), see also Chart 3.1.



Generalized Hyperboli Model 21aurate risk measures for multivariate prie proesses. Symmetri hyper-boli and symmetri NIG distributions are haraterized by the ovarianematrix and a shape parameter. This simple struture allows a further sophis-tiation of GH risk measures by �xing a long-term shape parameter, whihdesribes the probability of rare events, and hoosing a short-term estimatefor the ovariane matrix. A study in aordane with the baktesting on-ept required by the Basle Committee on Banking Supervision reon�rms theexellent results onerning VaR estimation for multivariate prie proesses.Moreover, we have shown that generalized hyperboli distributions are alsothe proper building blok for risk measures beyond VaR.AknowledgementWe thank Deutshe B�orse AG, Frankfurt for a number of data sets onern-ing stok and option pries. We also used IBIS data from the KarlsruherKapitalmarktdatenbank and the high-frequeny data set HFDF96 providedby Olsen & Assoiates, Z�urih.AppendixMoment Generating and Charateristi FuntionLemma A.1. The moment generating funtion of the generalized hyperbolidistribution isM(u) = eu�� �2 � �2�2 � (� + u)2��=2 K�(Æp�2 � (� + u)2 )K�(Æp�2 � �2 ) ; j� + uj < �:Lemma A.2. The harateristi funtion of the generalized hyperboli dis-tribution is�(u) = ei�u� �2 � �2�2 � (� + iu)2��=2 K�(Æp�2 � (� + iu)2 )K�(Æp�2 � �2 ) :Theorem A.1. The L�evy-Khinthine representation of �(u) isln�(u) = iu�+ Z �eiux � 1� iux�g(x)dx; (23)with densityg(x) = e�xjxj  Z 10 exp(�p2y + �2 jxj)�2y�J2�(Æp2y) + Y 2� (Æp2y )� dy + 1f��0g �e��jxj!:(24)Here J� and Y� denote Bessel funtions of the �rst and seond kind.
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