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4.7 Stochastic exponentials

Stochastic exponential

Let d = 1 and consider the process Z = (Z (t), t ≥ 0) solution of the SDE:

dZ (t) = Z (t−) dY (t) , (1)

where Y is a Lévy-type stochastic integral, of the type:

dY (t) =G (t) dt + F (t) dB (t) +

∫
|x|<1

H (t , x) Ñ (dt ,dx) (2)

+

∫
|x|≥1

K (t , x) N (dt ,dx) . (3)

The solution of (1) is the "stochastic exponential" or "Doléans-Dade
exponential":

Z (t) = EY (t) = exp

{
Y (t)− 1

2
[Yc ,Yc ] (t)

} ∏
0≤s≤t

(1 + ∆Y (s)) e−∆Y (s).

(4)
We require that (assumption):

inf {∆Y (t) , t ≥ 0} > −1 a.s. (5)
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4.7 Stochastic exponentials

Stochastic exponential

Proposition

If Y is a Lévy-type stochastic integral and (5) holds, then each EY (t) is a.s.
finite.

For a proof of this proposition, see Applebaum.
Note that (5) also implies that EY (t) > 0 a.s.
The stochastic exponential EY (t) is the unique solution of SDE (1) which
satisfies the initial condition Z (0) = 1 a.s.
If (5) does not hold then EY (t) may take negative values.
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4.7 Stochastic exponentials

Stochastic exponential

Alternative form of (4):
EY (t) = eSY (t), (6)

where

dSY (t) = F (t) dB (t) +

(
G (t)− 1

2
F (t)2

)
dt

+

∫
|x|≥1

log (1 + K (t , x)) N (dt ,dx) +

∫
|x|<1

log (1 + H (t , x)) Ñ (dt ,dx)

+

∫
|x|<1

(log (1 + H (t , x))− H (t , x)) ν (dx) dt (7)
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4.7 Stochastic exponentials

Stochastic exponential

Theorem

dEY (t) = EY (t) dY (t)

Exercise: Prove the previous theorem by applying the Itô formula to (7)
(see Applebaum).
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4.7 Stochastic exponentials

Stochastic exponential

Example 1: If Y (t) = σB (t), where σ > 0 and B is a BM, then

EY (t) = exp

{
σB (t)− 1

2
σ2t
}
.

Example 2: If Y = (Y (t), t ≥ 0) is a compound Poisson process:
Y (t) = X1 + · · ·+ XN(t) then

EY (t) =

N(t)∏
i=1

(1 + Xi )
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4.7 Stochastic exponentials

Stochastic exponential

Let X be a Lévy process with characteristics (b, σ, ν) and Lévy-Itô
decomposition X (t) = bt + σB (t) +

∫
|x|<1 xÑ (t ,dx) +

∫
|x|≥1 xN (t ,dx) .

When can EX (t) be written as exp (X1 (t)) for a certain Lévy process X1
and vice-versa?
By (6) and (7) we have EX (t) = eSX (t) with

SX (t) = σB (t) +

∫
|x|≥1

log (1 + x) N (t ,dx) +

∫
|x|<1

log (1 + x) Ñ (t ,dx)

+ t

[
b − 1

2
σ2 +

∫
|x|<1

(log (1 + x)− x) ν (dx)

]
. (8)
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4.7 Stochastic exponentials

Stochastic exponential

Comparing the Lévy-Itô decomposition with (8), we have

Theorem

If X is a Lévy process with each EX (t) > 0, then EX (t) = exp (X1 (t)) where X1
is a Lévy process with characteristics (b1, σ1, ν1) given by:

ν1 = ν ◦ f−1, f (x) = log (1 + x) .

b1 = b − 1
2
σ2 +

∫
R−{0}

[
log (1 + x) 1]−1,1[ (log (1 + x))− x1]−1,1[ (x)

]
ν (dx) ,

σ1 = σ.

João Guerra (CEMAPRE and ISEG, Universidade de Lisboa) Lévy Processes and Applications - part 7 7 / 25



9

4.8 Exponential martingales

Exponential martingales

Lévy-type stochastic integral:

dY (t) = G (t) dt + F (t) dB (t) +

∫
|x|<1

H (t , x) Ñ (dt ,dx)

+

∫
|x|≥1

K (t , x) N (dt ,dx) .

When is Y a martingale?
Assumptions:

(M1) E
[∫ t

0

∫
|x|≥1 |K (s, x)|2 ν (dx) ds

]
<∞ for each t > 0

(M2)
∫ t

0 E [|G (s)|] ds <∞ for each t > 0.
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4.8 Exponential martingales

Exponential martingales

Then∫ t

0

∫
|x|≥1

K (s, x) N (ds,dx) =

∫ t

0

∫
|x|≥1

K (s, x) Ñ (ds,dx) (9)

+

∫ t

0

∫
|x|≥1

K (s, x) ν (dx) ds. (10)

and the compensated integral is a martingale.

Theorem
With assumptions (M1) and (M2), Y is a martingale if and only if

G (t) +

∫
|x|≥1

K (t , x) ν (dx) = 0 (a.s.) for a.a. t ≥ 0.
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4.8 Exponential martingales

Exponential martingales

Let us consider the process eY =
(
eY (t), t ≥ 0

)
.

By Itô’s formula, we have that

eY (t) = 1 +

∫ t

0
eY (s−)F (s) dB (s) +

∫ t

0

∫
|x|<1

eY (s−)
(

eH(s,x) − 1
)

Ñ (ds,dx)

+

∫ t

0

∫
|x|≥1

eY (s−)
(

eK (s,x) − 1
)

Ñ (ds,dx)

+

∫ t

0
eY (s−)

(
G (s) +

1
2

F (s)2 +

∫
|x|<1

(
eH(s,x) − 1− H(s, x)

)
ν (dx)

+

∫
|x|≥1

(
eK (s,x) − 1

)
ν (dx)

)
ds (11)
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4.8 Exponential martingales

Exponential martingales

Theorem

eY is a martingale if and only if

G (s) +
1
2

F (s)2 +

∫
|x|<1

(
eH(s,x) − 1− H(s, x)

)
ν (dx)

+

∫
|x|≥1

(
eK (s,x) − 1

)
ν (dx) = 0 (12)

a.s. and for a.a. s ≥ 0.

Therefore, if eY is a martingale then

eY (t) = 1 +

∫ t

0
eY (s−)F (s) dB (s) +

∫ t

0

∫
|x|<1

eY (s−)
(

eH(s,x) − 1
)

Ñ (ds,dx)

+

∫ t

0

∫
|x|≥1

eY (s−)
(

eK (s,x) − 1
)

Ñ (ds,dx) .
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4.8 Exponential martingales

Exponential martingales

If eY is a martingale then E
[
eY (t)

]
= 1 for all t ≥ 0 and eY is called an

exponential martingale.

Example: if Y is an Itô process, i.e. Y (t) =
∫ t

0 G (s) ds +
∫ t

0 F (s) dB (s),
then (12) is G (t) = − 1

2 F (t)2 and

eY (t) = exp

(∫ t

0
F (s) dB (s)− 1

2

∫ t

0
F (s)2 ds

)
.
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5.2 Lévy processes in asset pricing models and incomplete markets

Contingent claims and replicating portfolios

Stock price: S = (S (t) , t ≥ 0) .

Contingent claims with maturity date T : Z is a non-negative FT
measurable r.v. representing the payoff of the option.
European call option: Z = max {S (T )− K ,0}
American call option: Z = sup

0≤τ≤T
[max {S (τ)− K ,0}]

We assume that the interest rate r is constant.
Discounted stock price process: S̃ =

(
S̃ (t) , t ≥ 0

)
with S̃ (t) = e−rtS(t).

Portfolio: (α (t) , β (t)) , α (t) is the number of shares and β (t) the number
of riskless assets (bonds).
Portfolio value: V (t) = α (t) S (t) + β (t) A (t)
A portfolio is said to be replicating if V (T ) = Z .
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5.2 Lévy processes in asset pricing models and incomplete markets

Complete markets

Self-financing portfolio: dV (t) = α (t) dS (t) + rβ (t) A (t) dt .
A market is said to be complete if every contingent claim can be
replicated by a self-financing portfolio.
An arbitrage opportunity exists if the market allows risk-free profit. An
arbitrage opportunity is a self-financing strategy or portfolio for which
V (0) = 0, V (T ) ≥ 0 and P(V (T ) > 0) > 0.

Theorem
(Fundamental Theorem of Asset Pricing 1) If the market is free of arbitrage
opportunities, then there exists a probability measure Q, which is equivalent
to P, with respect to which the discounted process S̃ is a martingale.
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5.2 Lévy processes in asset pricing models and incomplete markets

Incomplete markets

Theorem
Fundamental Theorem of Asset Pricing 2) An arbitrage-free market is
complete if and only if there exists a unique probability measure Q, which is
equivalent to P, with respect to which the discounted process S̃ is a
martingale.

Such a Q is called an equivalent martingale measure or risk-neutral
measure.
If Q exists, but is not unique, then the market is incomplete.
In a complete market, it turns out that we have

V (t) = e−r(T−t)EQ [Z |Ft ]

and this is the arbitrage-free price of the claim Z at time t .
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5.2 Lévy processes in asset pricing models and incomplete markets

Meta-Theorem and complete/incomplete markets

Let R be the number of independent random sources in a model and N
be the number of risky assets.
Meta-Theorem (see Bjork): The market is arbitrage free if and only if
N ≤ R and the market is complete if and only if N ≥ R
The standard Black-Scholes model with one risky asset is arbitrage free
and complete (N = R = 1).
In a Lévy model, in general the market is incomplete, except in some very
particular cases.
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5.2 Lévy processes in asset pricing models and incomplete markets

Stock price as a Lévy process

Return:
δS (t)
S (t)

= σδX (t) + µδt ,

where X = (X (t), t ≥ 0) is a Lévy process and σ > 0, µ are parameters
called the volatility and stock drift.
Itô calculus SDE:

dS (t) = σS (t−) dX (t) + µS (t−) dt
= S(t−)dZ (t) ,

where Z (t) = σX (t) + µt .
Then S(t) = EZ (t) is the stochastic exponential of Z .
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5.2 Lévy processes in asset pricing models and incomplete markets

Stock price as a Lévy process

When X is a standard Brownian motion B, we obtain the geometric
Brownian motion

S(t) = exp

(
σB (t) +

(
µ− 1

2
σ2
)

t
)

idea: Let X be a Lévy process. In order for stock prices to be
non-negative, (5) yields ∆X (t) > −σ−1 (a.s.) for each t > 0. Denote
c = −σ−1.

We impose
∫

(c,−1]∪[1,+∞)
x2ν (dx) <∞. This means that each X (t) has

first and second moments (reasonable for stock returns).
By the Lévy-Itô decomposition,

X (t) = mt + kB(t) +

∫ ∞
c

xÑ (t ,dx) ,

where k ≥ 0 and m = b +
∫

(c,−1]∪[1,+∞)
xν (dx) (in terms of the earlier

parameters).
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5.2 Lévy processes in asset pricing models and incomplete markets

Stock price as a Lévy process

Representing S(t) as the stochastic exponential EZ (t), we obtain from (7)
that

d (log (S (t))) = kσdB(t) +

(
mσ + µ− 1

2
k2σ2

)
dt

+

∫ ∞
c

log (1 + σx) Ñ (dt ,dx) +

∫ ∞
c

(log (1 + σx)− σx) ν (dx) dt
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5.3 Incomplete markets and equivalent martingale measures

Change of measure and Girsanov Theorem

we seek to find measures Q, which are equivalent to P, with respect to
which the discounted stock process S̃ is a martingale.
Let Y be a Lévy-type stochastic integral of the form:

dY (t) = G (t) dt + F (t) dB (t) +

∫
R−{0}

H (t , x) Ñ (dt ,dx) .

Consider that eY is an exponential martingale (therefore, G is determined
by F and H).
Define Q by dQ

dP = eY (T ). By Girsanov theorem and its generalization:

BQ (t) = B (t)−
∫ t

0
F (s) ds is a Q-BM

ÑQ(t ,A) = Ñ(t ,A)− νQ (t ,A) is a Q-martingale

νQ (t ,A) :=

∫ t

0

∫
A

(
eH(s,x) − 1

)
ν (dx) ds.
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5.3 Incomplete markets and equivalent martingale measures

Discounted price under Q

S̃ (t) = e−rtS(t) can be written in terms of these processes by:

d
(

log
(

S̃ (t)
))

= kσdBQ(t) +

(
mσ + µ− r − 1

2
k2σ2 + kσF (t)

+σ

∫
R−{0}

x
(

eH(t,x) − 1
)
ν (dx)

)
dt +

∫ ∞
c

log (1 + σx) ÑQ (dt ,dx)

+

∫ ∞
c

(log (1 + σx)− σx) νQ (dt ,dx) .

Put S̃ (t) = S̃1 (t) S̃2 (t), where

d
(

log
(

S̃1 (t)
))

= kσdBQ(t)− 1
2

k2σ2dt

+

∫ ∞
c

log (1 + σx) ÑQ (dt ,dx) +

∫ ∞
c

(log (1 + σx)− σx) νQ (dt ,dx) .
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5.3 Incomplete markets and equivalent martingale measures

Equivalent martingale measure condition

and

d
(

log
(

S̃2 (t)
))

= (mσ + µ− r + kσF (t) +

+σ

∫
R−{0}

x
(

eH(t,x) − 1
)
ν (dx)

)
dt .

Apllying Itô’s formula to S̃1 we obtain:

dS̃1 (t) = kσS̃1 (t−) dBQ(t) +

∫ ∞
c

σS̃1 (t−) xÑQ (dt ,dx) .

and S̃1 is a Q-martingale.

Therefore S̃ is a Q-martingale if and only if

mσ + µ− r + kσF (t) + σ

∫
R−{0}

x
(

eH(t,x) − 1
)
ν (dx) = 0 a.s. (13)
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5.3 Incomplete markets and equivalent martingale measures

Complete and incomplete markets

In most cases, equation (13) clearly has an infinite number of possible
solution pairs (F ,H).
In most cases, we have an infinite number of possible measures Q with
respect to which S̃ is a martingale. So the general Lévy process model
gives rise to incomplete markets, except is some particular cases.
Example - the Brownian motion case: ν = 0 and k 6= 0. Then there is a
unique solution

F (t) =
r − µ−mσ

kσ
a.s.

and the market is complete (Black-Scholes model).
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5.3 Incomplete markets and equivalent martingale measures

Complete and incomplete markets

Example - the Poisson Process case: take k = 0 and ν (x) = λδ1 (x).
Then X (t) = mt +

∫∞
c xÑ (t ,dx), where the jump part is the standard

Poisson process N(t). Writing H(t ,1) = H(t), we have from (13) that

mσ + µ− r + σλ
(

eH(t) − 1
)

= 0 a.s.

and

H(t) = log

(
r − µ+ (λ−m)σ

λσ

)
.

In this case, the market is also complete and we obtain a martingale
measure if r − µ+ (λ−m)σ > 0.
In most part of the other cases (with other Lévy processes), the market is
incomplete.
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5.3 Incomplete markets and equivalent martingale measures
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