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Recombining binomial trees

the previous binomial model allows for different values of volatility
when in different states (it allows different up and down factors for
different states): ut (j) and dt (j) vary with t and j .

However, the previous model has a drawback: the number of states at
time n is 2n states: if n is large, it is a big number (for computational
purposes), since computation times even for simple derivative
securities are at best proportional to the number of states.

With 20 periods, at time t = 20 we have 220 = 1048600 states.
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Recombining binomial trees

One solution to this problem is assuming that the volatility is the
same at all states (the up and down factors are the same irrespective
of wether they appear in the binomial tree).

Assume: ut(j) = u; dt(j) = d ⇒then: qt(j) = q for all t, j with
d < er < u, and 0 < q < 1.
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Recombining binomial trees

Let Nt be the number of up-steps between time 0 and time t.
Then:

St = S0u
Ntd t−Nt .

At time n we have n+ 1 possible states instead of 2n.

So, in a 20-period model, we have 21 states at time t = 20, instead
of 1048600 states.
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Recombining binomial trees

Computing times are substantially reduced if the payoff of the
derivative is not path-dependent: that is, it depends upon the number
of up-steps and down-steps but not of their order.

For non-path-dependent derivatives, we have the payoff Cn = f (Sn)
for some function f .

For example, for the European put option: f (x) = max {K − x , 0}
and f (Sn) = max {K − Sn, 0}.
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Recombining binomial trees

This form of the n period model is called a ”recombining binomial
tree”or a ”binomial lattice”.

Under this model, the q-probabilities are equal, and all steps are made
independent of one another.

The number of up-steps up to time t, Nt , has a binomial distribution
with parameters t and q.
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Recombining binomial trees

For 0 < t < n, Nt is independent of Nn −Nt (number of up-steps
(and down-steps) in non-overlapping time intervals is independent)
and Nn −Nt has a binomial distribution with parameters n− t and q.

The price at time t of the financial derivative is:

Vt = e−r (n−t)
n−t
∑
k=0

f
(
Stu

kdn−t−k
) (n− t)!
k ! (n− t − k)!

qk (1− q)n−t−k .

Unlike the non-recombining model, there will usually be more than
one route from the initial node to any particular final node.
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Recombining binomial trees
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Calibrating binomial models

It is often convenient when calibrating the binomial model to have the
mean and variance implied by the binomial model corresponding to
the mean and variance of a log-normal distribution.

For recombining binomial models an additional condition that leads to
a unique solution is:

u =
1

d
.

Recall that the solution of the lognormal (or geometric Brownian

motion) model with SDE dSt = αStdt + σStdBt is such that
(

St
S0

)
has a lognormal distribution with parameters

(
α− 1

2σ2
)
t and σ2t.
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Calibrating binomial models

If we parametrize the lognormal distribution under the risk-neutral
probability measure Q, so that:

ln

(
St
S0

)
∼ N

[(
r − 1

2
σ2

)
(t − t0) , σ2 (t − t0)

]
,

then the conditions that must be met are (where δt is the time
interval of each step in the binomial model):

EQ

[
St+δt

St

]
= exp (rδt) , (1)

varQ

[
ln

(
St+δt

St

)]
= σ2δt (2)
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Calibrating binomial models

Note also that in the binomial model:

EQ

[
St+δt

St

]
= qu + (1− q) d .

And from Eq. (1), we get

q =
erδt − d

u − d
. (3)

If we use Eq. (2) and the assumption u = 1/d , we obtain:

varQ

[
ln

(
St+δt

St

)]
= q (ln u)2 + (1− q) (− ln u)2

−
{
E

[
ln

(
St+δt

St

)]}2

= (ln u)2 −
{
E

[
ln

(
St+δt

St

)]}2
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Calibrating binomial models

The last term involves terms of higher order than δt, i.e.{
E
[

ln
(
St+δt

St

)]}2
= f

(
(δt)2

)
which tends to zero as δt → 0.

So, ignoring the terms of order higher than δt, we obtain:

(ln u)2 = σ2δt.

Solving, we obtain (σ is the volatility):

u = exp
(

σ
√

δt
)

, (4)

d = exp
(
−σ
√

δt
)

. (5)
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Calibrating binomial models

When a continuously payable dividend rate ν is paid on the underlying
asset, it is convenient to adjust the steps to be:

u = exp
(

σ
√

δt + νδt
)

,

d = exp
(
−σ
√

δt + νδt
)

.
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The state price deflator approach: 1 period

Recall the 1-period binomial model where:

V1 =

{
cu if S1 = S0u
cd if S1 = S0d

,

V0 = e−rEQ [V1] = e−r [qcu + (1− q) cd ] .

We can re-express V0 in terms of the real world probability p:

V0 = e−r
[
p
q

p
cu + (1− p)

(1− q)

(1− p)
cd

]
= EP [A1V1] ,

where A1 is the random variable:

A1 =

{
e−r qp if S1 = S0u

e−r (1−q)
(1−p) if S1 = S0d

.
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The state price deflator approach: 1 period

A1 is called a state-price deflator (or deflator, or state-price density, or
pricing kernel or stochastic discount factor).

Note that the discount factor A1 depends wheter the share price goes
up or down (it is a stochastic discount factor).

Note that:
1 if V1 = 1 then: V0 = Ep [A1 × 1] = e−r .
2 if V1 = S1 then: V0 = Ep [A1 × S1] = S0.
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The state price deflator approach: n periods

In the n-period recombining binomial model (risk-neutral aproach) we
have:

Vn = f (Sn),

Sn = S0u
idn−i if i is the number of up-steps.

Therefore, define Vn (i) = f
(
S0u

idn−i).
Then we have:

V0 = e−rnEQ [Vn]

= e−rn
n

∑
k=0

n!
k ! (n− k)!

qk (1− q)n−k f
(
S0u

kdn−k
)

.
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The state price deflator approach: n periods

We can re-express this in terms of the real world probability p by:

V0 = e−rn
n

∑
k=0

n!
k ! (n− k)!

pk (1− p)n−k
(
q

p

)k (1− q

1− p

)n−k
Vn (k)

=
n

∑
k=0

n!
k ! (n− k)!

pk (1− p)n−k An (k)Vn (k)

= EP [AnVn] ,

where An = e−rn
(
q
p

)Nn
(
1−q
1−p

)n−Nn

and Nn is the number of

up-steps up to time n.

The discount factor An is again random and we call it the state-price
deflator or stochastic discount factor.
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The state price deflator approach: n periods

Important property of An is:

An = An−1 × e−r
(
q

p

)In (1− q

1− p

)1−In

where:

In =

{
1 if Sn = Sn−1u
0 if Sn = Sn−1d

.

Moreover:

Sn = Sn−1u
Ind1−In ,

Nn =
n

∑
k=0

Ik .
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The state price deflator approach: n periods

The risk-neutral and the state-price deflator approaches give the same
price V0.

Theoretically, they are the same: only differ in the way that they
present the calculation of a derivative price.

As expected, note that:
1 if Vn = 1 then: V0 = EP [An] = e−rn.
2 if Vn = Sn then: V0 = Ep [An × Sn] = S0.

The state-price-deflator approach can be adapted to price a derivative
at any time t and:

Vt =
Ep [ATVT ]

At
,

where T is the expiry date.
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