Advanced Econometrics PhD in Economics Exercise Sheet 4 - Limited Dependent Variable Models

1. Let t_i^* denote the duration of some event, such as unemployment, measured in continuous time. Consider the following model for t_i^* :

$$\begin{aligned} t_i^* &= \exp\left(\mathbf{X}_i'\beta_0 + u_i\right), \ u_i | X_i \sim N(0, \sigma^2), \\ t_i &= \min\left\{t_i^*, c\right\} \\ &= \begin{cases} t_i^* &, \text{ if } t_i^* \leq c \\ c &, \text{ if } t_i^* > c \end{cases}, \end{aligned}$$

where c > 0 is a known censoring constant.

- (a) Find $P(t_i = c | X_i)$, that is, the probability that the duration is censored. What happens as $c \to \infty$?
- (b) What is the density of $\log(t_i)$ (given \mathbf{X}_i) when $t_i < c$? Now write down the full density of $\log(t_i)$ (given \mathbf{X}_i).
- (c) Write down the log-likelihood function for observation i.
- (d) Partition β_0 into the K_1 and K_2 sub-vectors $\beta_{0,1}$ and $\beta_{0,2}$. Explain briefly how to test H_0 : $\beta_{0,2} = 0$.
- (e) Obtain the log-likelihood function if the censoring time is potentially different for each person, so that $t_i = \min\{t_i^*, c_i\}$, where c_i is observed for all *i*. Assume that u_i is independent of (\mathbf{X}_i, c_i) .
- 2. Suppose that, for a random draw (Y_i, X_i) from the population, Y_i is a doubly censored variable:

$$Y_i = \min \{ \max \{a_1, Y_i^*\}, a_2 \}$$

=
$$\begin{cases} a_1 & Y_i^* < a_1 \\ Y_i^* & a_1 \le Y_i^* \le a_2 \\ a_2 & Y_i^* > a_2 \end{cases},$$

where $a_1 < a_2$ and $Y_i^* | X_i \sim N(\mathbf{X}_i' \boldsymbol{\beta}_0, \sigma^2)$.

- (a) Find $P(Y_i = a_1 | \mathbf{X}_i)$ and $P(Y_i = a_2 | \mathbf{X}_i)$ in terms of the standard normal cumulative distribution function, \mathbf{X}_i , $\boldsymbol{\beta}_0$, and σ .
- (b) For $y_i \in (a_1, a_2)$, find $P(Y_i \le y_i | \mathbf{X}_i)$ and use this to find the density function of Y_i given \mathbf{X}_i .
- (c) If $z \sim N(0, 1)$ it can be shown that

$$E(z|c_1 < z < c_2) = \frac{\phi(c_1) - \phi(c_2)}{\Phi(c_1) - \Phi(c_2)}$$

for $c_1 < c_2$. Use this fact to find $E(Y_i | a_1 < Y_i < a_2, \mathbf{X}_i)$ and $E(Y_i | \mathbf{X}_i)$

- (d) Consider the following method for estimating β_0 . Using only the uncensored observations, that is, observations for which $a_1 < Y_i < a_2$, run the OLS regression of Y_i on \mathbf{X}_i . Explain why this does not generally produce a consistent estimator of β_0 .
- (e) Write down the log-likelihood function for observation i; it should consist of three parts.
- (f) For data censoring, how would the analysis change if a_1 and a_2 were replaced with a_{i1} and a_{i2} , respectively, where u_i is independent of $(\mathbf{X}_i, a_{i1}, a_{i2})$?