Lévy Processes and Applications - part 7

João Guerra

CEMAPRE and ISEG, Universidade de Lisboa

• Let d = 1 and consider the process $Z = (Z(t), t \ge 0)$ solution of the SDE:

$$dZ(t) = Z(t-) dY(t), (1)$$

where *Y* is a Lévy-type stochastic integral, of the type:

$$dY(t) = G(t) dt + F(t) dB(t) + \int_{|x|<1} H(t,x) \widetilde{N}(dt,dx)$$
 (2)

$$+ \int_{|x| \ge 1} K(t,x) N(dt,dx). \tag{3}$$

 The solution of (1) is the "stochastic exponential" or "Doléans-Dade exponential":

$$Z(t) = \mathcal{E}_{Y}(t) = \exp\left\{Y(t) - \frac{1}{2}\left[Y_{c}, Y_{c}\right](t)\right\} \prod_{0 \leq s \leq t} (1 + \Delta Y(s)) e^{-\Delta Y(s)}.$$
(4)

• We require that (assumption):

$$\inf \{ \Delta Y(t), t \ge 0 \} > -1 \text{ a.s.}$$
 (5)

Proposition

If Y is a Lévy-type stochastic integral and (5) holds, then each $\mathcal{E}_{Y}(t)$ is a.s. finite.

- For a proof of this proposition, see Applebaum.
- Note that (5) also implies that $\mathcal{E}_{Y}(t) > 0$ a.s.
- The stochastic exponential $\mathcal{E}_{Y}(t)$ is the unique solution of SDE (1) which satisfies the initial condition Z(0) = 1 a.s.
- If (5) does not hold then $\mathcal{E}_{Y}(t)$ may take negative values.

Alternative form of (4):

$$\mathcal{E}_{Y}(t) = e^{S_{Y}(t)}, \tag{6}$$

where

$$dS_{Y}(t) = F(t) dB(t) + \left(G(t) - \frac{1}{2}F(t)^{2}\right) dt$$

$$+ \int_{|x| \ge 1} \log(1 + K(t, x)) N(dt, dx) + \int_{|x| < 1} \log(1 + H(t, x)) \widetilde{N}(dt, dx)$$

$$+ \int_{|x| < 1} (\log(1 + H(t, x)) - H(t, x)) \nu(dx) dt$$
(7)

Theorem

$$d\mathcal{E}_{Y}\left(t\right)=\mathcal{E}_{Y}\left(t\right)dY\left(t\right)$$

• Exercise: Prove the previous theorem by applying the Itô formula to (7) (see Applebaum).

• Example 1: If $Y(t) = \sigma B(t)$, where $\sigma > 0$ and B is a BM, then

$$\mathcal{E}_{Y}(t) = \exp\left\{\sigma B(t) - \frac{1}{2}\sigma^{2}t\right\}.$$

• Example 2: If $Y = (Y(t), t \ge 0)$ is a compound Poisson process: $Y(t) = X_1 + \cdots + X_{N(t)}$ then

$$\mathcal{E}_{Y}(t) = \prod_{i=1}^{N(t)} (1 + X_i)$$

- Let X be a Lévy process with characteristics (b, σ, ν) and Lévy-Itô decomposition $X(t) = bt + \sigma B(t) + \int_{|x| < 1} x \widetilde{N}(t, dx) + \int_{|x| > 1} x N(t, dx)$.
- When can \(\mathcal{E}_X\)(t) be written as exp\((X_1\)(t))\) for a certain Lévy process \(X_1\) and vice-versa?
- By (6) and (7) we have $\mathcal{E}_X(t) = e^{S_X(t)}$ with

$$S_{X}(t) = \sigma B(t) + \int_{|x| \ge 1} \log(1+x) N(t, dx) + \int_{|x| < 1} \log(1+x) \widetilde{N}(t, dx) + t \left[b - \frac{1}{2} \sigma^{2} + \int_{|x| < 1} (\log(1+x) - x) \nu(dx) \right].$$
 (8)

Comparing the Lévy-Itô decomposition with (8), we have

Theorem

If X is a Lévy process with each $\mathcal{E}_{X}(t) > 0$, then $\mathcal{E}_{X}(t) = \exp(X_{1}(t))$ where X_{1} is a Lévy process with characteristics $(b_{1}, \sigma_{1}, \nu_{1})$ given by:

$$\begin{split} &\nu_1 = \nu \circ f^{-1}, \quad f\left(x\right) = \log\left(1 + x\right). \\ &b_1 = b - \frac{1}{2}\sigma^2 + \int_{\mathbb{R} - \{0\}} \left[\log\left(1 + x\right) \mathbf{1}_{]-1,1[} \left(\log\left(1 + x\right)\right) - x \mathbf{1}_{]-1,1[} \left(x\right)\right] \nu \left(dx\right), \\ &\sigma_1 = \sigma. \end{split}$$

Lévy-type stochastic integral:

$$dY(t) = G(t) dt + F(t) dB(t) + \int_{|x|<1} H(t,x) \widetilde{N}(dt,dx)$$
$$+ \int_{|x|\geq 1} K(t,x) N(dt,dx).$$

- When is Y a martingale?
- Assumptions:
- (M1) $\mathbb{E}\left[\int_{0}^{t}\int_{|x|\geq1}\left|K\left(s,x\right)\right|^{2}
 u\left(dx\right)ds\right]<\infty$ for each t>0
- (M2) $\int_0^t \mathbb{E}[|G(s)|] ds < \infty$ for each t > 0.

Then

$$\int_{0}^{t} \int_{|x|\geq 1} K(s,x) N(ds,dx) = \int_{0}^{t} \int_{|x|\geq 1} K(s,x) \widetilde{N}(ds,dx)$$

$$+ \int_{0}^{t} \int_{|x|\geq 1} K(s,x) \nu(dx) ds.$$
(9)

and the compensated integral is a martingale.

Theorem

With assumptions (M1) and (M2), Y is a martingale if and only if

$$G(t) + \int_{|x|>1} K(t,x) \nu(dx) = 0$$
 (a.s.) for a.a. $t \ge 0$.

- Let us consider the process $e^Y = (e^{Y(t)}, t \ge 0)$.
- By Itô's formula, we have that

$$e^{Y(t)} = 1 + \int_{0}^{t} e^{Y(s-)} F(s) dB(s) + \int_{0}^{t} \int_{|x|<1} e^{Y(s-)} \left(e^{H(s,x)} - 1 \right) \widetilde{N}(ds, dx)$$

$$+ \int_{0}^{t} \int_{|x|\geq 1} e^{Y(s-)} \left(e^{K(s,x)} - 1 \right) \widetilde{N}(ds, dx)$$

$$+ \int_{0}^{t} e^{Y(s-)} \left(G(s) + \frac{1}{2} F(s)^{2} + \int_{|x|<1} \left(e^{H(s,x)} - 1 - H(s,x) \right) \nu(dx)$$

$$+ \int_{|x|>1} \left(e^{K(s,x)} - 1 \right) \nu(dx) ds$$
(11)

Theorem

eY is a martingale if and only if

$$G(s) + \frac{1}{2}F(s)^{2} + \int_{|x|<1} \left(e^{H(s,x)} - 1 - H(s,x)\right)\nu(dx) + \int_{|x|\geq 1} \left(e^{K(s,x)} - 1\right)\nu(dx) = 0$$
(12)

a.s. and for a.a. $s \ge 0$.

• Therefore, if e^Y is a martingale then

$$\begin{split} e^{Y(t)} &= 1 + \int_0^t e^{Y(s-)} F(s) \, dB(s) + \int_0^t \int_{|x| < 1} e^{Y(s-)} \left(e^{H(s,x)} - 1 \right) \widetilde{N}(ds, dx) \\ &+ \int_0^t \int_{|x| > 1} e^{Y(s-)} \left(e^{K(s,x)} - 1 \right) \widetilde{N}(ds, dx) \, . \end{split}$$

- If e^{Y} is a martingale then $\mathbb{E}\left[e^{Y(t)}\right] = 1$ for all $t \geq 0$ and e^{Y} is called an exponential martingale.
- Example: if Y is an Itô process, i.e. $Y(t) = \int_0^t G(s) ds + \int_0^t F(s) dB(s)$, then (12) is $G(t) = -\frac{1}{2}F(t)^2$ and

$$e^{Y(t)} = \exp\left(\int_0^t F\left(s\right) dB\left(s\right) - \frac{1}{2}\int_0^t F\left(s\right)^2 ds\right).$$

Contingent claims and replicating portfolios

- Stock price: $S = (S(t), t \ge 0)$.
- Contingent claims with maturity date T: Z is a non-negative F_T
 measurable r.v. representing the payoff of the option.
- European call option: $Z = \max \{S(T) K, 0\}$
- American call option: $Z = \sup_{0 \le \tau \le T} [\max \{S(\tau) K, 0\}]$
- We assume that the interest rate r is constant.
- Discounted stock price process: $\widetilde{S} = \left(\widetilde{S}(t), t \geq 0\right)$ with $\widetilde{S}(t) = e^{-rt}S(t)$.
- Portfolio: $(\alpha(t), \beta(t)), \alpha(t)$ is the number of shares and $\beta(t)$ the number of riskless assets (bonds).
- Portfolio value: $V(t) = \alpha(t) S(t) + \beta(t) A(t)$
- A portfolio is said to be replicating if V(T) = Z.

Complete markets

- Self-financing portfolio: $dV(t) = \alpha(t) dS(t) + r\beta(t) A(t) dt$.
- A market is said to be complete if every contingent claim can be replicated by a self-financing portfolio.
- An arbitrage opportunity exists if the market allows risk-free profit. An arbitrage opportunity is a self-financing strategy or portfolio for which V(0) = 0, $V(T) \ge 0$ and P(V(T) > 0) > 0.

Theorem

(Fundamental Theorem of Asset Pricing 1) If the market is free of arbitrage opportunities, then there exists a probability measure Q, which is equivalent to P, with respect to which the discounted process \widetilde{S} is a martingale.

Incomplete markets

Theorem

Fundamental Theorem of Asset Pricing 2) An arbitrage-free market is complete if and only if there exists a unique probability measure Q, which is equivalent to P, with respect to which the discounted process \widetilde{S} is a martingale.

- Such a Q is called an equivalent martingale measure or risk-neutral measure.
- If *Q* exists, but is not unique, then the market is incomplete.
- In a complete market, it turns out that we have

$$V(t) = e^{-r(T-t)} \mathbb{E}_{Q}[Z|\mathcal{F}_{t}]$$

and this is the arbitrage-free price of the claim Z at time t.

Meta-Theorem and complete/incomplete markets

- Let R be the number of independent random sources in a model and N be the number of risky assets.
- Meta-Theorem (see Bjork): The market is arbitrage free if and only if N < R and the market is complete if and only if N > R
- The standard Black-Scholes model with one risky asset is arbitrage free and complete (N = R = 1).
- In a Lévy model, in general the market is incomplete, except in some very particular cases.

Stock price as a Lévy process

Return:

$$\frac{\delta S(t)}{S(t)} = \sigma \delta X(t) + \mu \delta t,$$

where $X = (X(t), t \ge 0)$ is a Lévy process and $\sigma > 0$, μ are parameters called the volatility and stock drift.

Itô calculus SDE:

$$dS(t) = \sigma S(t-) dX(t) + \mu S(t-) dt$$

= $S(t-) dZ(t)$,

where $Z(t) = \sigma X(t) + \mu t$.

• Then $S(t) = \mathcal{E}_{Z(t)}$ is the stochastic exponential of Z.

Stock price as a Lévy process

 When X is a standard Brownian motion B, we obtain the geometric Brownian motion

$$S(t) = \exp\left(\sigma B(t) + \left(\mu - \frac{1}{2}\sigma^2\right)t\right)$$

- idea: Let X be a Lévy process. In order for stock prices to be non-negative, (5) yields $\Delta X(t) > -\sigma^{-1}$ (a.s.) for each t > 0. Denote $c = -\sigma^{-1}$.
- We impose $\int_{(c,-1]\cup[1,+\infty)} x^2 \nu(dx) < \infty$. This means that each X(t) has first and second moments (reasonable for stock returns).
- By the Lévy-Itô decomposition,

$$X(t) = mt + kB(t) + \int_{c}^{\infty} x\widetilde{N}(t, dx),$$

where $k \ge 0$ and $m = b + \int_{(c,-1] \cup [1,+\infty)} x \nu(dx)$ (in terms of the earlier parameters).

Stock price as a Lévy process

• Representing S(t) as the stochastic exponential $\mathcal{E}_{Z(t)}$, we obtain from (7) that

$$d(\log(S(t))) = k\sigma dB(t) + \left(m\sigma + \mu - \frac{1}{2}k^{2}\sigma^{2}\right)dt$$
$$+ \int_{c}^{\infty} \log(1 + \sigma x)\widetilde{N}(dt, dx) + \int_{c}^{\infty} (\log(1 + \sigma x) - \sigma x)\nu(dx) dt$$

Change of measure and Girsanov Theorem

- we seek to find measures Q, which are equivalent to P, with respect to which the discounted stock process \widetilde{S} is a martingale.
- Let Y be a Lévy-type stochastic integral of the form:

$$dY(t) = G(t) dt + F(t) dB(t) + \int_{\mathbb{R}-\{0\}} H(t,x) \widetilde{N}(dt,dx).$$

- Consider that e^Y is an exponential martingale (therefore, G is determined by F and H).
- Define Q by $\frac{dQ}{dP} = e^{Y(T)}$. By Girsanov theorem and its generalization:

$$B_Q(t)=B(t)-\int_0^t F(s)\,ds$$
 is a Q -BM $\widetilde{N}_Q(t,A)=\widetilde{N}(t,A)-
u_Q(t,A)$ is a Q -martingale $u_Q(t,A):=\int_0^t \int_A \left(e^{H(s,x)}-1
ight)
u\left(dx
ight)ds.$

Discounted price under Q

• $\widetilde{S}(t) = e^{-rt}S(t)$ can be written in terms of these processes by:

$$d\left(\log\left(\widetilde{S}(t)\right)\right) = k\sigma dB_{Q}(t) + \left(m\sigma + \mu - r - \frac{1}{2}k^{2}\sigma^{2} + k\sigma F(t)\right)$$

$$+\sigma \int_{\mathbb{R}-\{0\}} x\left(e^{H(t,x)} - 1\right)\nu\left(dx\right)dt + \int_{c}^{\infty} \log\left(1 + \sigma x\right)\widetilde{N}_{Q}\left(dt, dx\right)$$

$$+ \int_{c}^{\infty} \left(\log\left(1 + \sigma x\right) - \sigma x\right)\nu_{Q}\left(dt, dx\right).$$

• Put $\widetilde{S}(t) = \widetilde{S}_1(t) \, \widetilde{S}_2(t)$, where

$$d\left(\log\left(\widetilde{S}_{1}\left(t\right)\right)\right) = k\sigma dB_{Q}(t) - \frac{1}{2}k^{2}\sigma^{2}dt + \int_{C}^{\infty} \log\left(1 + \sigma x\right)\widetilde{N}_{Q}\left(dt, dx\right) + \int_{C}^{\infty} (\log\left(1 + \sigma x\right) - \sigma x)\nu_{Q}\left(dt, dx\right).$$

Equivalent martingale measure condition

and

$$d\left(\log\left(\widetilde{S}_{2}\left(t\right)\right)\right) = \left(m\sigma + \mu - r + k\sigma F\left(t\right) + \sigma \int_{\mathbb{R}-\left\{0\right\}} x\left(e^{H\left(t,x\right)} - 1\right)\nu\left(dx\right)\right)dt.$$

• Apllying Itô's formula to \widetilde{S}_1 we obtain:

$$d\widetilde{S}_{1}(t) = k\sigma\widetilde{S}_{1}(t-)dB_{Q}(t) + \int_{c}^{\infty} \sigma\widetilde{S}_{1}(t-)x\widetilde{N}_{Q}(dt,dx).$$

and \widetilde{S}_1 is a Q-martingale.

ullet Therefore \widetilde{S} is a Q-martingale if and only if

$$m\sigma + \mu - r + k\sigma F(t) + \sigma \int_{\mathbb{R}-\{0\}} x\left(e^{H(t,x)} - 1\right)\nu\left(dx\right) = 0$$
 a.s. (13)

Complete and incomplete markets

- In most cases, equation (13) clearly has an infinite number of possible solution pairs (F, H).
- In most cases, we have an infinite number of possible measures Q with respect to which S is a martingale. So the general Lévy process model gives rise to incomplete markets, except is some particular cases.
- Example the Brownian motion case: $\nu=0$ and $k\neq 0$. Then there is a unique solution

$$F(t) = \frac{r - \mu - m\sigma}{k\sigma} \text{ a.s.}$$

and the market is complete (Black-Scholes model).

Complete and incomplete markets

• Example - the Poisson Process case: take k=0 and $\nu\left(x\right)=\lambda\delta_{1}\left(x\right)$. Then $X\left(t\right)=mt+\int_{c}^{\infty}x\widetilde{N}\left(t,dx\right)$, where the jump part is the standard Poisson process N(t). Writing H(t,1)=H(t), we have from (13) that

$$m\sigma + \mu - r + \sigma\lambda\left(e^{H(t)} - 1\right) = 0$$
 a.s.

and

$$H(t) = \log \left(\frac{r - \mu + (\lambda - m) \sigma}{\lambda \sigma} \right).$$

In this case, the market is also complete and we obtain a martingale measure if $r - \mu + (\lambda - m) \sigma > 0$.

 In most part of the other cases (with other Lévy processes), the market is incomplete.

- Applebaum, D. (2005). Lectures on Lévy Processes, Stochastic Calculus and Financial Applications, Ovronnaz September 2005, Lecture 2 in http://www.applebaum.staff.shef.ac.uk/ovron2.pdf and lecture 3 in http://www.applebaum.staff.shef.ac.uk/ovron3.pdf
- Cont, R. and Tankov, P. (2003). Financial modelling with jump processes. Chapman and Hall/CRC Press (Sections 8.4. 9.1, 9.2)