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Abstract. Statistical analysis of data from the financial markets shows that gen-
eralized hyperbolic (GH) distributions allow a more realistic description of asset re-
turns than the classical normal distribution. GH distributions contain as subclasses
hyperbolic as well as normal inverse Gaussian (NIG) distributions which have re-
cently been proposed as basic ingredients to model price processes. GH distributions
generate in a canonical way Lévy processes, i.e. processes with stationary and in-
dependent increments. We introduce a model for price processes which is driven
by generalized hyperbolic Lévy motions. This GH model is a generalization of the
hyperbolic model developed by Eberlein and Keller (1995). It is incomplete. We
derive an option pricing formula for GH driven models using the Esscher transform
as martingale measure and compare the prices with classical Black-Scholes prices.
The objective of this study is to examine the consistency of our model assumptions
with the empirically observed price processes for underlyings and derivatives. Fi-
nally we present a simplified approach to the estimation of high-dimensional GH
distributions and their application to measure risk in financial markets.

1 Introduction

Generalized hyperbolic (GH) distributions were introduced by Ole E. Barn-
dorf-Nielsen (1977) in the context of the sand project as a variance-mean
mixture of normal and generalized inverse Gaussian (GIG) distributions.

These distributions seem to be tailor-made to describe the statistical be-
haviour of asset returns. Analyzing financial time series such as stock prices,
indices, FX-rates or interest rates, one gets empirical distributions with a
rather typical shape. They place substantial probability mass near the ori-
gin, have slim flanks and a number of observations far out in the tails. The
normal distribution on which the classical models in finance are based, fails
in all three aspects. How far this deviation from normality goes, depends on
the time scale of the underlying data sets.

For long term studies based on weekly or even monthly data points the
empirical distributions are close to the normal. But using scarce data sets
effectively ignores a lot of information. Daily data is the minimum one has
to consider for most purposes. Analyzing intraday data, i.e. looking at price
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movements on a microscopic scale leads to a deeper understanding of the
relevant processes.

Definition 1. For z € IR the density of the generalized hyperbolic distribu-
tion is defined as

gh(w: X, B,6,1) = a(\, @, 8,0) (% + (= — p)?) /7"
X K>ﬁ1/2(0¢m) exp(ﬁ(az - N))
(a2 _ 62))‘/2
V21 ar =12 AKL(5y/a? — 52)]
where K, denotes the modified Bessel function of the third kind with index

v. The domain of variation of the parameters is 0 < || < a, u, A € R and
0> 0.

a(A7 a)ﬂ) 5) =

Thus GH distributions are characterized by the five parameters (A, a, 8, d, ).
Alternative parameters used in the literature are

C:(S\/a27627 p:B/aa
E=1+¢07 "% x=¢p,
a = ad, B:B(S.

These alternative parameters are scale- and location-invariant, i.e. they do
not change under affine transformations Y = aX + b with a # 0 of a given
variable X. Let 5 (resp. v) denote the expectation (resp. the variance) of
the distribution given by the density above. It can be shown that the map-
ping (A, 8,6, 1) = (A&, x,v,n) is bijective. Therefore (), &, x,v,n) where
0 < |x|] < € < 1 represents a parametrization with a rather intuitive inter-
pretation. A is a class parameter, £ and x are invariant shape parameters
whereas v (resp. i) are the variance (resp. the expectation), i.e. they are the
scale and the location parameter.

The properties of the Bessel function K (Abramowitz and Stegun (1968))
allow one to find simpler expressions for the Lebesgue density if A € 1/, Z.
For A = 1 we get the hyperbolic distribution which is characterized by the
fact that the log-density is a hyperbola. This subclass has the simplest repre-
sentation of all GH laws, which is favourable from a numerical point of view.
For A = —1/2 we get the normal inverse Gaussian (NIG) distribution. This
subclass is closed under convolution for fixed parameters o and 3. See Eber-
lein and Keller (1995), Eberlein, Keller, and Prause (1998), Barndorff-Nielsen
(1998), Barndorff-Nielsen and Prause (1999) for statistical results concerning
the subclasses of hyperbolic (resp. NIG distributions).

2 Estimation of Densities

We estimate generalized hyperbolic, hyperbolic and normal inverse Gaussian
distributions from daily as well as from high-frequency data. The algorithm
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and the results concerning German stock prices and NYSE indices are de-
scribed in detail in Prause (1997, 1999). Analogous results are obtained for
the DAX, the German stock index (see Figure 1). Let (S¢)¢>0 be the price
process for a given financial instrument. We define the return of this instru-
ment for a given time interval At, e.g. one trading day, as

Xt = IOg St — IOg Stht- (1)

Thus the return during n periods is the sum of the one period returns. The
numerical estimates for the GH distribution and the subclasses are given in
Table 1.

Table 1. Generalized hyperbolic parameter estimates for the daily returns of the
DAX from December 15, 1993 to November 26, 1997. The parameter X is fixed for
the estimation of the hyperbolic and the NIG distribution.

A @ B § n Log-Likelihood
GH —2.018 46.82 —24.91 0.0163 0.00336 3138.28
Hyperbolic 1 158.87 —29.02 0.0059 0.00374 3135.15
NIG —0.5 105.96 —26.15 0.0112 0.00348 3137.33

Figure 1 (top) provides a typical plot of empirical and estimated GH
densities. The plot of the densities shows that the GH, hyperbolic and NIG
distributions are more peaked and have more mass in the tails than the
normal distribution. Consequently they are much closer to the empirical dis-
tribution of asset returns. Although the difference between GH, hyperbolic
and the NIG distribution is small, it is clear that the generalized hyperbolic
distributions are superior to those of the subclasses.

Value-at-Risk (VaR) has become a major tool in the modelling of risk
inherent in financial markets. Essentially VaR is defined as the potential loss
given a level of probability a € (0,1)

P[X; < —VaR,] = o 2)

The quantity defined here has to be transformed in the proper way if one
wants to express VaR in currency units. The plot of VaR as a function of «
could also be used to visualize the tail behaviour of distributions. Note, that
the concept of VaR applied only for a single « is not satisfactory: VaR does
not identify extreme risks appearing with a probability smaller than «a. Figure
1 (bottom) shows that the tails of the generalized hyperbolic distributions are
heavier than the tails of the normal distribution and therefore VaR computed
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Fig. 1. DAX from December 15, 1993 to November 26, 1997, daily prices at 12:00h,
IBIS data (Karlsruher Kapitalmarktdatenbank).

parametrically for the GH distribution and its subclasses is closer to the
empirically observed Value-at-Risk.

In the global foreign exchange (FX) market it is particularly important
to look at price movements on an intraday basis. Many traders close their
positions over night and try to make a profit from intraday trading only.
Therefore we examine 6 hours returns of USD/DEM exchange rates from
the HFDF96 dataset provided by Olsen & Associates. See also J.P. Morgan
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Fig.2. USD/DEM exchange rate from January 1 to December 31, 1996,
6 hours returns, HFDF96 dataset (Olsen & Associates, Ziirich).

and Reuters (1996, p. 65) for some remarks concerning the leptokurtosis
of daily USD/DEM returns. For high-frequency data we follow Guillaume,
Dacorogna, Davé, Miiller, Olsen, and Pictet (1997) in the definition of the
log-price

p(ti) = [log pask(ti) + 1og pyia(ti)]/2 (3)

and the corresponding return

r

—~

We estimate the GH parameters for the increments r(¢;) after removing all
zero-returns. Although this is only a provisional approach to focus on time
periods where trading takes place, the results as plotted in Figure 2 provide
a clear picture: The excellent fit of generalized hyperbolic distributions and
the typical difference to the normal distribution observed for daily returns

is repeated for high-frequency data (see also Barndorff-Nielsen and Prause
(1999)).

3 The Generalized Hyperbolic Model

We follow Eberlein and Keller (1995) in the design of the price process
(St)t>0 and the derivation of an option pricing formula. First we construct
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the driving process. Generalized hyperbolic distributions are infinitely divis-
ible (Barndoff-Nielsen and Halgreen (1977)). Therefore they generate a Lévy
process (Xy):>0, i.e. a process with stationary and independent increments,
such that the distribution of X and thus of X; — X;_; is generalized hyper-
bolic. We call this process (X;):;>o the generalized hyperbolic Lévy motion.
It depends on the five parameters (A, a, 8,4, u) and is purely discontinuous.
This property follows from the explicit form of the Lévy-Khintchine repre-
sentation of the characteristic function of generalized hyperbolic distributions
which is given in the appendix. The exponent consists only of a drift term
and the integral representing the jumps, but has no Gaussian term — ¢/, u?.
The new model for the price process itself is defined by

Sy = So exp(Xt). (5)

Let us emphasize that (5) is only the basic model which replaces the
classical geometric Brownian motion introduced by Osborne and Samuelson.
During the last 40 years this classical Gaussian model, which can also be
defined via the diffusion equation

dSt = St (udt + UdBt), (6)

has been generalized and refined in many directions. In its most sophisti-
cated generalization (see e.g. Bakshi, Cao, and Chen (1997)) jumps are added
through a Poisson process, the constant volatility o is replaced by a diffusion
process driven by a different Brownian motion and a stochastic interest rate
is considered, which is typically given in the form of a Cox-Ingersoll-Ross
model. Taking correlations between the various driving processes into acount
one has to consider more than ten parameters. Calibration of such a model
is not, an easy task.

Essentially every extension which has been considered for the geomet-
ric Brownian motion can be applied to the exponential Lévy model (5) as
well. The extension we consider to be crucial and which improves the model
considerably is stochastic volatility. In (5) this can be done by writing X}
in the form ut + oL; where (L;)s>0 is a standardized Lévy process, that is
one with mean zero and variance one. In this form ¢ can be replaced by
any of the standard models for stochastic volatility such as diffusion mod-
els or the Ornstein-Uhlenbeck-based models considered by Barndorff-Nielsen
and Shephard (2001) and Nicolato and Prause (1999) or any member of the
ARCH and GARCH-family. A detailed discussion of this issue supported by
a number of empirical results will be given in Eberlein, Kallsen, and Kristen
(2001).

The key property of our model-besides its simplicity—is that taking log-
returns in (5) one obtains the corresponding increment of the driving Lévy
process (X¢)i>o0. For time intervals of length 1 its distribution is by con-
struction the generating generalized hyperbolic distribution. Thus the model
produces for time intervals of length 1 exactly that distribution which one
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Fig. 3. Siemens, Xetra data from August 28, 1998.

gets from fitting data. If, for example, the underlying data set consists of daily
prices, one trading day in real time corresponds to a time interval of length 1
in the model. Tt is not only this reproduction of observed distributions which
makes (5) attractive, the model is also consistent in a much deeper sense.
If one calibrates a model using daily data a natural question is whether the
distribution produced by the model for a weekly horizon is close to the dis-
tribution one obtains by fitting the corresponding weekly data. This turns
out to be the case to a certain degree of accuracy. Of course the same should
hold if one goes in the other direction, namely from daily to intraday hourly
data. Recall that the classical Gaussian model produces normal log-returns
along any time interval At. Detailed results on this consistency property in
both directions will appear in a forthcoming joint paper with Fehmi Ozkan.

In this context let us clarify that the generalized hyperbolic model (5) does
not have anything in common with the hyperbolic diffusion model introduced
by Bibby and Sgrensen (1997) and discussed further in Rydberg (1999). The
latter is a classical diffusion model with completely different statistical as
well as path properties.

The price process (5) has purely discontinuous paths as has the driving
Lévy process. In order to give the reader an idea of what the paths of such a
process look like, we show in Figure 3 a sample of the intraday price behaviour
of stocks. To model the microstructure of asset prices, purely discontinuous
processes are more appropriate than the classical or the hyperbolic diffusion
processes with continuous paths.
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Since we are in an incomplete setting, we have to select a specific equiv-
alent martingale measure. Arbitrage free prices are obtained as expectations
under these measures (Delbaen and Schachermayer (1994)). Note, that it
is possible to obtain every price in the full no-arbitrage interval by chosing
the proper equivalent martingale measure (Eberlein and Jacod (1997)). We
choose the Esscher equivalent martingale measure P? given by

dP? = exp(0X; — tlog M (#))dP. (7)

The parameter 6 is the solution of r = log M (6 + 1) — log M (6) where M is
the moment generating function given in the Appendix and r is the constant
interest rate. The equation for # ensures that the discounted price process is
in fact a P?-martingale. Chan (1999) remarked that in a model very simi-
lar to the exponential Lévy model (5), the Esscher transform is the minimal
martingale measure in the sense of Follmer and Schweizer (1991). A much
deeper motivation for the choice of this particular martingale measure came
out of several recent papers, where via duality theory it was shown that the
choice of a minimal martingale measure corresponds to maximizing expected
utility. More precisely, taking the Esscher transform corresponds to maximiz-
ing utility with respect to the power utility function u(z) = ”/p. One among
several good references for this application of duality theory to finance is Goll
and Riischendorf (2000).

Following the arbitrage pricing theory, the price of an option with time
to expiration T and payoff function H(S7) is given by e "TE?[H(S7)]. In
particular, for a call option with strike K whose payoffis H(St) = (St —K)*
we obtain the price formula

So / gh*"(z;0 4+ 1) dz — e "TK / gh*" (2;0) dz, (8)
Jy Jy

where v = In(K/Sy) and gh*'(-;8) is the density of the distribution of X
under the risk-neutral measure. The density gh*'(-) of the t-fold convolution
of the generalized hyperbolic distribution can be computed by applying the
Fourier inversion formula to the characteristic function. In the case of NIG
distributions one should of course use the property that this subclass is closed
under convolution.

Figure 4 shows that the difference of the generalized hyperbolic option
prices to those from the Black-Scholes model resembles the W-shape which
was observed for hyperbolic option prices. Note that for options with short

maturities the W-shape is more pronounced in the case of the NIG and the
GH model.

4 Rescaling of Generalized Hyperbolic Distributions

For the computation of implicit volatilities in the GH model we need to
rescale the generalized hyperbolic distribution while keeping the shape fixed.
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An analogous problem occurs when computing GH option prices for a given
volatility, e.g. a volatility estimated from historical stock returns. In this
section we also give some insights into the structure of GH distributions. The
rescaling of generalized hyperbolic distributions is based on the following
property concerning scale- and location-invariance.

Lemma 1. The terms A\, ad and B0 are scale- and location-invariant pa-
rameters of the univariate generalized hyperbolic distribution. The very same
holds for the alternative parametrizations ((, p) and (&, x).

Proof. According to Blaesild (1981) a linear transformation ¥ = aX + b of a
GH distributed variable X is again GH-distributed with parameters A* = X\,
at =allal, BT = B/lal, dt = dla| and p* = ap + b. Obviously a*dt = ad
and BTt = B4.

A consequence of Lemma 1 is that the variance of the generalized hyper-
bolic distribution has the linear structure Var[X;] = §2°C; in 6% where C;
depends only on the shape, i.e. the scale- and location-invariant parameters
(Barndorff-Nielsen and Blasild (1981)). Therefore one can also use ¢ as a
scaling parameter. To rescale the distribution for a given variance 6 one

obtains the new § as

~ Ky11(C) 7 Kxi2(0) (KHI(O)Q

0=0 | =—>3+ — — — —
CKA(Q)  a*=p2 \ Ki() Kx(¢)

—1/2

(9)

where (a, B, g) and consequently Eare estimated from a longer time series.
To fix the shape of the distribution while rescaling with a new g, one has to
change the other parameters in the following way

A=\, a:a—fs, E:B—fandﬁ:ﬁ. (10)

0 0

Note, that the term in the square brackets is scale- and location-invariant.
In order to value German stock options we use shape parameters estimated
from stock prices from January 1, 1988 to May 24, 1994 and we rescale
the estimated generalized hyperbolic distributions while feeding in volatility
estimates from shorter time periods.

Figure 5 shows the densities and the corresponding log-densities of hyper-
bolic distributions. In the first row we fix the shape estimated from Bayer
stock prices and rescale the distribution as described in (10). The second
row of Figure 5 reveals that ( describes the kurtosis of the distribution. For
increasing ( the density becomes less peaked and converges to the Gaussian
distribution. Log-densities give some insight into the tail behaviour of the
density. The log-density of the hyperbolic distribution is a hyperbola whereas
the normal log-density is a parabola. Therefore hyperbolic distributions pos-
sess substantially heavier tails than the normal distribution. Nevertheless, in
contrast to those of stable distributions, excluding the normal distribution,
all moments of GH distributions do exist.

~~
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5 Smile Reduction

The comparison of generalized hyperbolic prices with Black-Scholes prices
in Section 3 hints at the possibility to correct the well-known smiles which
appear in Black-Scholes implicit volatilities. Implicit volatilities are computed
from observed option prices by inverting the corresponding pricing formula
with respect to the volatility parameter. Usually all parameters necessary for
option pricing are known to traders except the volatility. In the GH model
we rely on the rescaling mechanism described in Section 4 to obtain the
volatility parameter. In this section we compute the implicit volatilities. The
study is based on intraday option and stock market data of Bayer, Daimler
Benz, Deutsche Bank, Siemens and Thyssen from July 1992 to August 1994.
The option data set contains all trades reported by the Deutsche Terminborse
(since 1998 Eurex Germany) during the period above. The preparation of the
data sets is described in detail in Eberlein, Keller, and Prause (1998, Chapter
IV). The latter article includes also a discussion of implicit volatilities in the
hyperbolic model and of the different approaches to reduce the smile.
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Implicit volatilities in the Black-Scholes model typically follow a pattern
denoted as smile, i.e. they are low for options at the money and the high-
est implicit volatilities are observed for options with short maturities in and
out of the money. Figure 6 (top left) shows the implicit volatilities of Daim-
ler Benz calls in the Black-Scholes model. To compare these with implicit
volatilities in the GH model, we computed the differences and plotted them
in Figure 6. The pattern reflects the W-shapes from Figure 4. Obviously we
observe a more pronounced correction of the smile effect in the GH model-due
to the heavier tails of the distribution.

A different approach to analyse the smile behaviour of a particular option
pricing model is to fit a linear model for the implicit volatilities of the form

Otmp,i = bo + 01 Ti + ba(pi — 1) /T + e, (11)

where e; is the random error term, p; the stockprice-strike ratio S/K and i
the number of the trade in the option data set. The cross-term (p — 1)?/T
reflects the degression of the smile effect with increasing time to maturity
T. Table 2 shows the regression coefficients for the Black-Scholes, the GH
models and the respective symmetric centered versions of each. The values of
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Table 2. Fitted coefficients for call options from July 1992 to August 1994. SC
marks the results for the symmetric centered versions of the models.

bO b1 bz R2

Daimler Benz Black-Scholes 0.2177 —0.00029 40.53 0.5416

Hyperbolic 0.2186 —0.0003 36.89 0.4972
Hyperbolic SC 0.2184 —0.000293 36.33 0.4951

NIG 0.2191 —0.000305 35.11 0.4746
NIG SC 0.2189 —0.000296 34.48 0.4716
GH 0.2207 —0.000321 32.81 0.4378
GH SC 0.2201 —0.000306 31.98 0.4343

the coefficient for (p — 1)2/T are smaller for hyperbolic, NIG and GH prices
compared to those from Black-Scholes prices. Hence these new models reduce
the smile effect. The largest correction is observed for the symmetric centered
GH model.

6 Multivariate Generalized Hyperbolic Distributions

In the previous sections we have discussed univariate generalized hyperbolic
distributions as the basic ingredient for a stock price model focussing on
option pricing. We shall now look into the estimation of multivariate GH
distributions and its application to risk measurement.

Definition 2. For 2 € IR?, the d-dimensional generalized hyperbolic distri-
bution (GH,) is defined by its Lebesgue density, which is given by

Ky _gpla/0%2 4+ (x — pu)' A= (z — p)
d A d/Q(‘ \/ d/27))\ exp(ﬂ’(m - u)):
(@ '/ + (x—p)'A Nz —p))
(Vo> =545 /5)"
(2m)A2Ky\(0\/a? — BT AB)
The parameters have the following domain of variation!': A € R, B,u €

R%, 6 > 0, B/AB < a?. The positive definite matrix A € R?*? has a deter-
minant |A| = 1.

ghy(z) =

aq = ad(A7a7676= A) =

For A = (d+1)/2 we obtain the multivariate hyperbolic and for A = —1/2
the multivariate normal inverse Gaussian distribution. Generalized hyper-
bolic distributions are symmetric iff 5 = (0,...,0)".

! We omitted the limiting distributions obtained at the boundary of the parameter
space; see e.g. Blasild and Jensen (1981).
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Bleesild and Jensen (1981) introduced alternative parameters ¢, 7, S where
¢ =6v/a2 =B AB, m = BAY?(a? — B'AB)"/? and S = §°A. Generalized
hyperbolic distributions are closed under forming marginals, conditioning and
affine transformations (Blasild (1981)). For the mean and the variance of
X ~ GH,; one obtains

EX = i+ 6R\(()mAY/?, (12)
Var X = 62 (g*le(g)A + sh(g)(mlﬂ)'(mlﬂ)), (13)

where in order to simplify notation we introduced Ry (z) = K41 (z)/Kx(z)
and S(¢) = [Knpa(0) K (2) - K3, (2)] /K3 (2).

A maximum likelihood estimation of all parameters in higher dimensions
is computationally too demanding since the number of parameters 3 + d(d +
5)/2 increases rapidly with the number of dimensions. Therefore we propose
a simplified algorithm for symmetric GH distributions which allows for an
efficient estimation also in higher dimensions. The first step of the estimation
follows a method of moments approach: we estimate the sample mean 1 € R?
and the sample dispersion matrix Y using canonical estimators. Since 7 = 0
in the symmetric case, EX = u, and from (13) we get the following estimate
for A

A-_St » (14)

Consequently we compute A by norming the sample dispersion matrix such
that |A] = 1. The second step is to compute

yi = (@ — @) A (a0 — ) (15)

from observations z; € IR%, 1 < i < n. Then the log-likelihood function is
given as

L(z; M\, 0) = n(/\ log(a/d) — glog(%r) —log KA((Sa))
(16)

+Z log Kx_(a2)(V/02 + yi ) + (/\ — 5) Zlog(vé2 +yi/a).
i=1

i=1

The last step is to maximize this log-likelihood function with respect to
(A, @,d). We have developed efficient estimation algorithms for hyperbolic
and NIG distributions, i.e. for fixed A = 1 and A = —1/2. In the case of arbi-
trary A one may encounter numerical problems due to extremely small values
of the Bessel functions K. As in the univariate case the log-likelihood func-
tion simplifies for A € 1/, Z. For NIG distributions, i.e. A = —1/2, the num-
ber of Bessel functions K, which have to be computed for the log-likelihood
function is reduced by one. In the case of hyperbolic and hyperboloid distri-
butions we have to compute only one Bessel function instead of n + 1. Since
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the evaluation of Bessel functions is the time-consuming part of the third
step, computation is much simpler for hyperbolic distributions. For fixed A it
is also possible to estimate only ( in the second step. Nevertheless, we have
chosen to estimate the covariance structure in the first “method of moments”
step and the parameters (a,d) characterizing the kurtosis and the scale in
the likelihood step.

For a price process S; € R? we define relative returns z; € R? by

mi’) = [St(i) — Sgi)At]/St(i)At ~ log St(i) —log Sf,@m: 1<4<d, (17)

which are approximated by the log-returns defined in (1). The motivation to
choose this definition is that the return of a portfolio described by a vector
h € RY is then simply given by h'xz;. See J.P. Morgan and Reuters (1996,
Section 4.1) for a discussion of temporal and cross-section aggregation of
asset returns.

Thyssen density and marginals (DAI-DBK-THY) Thyssen logdensity and marginals (DAI-DBK-THY)

— empirical A — empirical
normal /! normal

-~ sym. hyperbolic S --- sym. hyperbolic ./

—- sym. NIG t —— sym.NIG

30

density
log-density

0.1

0.01

0.001

-0.10 -0.05 0.0 0.05 0.10

-0.06 -0.04 -0.02 0.0 0.02 0.04 0.06

x x

Fig. 7. Marginal density for Thyssen obtained from the 3-dimensional estimate for
Daimler Benz Deutsche Bank Thyssen.

The marginal densities of the GH distributions can be derived using a
theorem of Blaesild (1981). Typically we obtain the pattern shown in Figure
7 for the densities and log-densities: The marginal distributions of hyperbolic
and NIG distributions are closer to the empirical distribution than the normal
distribution. In the center, marginals of hyperbolic distributions are closer to
the empirical distribution but in the tails, marginals of NIG distributions
provide a better fit.

7 Market Risk Measurement

Let us start with a general result on densities.
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Theorem 1. Let X be a d-dimensional random variable with symmetric gen-
eralized hyperbolic distribution, i.e. with f = (0,...,0)', and let h € RR?
where h # (0,...,0)". The distribution of h' X is univariate generalized hyper-
bolic GHy4(N*, o, 3%,6%, %), where \* = X\, a* = a|h/Ah|~'/%, p* =0,
8% = 6|W An|'? and p* = W' p.

Proof. Let hy # 0 without loss of generality. Apply Theorem Ic) of Blaesild
(1981) with

hy hy -+ hg 0
01 0 .

A= . . and B=]:[. (18)
00 1 0

Then project the d-dimensional GH distribution onto the first coordinate
using Theorem Ia).

The latter theorem may be used to calculate risk measures for a portfolio
of d assets with investments given by a vector h € IR%. As an example we
look at a portfolio consisting of three German stocks: Daimler Benz, Deutsche
Bank and Thyssen from January 1, 1988 to May 24, 1994. We choose h =
(1,1,1)" and show the empirical density of the returns h'z; of the portfolio
in Figure 8. The previous theorem gives the corresponding densities obtained
from the d-dimensional estimates of symmetric hyperbolic and symmetric
NIG distributions. Figure 8 shows also the direct estimate of the univariate
GH distribution from h'z;.

The densities and log-densities in Figure 8 indicate that symmetric GH
distributions enable one to perform more precise modelling of the return
distribution of the portfolio. As a consequence one can get more realistic
risk measures than the traditional ones based on the normal distribution.
Figure 9 shows a risk measure over a 1-day horizon with respect to a level of
probability a € (0, 1), namely the shortfall which we define as

Shortfall, ; = —E[h'$t|h'$t < q(a)] (19)

where ¢ : [0,1] — R is the corresponding quantile function.

Note that the shortfall goes clearly beyond the concept of VaR because
it takes into account the extreme negative returns. The log-density of the
empirical distribution in Figure 8 shows the magnitude of the negative returns
of multi-asset portfolios in relation to the more frequent small returns.

The Basle Committee on Banking Supervision (1995, IV.23) has proposed
a backtesting procedure to test the quality of Value-at-Risk estimators. We
follow this procedure to compare standard VaR estimation approaches with
VaR estimators based on GH distributions.? After computing the VaR for
each day in the time period from January 1, 1989 to May 24, 1994 we count

2 The Basle Committee on Banking Supervision (1995, IV.3) recommends a hold-
ing period of 10 days. Nevertheless, we consider a 1-day horizon only because
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Fig. 8. Distribution of the returns of a portfolio consisting of Daimler Benz,
Deutsche Bank, and Thyssen (equal weights).

the observed losses greater than the Value-at-Risk. Since Value-at-Risk is es-
sentially a quantile, the percentage of excess losses should correspond to the
level of probability a. One standard method to compute VaR is to simulate

the increased number of returns in the observation period allows more accurate
statistical results. Note, that we would not upscale a 1-day VaR by multiplying
it with \/10. Tnstead we would use the distribution corresponding to 10 days in
our model.



18 Ernst Eberlein and Karsten Prause

8
S —— empirical
== normal
---- sym. hyperbolic
n
2 sym. NIG
1-dim GH

Shortfall
0.10

0.05

0.0

0.0 0.05 0.15 0.20

0.10
level of probability
Fig. 9. Shortfall for Daimler Benz—Deutsche Bank—Thyssen (portfolio with equal
weights).

the return of the portfolio by the preceding 250 observed returns and to take
the quantile of this empirical distribution. This is historical simulation. A
second simulation technique proposed to forecast VaR is Monte Carlo simu-
lation. It is computationally intensive for large portfolios. We have not applied
this method here because distinct differences to the Variance-Covariance ap-
proach are only obtained for nonlinear portfolios (Biihler, Korn, and Schmidt
(1998)). However, a full valuation approach based on GH distributions, for in-
stance for portfolios with derivative contracts, is easily implemented (Prause
(1999)). The mixture representation of GH distributions allows to generate
random numbers efficiently. We also apply the Variance-Covariance approach
which is based on the multivariate normal distribution.

The results given in Table 3 show that the standard estimators for Value-
at-Risk underestimate the risk of extreme losses on the relevant level of 1%.
This effect is visible in the percentage of excess losses in the historical simula-
tion. In the Variance-Covariance approach we observe too high values for the
level of probability a = 1% and too small values for a = 5%. The percent-
ages of realized losses greater than VaR are closer to the level of probability
in both cases o = 1% and a = 5% for the symmetric hyperbolic and the
symmetric NIG distribution.

An approach similar to the rescaling mechanism proposed above for the
univariate case is to estimate the shape from a longer time period and to use
an up-to-date covariance matrix Y. This allows one to incorporate the risk
of extreme events, even if they do not occur in the preceding 250 trading
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days, which is the minimum time period proposed by the Basle Committee
(1995). Therefore we have to choose a subclass, i.e. a parameter A € IR, and
to fix a long-term estimate for (. We compute the matrix S in the alternative
parametrization by

¢
Rx(Q) >

A further refinement is possible by choosing an appropriate estimate for

the covariance matrix. We select the multivariate IGARCH model of Nelson

(1990) in which variance o7, and covariance o, , are given by
: :

S=0"A=

(20)

oty ==Y Ny —7), (21)

t>1

Oty = (1—/\)2/\t71(7”1,t—fl)(r2,t—f2)7 (22)
i>1

where 0 < A < 1 is a decay factor, r¢,r1 ¢, 72+ returns of financial assets and
7,71, T2 the corresponding mean values. To allow for a comparison, we have
used the decay factor A\ = 0.94 applied in J.P. Morgan and Reuters (1996)
for daily returns.

Table 3. Ex post evaluation of risk measures: percentage of losses greater than VaR.
Each trading day the Value-at-Risk for a holding period of one day is estimated
from the preceding 250 trading days (Daimler Benz, Deutsche Bank, and Thyssen
from January 1, 1989 to May 24, 1994, Investment of 1DM in each asset).

VaR Estimation Method a=1% a =5%
Historical Simulation 2.08 5.79
Variance-Covariance 1.63 4.45
RiskMetrics / IGARCH 1.34 475
Symmetric hyperbolic 1.48 4.9
Symmetric NIG 1.26 4.75
Symmetric hyperbolic, long-term ¢ 1.26 4.45
Symmetric NIG, long-term ¢ 1.04 4.9
Hyperbolic IGARCH, long-term ¢ 1.11 4.82
NIG IGARCH, long-term ¢ 1.11 5.34
1-dimensional Hyperbolic 1.41 4.9
1-dimensional NIG 1.41 4.97

Finally we propose to reduce the risk measurement problem to one di-
mension by computing quantiles for the return h'z; of the whole portfolio.
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We estimate hyperbolic and NIG distributions and derive the corresponding
quantiles.

The results of the study for a linear portfolio are shown in Table 3. Taken
together, the use of a long-term shape parameter incorporates the possibility
of extreme events, even if there was no crash in the preceding 250 trading
days, whereas the GH-IGARCH approach describes the volatility clustering
observed in financial markets. This yields more accurate results for GH-based
models in the ex-post evaluation of the risk measures.

8 Conclusion

In the first part of this paper we presented generalized hyperbolic distribu-
tions resp. their subclasses and estimation results concerning daily as well
as high-frequency returns. The greater flexibility of this class of distributions
allows an almost perfect fit to empirical asset return distributions. Based
on the Lévy processes generated by these infinitely divisible distributions we
introduced in section 3 the generalized hyperbolic model as a new way to
describe asset prices. It is a rather natural model, since it reproduces exactly
those distributions which one observes in the data. An option pricing formula
can be derived using the Esscher transform as in Eberlein and Keller (1995).
Using the rescaling mechanism of generalized hyperbolic distributions we an-
alyzed implicit volatilities and prices obtained in the GH model. We observed
a correction of the smile effect in the GH model.

Risk measures are used in financial institutions with two objectives. In-
ternally they give the management a possibility to allocate risk capital.

Setting limits in terms of risk helps business managers to allocate risk
to those areas which they feel offer the most potential, or in which
their firms’ expertise is greatest. This motivates managers of multiple
risk activities to favor risk reducing diversification strategies.?

On the other hand regulators as well as the management want to reduce the
probability of default. Therefore they set limits to the exposure to market
risk relative to the capital of the firm.

Is Value-at-Risk the adequate measure for this purpose? Quantile-based
methods like VaR have the disadvantage that they do not consider losses
occuring with a probability below a given level of probability. Stress testing
offers a partial solution to this problem focussing on extreme scenarios. To
quantify risk properly one has to forecast the whole profit and loss distri-
bution. Regulators should use other risk measures than VaR as well. In this
context we also would like to mention the axiomatic concept of coherent risk
measures developed by Artzner, Delbaen, Eber, and Heath (1999).

In the last two sections we have shown that it is possible to estimate gen-
eralized hyperbolic distributions in an efficient way and to construct more

% J.P. Morgan and Reuters (1996, p. 33), see also Chart 3.1.
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accurate risk measures for multivariate price processes. Symmetric hyper-
bolic and symmetric NIG distributions are characterized by the covariance
matrix and a shape parameter. This simple structure allows a further sophis-
tication of GH risk measures by fixing a long-term shape parameter, which
describes the probability of rare events, and choosing a short-term estimate
for the covariance matrix. A study in accordance with the backtesting con-
cept required by the Basle Committee on Banking Supervision reconfirms the
excellent results concerning VaR estimation for multivariate price processes.
Moreover, we have shown that generalized hyperbolic distributions are also
the proper building block for risk measures beyond VaR.
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Appendix
Moment Generating and Characteristic Function

Lemma A.1. The moment generating function of the generalized hyperbolic
distribution is

oy (028 \VEAOVP (B w)?) ul < o
M(u) = <a2(ﬁ+u)2> KA((S\/W) , 1B+ul <a.

Lemma A.2. The characteristic function of the generalized hyperbolic dis-
tribution is

R ( o? )*/2 Kr(6y/0® — (B +iu)*)
o = (B + iu)? Kx(8y/a? = 57)

Theorem A.1. The Lévy-Khintchine representation of ¢(u) is

In ¢(u) = jup + / (e™" — 1 —iuz)g(r)d, (23)
with density

ebr > exp(— o? |z
o(x) (/ ool )

2] (J30v2y) + Y2 (6v/2y)) =0 )

(24)

Here Jy and Y, denote Bessel functions of the first and second kind.
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