## Advanced Econometrics PhD in Economics Exercise Sheet 4-Limited Dependent Variable Models

1. Let $t_{i}^{*}$ denote the duration of some event, such as unemployment, measured in continuous time. Consider the following model for $t_{i}^{*}$ :

$$
\begin{aligned}
t_{i}^{*} & =\exp \left(\mathbf{X}_{i}^{\prime} \boldsymbol{\beta}_{0}+u_{i}\right), u_{i} \mid X_{i} \sim N\left(0, \sigma^{2}\right), \\
t_{i} & =\min \left\{t_{i}^{*}, c\right\} \\
& =\left\{\begin{aligned}
t_{i}^{*}, & \text { if } t_{i}^{*} \leq c \\
c, & \text { if } t_{i}^{*}>c
\end{aligned}\right.
\end{aligned}
$$

where $c>0$ is a known censoring constant.
(a) Find $P\left(t_{i}=c \mid X_{i}\right)$, that is, the probability that the duration is censored. What happens as $c \rightarrow \infty$ ?
(b) What is the density of $\log \left(t_{i}\right)$ (given $\mathbf{X}_{i}$ ) when $t_{i}<c$ ? Now write down the full density of $\log \left(t_{i}\right)$ (given $\mathbf{X}_{i}$ ).
(c) Write down the log-likelihood function for observation $i$.
(d) Partition $\boldsymbol{\beta}_{0}$ into the $K_{1}$ and $K_{2}$ sub-vectors $\boldsymbol{\beta}_{0,1}$ and $\boldsymbol{\beta}_{0,2}$. Explain briefly how to test $H_{0}: \boldsymbol{\beta}_{0,2}=0$.
(e) Obtain the log-likelihood function if the censoring time is potentially different for each person, so that $t_{i}=\min \left\{t_{i}^{*}, c_{i}\right\}$, where $c_{i}$ is observed for all $i$. Assume that $u_{i}$ is independent of $\left(\mathbf{X}_{i}, c_{i}\right)$.
2. Suppose that, for a random draw $\left(Y_{i}, X_{i}\right)$ from the population, $Y_{i}$ is a doubly censored variable:

$$
\begin{aligned}
Y_{i} & =\min \left\{\max \left\{a_{1}, Y_{i}^{*}\right\}, a_{2}\right\} \\
& =\left\{\begin{array}{cc}
a_{1} & Y_{i}^{*}<a_{1} \\
Y_{i}^{*} & a_{1} \leq Y_{i}^{*} \leq a_{2} \\
a_{2} & Y_{i}^{*}>a_{2}
\end{array}\right.
\end{aligned}
$$

where $a_{1}<a_{2}$ and $Y_{i}^{*} \mid X_{i} \sim N\left(\mathbf{X}_{i}^{\prime} \boldsymbol{\beta}_{0}, \sigma^{2}\right)$.
(a) Find $P\left(Y_{i}=a_{1} \mid \mathbf{X}_{i}\right)$ and $P\left(Y_{i}=a_{2} \mid \mathbf{X}_{i}\right)$ in terms of the standard normal cumulative distribution function, $\mathbf{X}_{i}, \boldsymbol{\beta}_{0}$, and $\sigma$.
(b) For $y_{i} \in\left(a_{1}, a_{2}\right)$, find $P\left(Y_{i} \leq y_{i} \mid \mathbf{X}_{i}\right)$ and use this to find the density function of $Y_{i}$ given $\mathbf{X}_{i}$.
(c) If $z \sim N(0,1)$ it can be shown that

$$
E\left(z \mid c_{1}<z<c_{2}\right)=\frac{\phi\left(c_{1}\right)-\phi\left(c_{2}\right)}{\Phi\left(c_{1}\right)-\Phi\left(c_{2}\right)}
$$

for $c_{1}<c_{2}$. Use this fact to find $E\left(Y_{i} \mid a_{1}<Y_{i}<a_{2}, \mathbf{X}_{i}\right)$ and $E\left(Y_{i} \mid \mathbf{X}_{i}\right)$
(d) Consider the following method for estimating $\boldsymbol{\beta}_{0}$. Using only the uncensored observations, that is, observations for which $a_{1}<Y_{i}<a_{2}$, run the OLS regression of $Y_{i}$ on $\mathbf{X}_{i}$. Explain why this does not generally produce a consistent estimator of $\boldsymbol{\beta}_{0}$.
(e) Write down the log-likelihood function for observation $i$; it should consist of three parts.
(f) For data censoring, how would the analysis change if $a_{1}$ and $a_{2}$ were replaced with $a_{i 1}$ and $a_{i 2}$, respectively, where $u_{i}$ is independent of ( $\left.\mathbf{X}_{i}, a_{i 1}, a_{i 2}\right)$ ?

