Duration models

Framework, censored data, and sampling schemes

Concepts: survival, hazard functions

Modelling the hazard function

- Parametric models: exponential, Weibull, log-logistic,… **Duration models
Framework, censored data, and sampling schemes
Concepts: survival, hazard functions
Modelling the hazard function
• Parametric models: exponential, Weibull, log-logis
• Non-parametric estimation
Regression**
-
- Regression analysis
- **Specification**
- **Estimation**
- Heterogeneity
- Specification check

Duration models Framework

Aim: modelling the duration of a given event for each of the individuals in the sample, $t_1, t_2, ... t_n$, that is, the length of time **Duration models**
Framework
Aim: modelling the duration of a given event for each of the
individuals in the sample, $t_1, t_2, ... t_n$, that is, the length of time
spent in a given state before transition/exit to another sta **Puration models**
Framework
Aim: modelling the duration of a given event for each of the
individuals in the sample, $t_1, t_2, ..., t_n$, that is, the length of time
spent in a given state before transition/exit to another sta

- state is a classification of an individual at a point in time
- transition is movement from one state to another
-

Nature of $T_i: T_i \geq 0$

Examples:

- number of weeks unemployed
- months without health insurance
- years until business failure
- Sperific religion of <u>duration</u> is the time sperit in a given state

Nature of T_i : $T_i \ge 0$

Examples:

 number of weeks unemployed

 months without health insurance

 years until business failure

 days between p

Duration models Framework

Duration variable in other areas:

- Length of time until failure / durability of a component: engineering (Technometrics)
- Length of survival after the onset of a disease / survival time: biomedical research (Biometrika, Biometrics, …)

Some seminal contributions:

- Cox, D.R. (1962), Renewal Theory
- Lancaster, T. (1990), The Econometric Analysis of Transition Data

Duration models Censored data

**Duration models
Censored data**
Data may be censored on the left and/or the right, when the spell
starts and / or ends before or after the recording period starts and / or ends before or after the recording period **Duration models

Censored data**

Data may be censored on the left and/or

starts and / or ends before or after the r

Kiefer (1988)

Figure 1. Duration Data

Duration models Censored data: case of right censoring

- Suppose individuals are observed in the time interval [b,c]
- Right censored observations arise for individuals that are at the state at moment c. Hence, defining t_i^* as the complete durations observed, the variable of interest is Right censored observations arise for individuals the state at moment c. Hence, defining t_i^* as the codurations observed, the variable of interest is $t_i = min(t_i^*, c_i)$
Define the dummy variable $\delta = 1[t_i^* < c_i]$. This values

Define the dummy variable $\delta = 1[t_i^* < c_i]$. This variable is 1

Duration models Sampling Schemes

- Flow sampling: duration is measured for those entering in the state during the time interval [b,c] **Exampling: Schemes**

Flow sampling: duration is measured for those entering in the

state during the time interval [b,c]

• Stock /length biased sampling: duration is measured for

individuals observed at the state in c

- Stock /length biased sampling: duration is measured for individuals observed at the state in c Multimary is duration is measured for those ent

e during the time interval [b,c]

ck /length biased sampling: duration is measure

viduals observed at the state in c

e: uneployement during 2017:

vsampling: includes indi • Stock /length biased sampling: duration is measured for

• Stock /length biased sampling: duration is measured for

• Example: uneployement during 2017:

• Flow sampling: includes individuals that registered as unemploye

- - Some durations are right censored: individuals that remain
- 2017
	- All durations are right censored, some may also be left censored, and the sample is endogenously selected: durations starting and ending within the interval [b,c] are not observed, leading to overrepresentation of long durations

Duration models Survival function

Let T be a continuous random variable with **pdf** $f(t)$ that measures the **Duration models
Survival function**
Let T be a continuous random variable with **pdf** $f(t)$ that r
time spent in a given state

Cumulative distribution function (cdf)

$$
F(t) = Pr(T \le t) = \int_0^t f(t) dt
$$

is the probability that the event has occurred by duration t

Survival function

$$
S(t) = Pr(T > t) = 1 - F(t)
$$

Cumulative distribution function (cdf)
 $F(t) = Pr(T \le t) = \int_0^t f(t) dt$

is the probability that the event has occurred by duration t
 Survival function
 $S(t) = Pr(T > t) = 1 - F(t)$

is the probability of surviving past t. This functi from one to zero with $S(\infty)=0$. For a completed spell length, the average is $E(T) = \int_0^\infty S(t)$ $0 \quad \mathcal{O}(\mathfrak{c})$

Duration models Hazard function

$$
\lambda(t) = \lim_{\Delta t \to 0} \frac{Pr(t \le T < t + \Delta t | T \ge t)}{\Delta t}
$$

is the instantaneous rate that the event occurs, given that no event occurred until time t, per unit of time. Duration models usually do not focus on the mean of the duration of interest, but on its hazard rate

Because
$$
f(t)
$$
 may be written as $f(t) = lim_{\Delta t \to 0} \frac{Pr(t \leq T < t + \Delta t)}{\Delta t}$

$$
f(t) / \rho r(T \geq t) = \frac{f(t)}{S(t)}
$$

The model specification may rely on either $\lambda(t)$ or S(t) and, in fact, $\lambda(t)$ and $S(t)$ may be derived from each other

Esmeralda A. Ramalho

Duration models Hazard function

Duration models Hazard and survival functions

Writing $\lambda(t)$ as a function of $S(t)$ and vice versa

Writing
$$
\lambda(t)
$$
 as a function of $S(t)$ and vice versa
\nBecause $\nabla_t ln S(t) = \nabla_t ln(1 - F(t)) = -\frac{f(t)}{1 - F(t)} = -\frac{f(t)}{S(t)} = -\lambda(t)$
\nwe have, on the one hand,
\n $\lambda(t) = -\nabla_t ln S(t)$
\nand, on the other hand, solving for $S(t)$,
\n
$$
\int_0^t \lambda(t) dt = -\int_0^t \nabla_s ln S(t) dt
$$

we have, on the one hand,

$$
\lambda(t) = -\nabla_t \ln S(t)
$$

$$
\int_0^t \lambda(t)dt = -\int_0^t \nabla_s lnS(t) dt
$$

$$
\int_0^t \lambda(t)dt = -lnS(t)
$$

$$
exp\left[-\int_0^t \lambda(t)dt\right] = S(t)
$$

**Duration models

Hazard and survival functions**

Writing $\lambda(t)$ as a function of $S(t)$ and vic
 $S(t) = exp(-\int_0^t \lambda(t) dt) dt = \Lambda(t)$ defined as the cun

hazard rate
 $S(t) = exp(-\Lambda(t) + \Lambda(t)) dt = -lnS(t)$ Duration models Hazard and survival functions

Writing $\lambda(t)$ as a function of $S(t)$ and vice versa

$$
S(t) = exp\left(-\int_0^t \lambda(t)dt\right)
$$

Duration models
 Hazard and survival functions

Writing $\lambda(t)$ as a function of $S(t)$ and vice versa
 $S(t) = exp(-\int_0^t \lambda(t)dt)$

with $\int_0^t \lambda(t)dt = \Lambda(t)$ defined as the **cumulative/integrated**
 hazard rate
 $S(t) = exp(-\Lambda(t))$ $S(t) = exp\left(-\int_0^t \lambda(t)dt\right)$
with $\int_0^t \lambda(t)dt = \Lambda(t)$ defined as the **cumulative/integrated**
hazard rate
 $S(t) = exp(-\Lambda(t))$
 $\Lambda(t) = -lnS(t)$
 \cdot $\Lambda(t)$ follows a standardized exponential distribution with mean
 0 and variance 1
 $\cdot ln\Lambda$ $\int_0^t \lambda(t)dt = \Lambda(t)$ defined as the **cumulative/ir**
 and rate
 $S(t) = exp(-\Lambda(t))$
 $\Lambda(t) = -lnS(t)$
 $\Lambda(t)$ follows a standardized exponential distribut

0 and variance 1
 $ln\Lambda(t)$ follows an extreme value distribution with $\int_0^t \lambda(t)dt = \Lambda(t)$ defined as the **cumulative/integrated**

hazard rate
 $S(t) = exp(-\Lambda(t))$
 $\Lambda(t) = -lnS(t)$

• $\Lambda(t)$ follows a standardized exponential distribution with mean

0 and variance 1

• $ln\Lambda(t)$ follows an extreme v

$$
S(t) = exp(-\Lambda(t))
$$

$$
\Lambda(t) = -\ln S(t)
$$

-
-

Summary of definitions (CT, p 577) Duration models Definitions: summary

1. Constant

 $=\lambda$, $\lambda > 0$

$$
\therefore S(t) = -\exp \int_0^t \lambda dt = -e^{-\lambda t}
$$

• $f(t) = \lambda(t)S(t) = -\lambda e^{-\lambda t}$ Exponential model for which the mean is $E(T) = \frac{1}{2}$

- Absence of duration dependence assumed:
	- $\nabla_{t}\lambda(t) = 0$
	- the rate of leaving the state is the same for long and short durations

2. Weibull

$$
\lambda(t) = \gamma \alpha t^{\alpha - 1}, \gamma, \alpha > 0
$$

- $\cdot S(t) = e^{-\gamma t^{\alpha}}$
- \cdot $f(t) = \gamma \alpha t^{\alpha 1} e^{-\gamma t^{\alpha}}$
- Duration dependence

$$
\cdot \quad \nabla_t \lambda(t) = \alpha \gamma(\alpha - 1) t^{\alpha - 2} + \qquad \qquad +
$$

-
- $\begin{aligned} \n\Theta(\omega) &= e^{-\gamma t^\alpha} \n\end{aligned}$
 $\begin{aligned} \n\nabla_t \lambda(t) &= \alpha \gamma (\alpha 1) t^{\alpha 2} \n\end{aligned}$
 $\begin{aligned} \n\nabla_t \lambda(t) &= \alpha \gamma (\alpha 1) t^{\alpha 2} \n\end{aligned}$
 $\begin{aligned} \n\alpha = 1: \text{ reduces to exponential: } \nabla_t \lambda(t) \text{ and } \lambda(t) = \lambda \n\end{aligned}$
 $\begin{aligned} \n\alpha &> 1 \ (\alpha < 1): \text{positive (negative) dependence,} \$ • $\alpha > 1$ ($\alpha < 1$): positive (negative) dependence, this means that the hazard rate increases with duration: the probability of leaving the state increases (decreases) for individuals that stay on that state for a longer period

3. Log-Logistic

$$
\lambda(t) = \frac{\gamma \alpha t^{\alpha - 1}}{1 + \gamma t^{\alpha}}, \gamma, \alpha > 0
$$

- $S(t) = (1 + \gamma t^{\alpha})^{-1}$
- \cdot $f(t) = \frac{\gamma \alpha t^{\alpha-1}}{(1+\gamma t^{\alpha})^2}$
- **Duration dependence** \bullet
	- $\alpha > 1$: sharply increases until $t = \left(\frac{\alpha 1}{\gamma}\right)^{1 \alpha}$ and then decreases
	- $0 < \alpha \leq 1$ decreases

Summary of parametric models (CT, p. 585)

^a All the parameters are restricted to be positive, except that $-\infty < \alpha < \infty$ for the Gompertz model.

• Type PH /AFT is defined later on

**Uration models

Onparametric analysis:** $\lambda(t)$ **and S

Kaplan Meier estimator

Assume no censoring and the existence of K exit times (K=

. Put the durations in ascending order:** $t_1 \leq t_2 ... \leq t_K$ **Assume no censoring and the existence of K exit times (K=n with no ties)**
 Assume no censoring and the existence of K exit times (K=n with no ties)

• Put the durations in ascending order: $t_1 \leq t_2 ... \leq t_K$

• R_k: ri **Uration models**
 Comparametric analysis: $\lambda(t)$ and $S(t)$
 Kaplan Meier estimator

Assume no censoring and the existence of K exit times (K=n with no ties)

• Put the durations in ascending order: $t_1 \le t_2 ... \le t_K$

• **• Example 19 individuals with duration** $\mathbf{S}(t)$ **

• Kaplan Meier estimator**

• **Assume no censoring and the existence of K** exit times (K=n with no ties)

• Put the durations in ascending order: $t_1 \le t_2 \le t_K$

• R_k ; Duration models Nonparametric analysis: $\lambda(t)$ and $S(t)$

-
-
-
-

Kaplan Meier estimator
\nAssume no censoring and the existence of K exit times (K=n with no ties
\n. Put the durations in ascending order:
$$
t_1 \le t_2 ... \le t_K
$$

\n. R_k : risk set, set of individuals with duration $\ge T_k$, that is $t_i \ge T_k$
\n. n_k : # individuals with duration $\ge T_k$ (size of risk set R_k)
\n. h_k : # individuals with complete spell at time T_k (with duration $< T_k$)
\n**Estimator of the survey for function**
\n
$$
\hat{S}(T_k) = \prod_k^k \frac{n_j - h_j}{n_j} = \frac{n_j - h_j}{n_1}
$$
\n**Estimator of the hazard rate**
\n
$$
\hat{\lambda}(T_k) = \frac{h_k}{n_k}
$$

$$
\hat{\lambda}(T_k) = \frac{h_k}{n_k}
$$
sts gra

with $\hat{S}(T_k)$ = $\prod_{i=1}^k \left(1 - \hat{\lambda}(T_k)\right)$ $j=1$ $(1 - \lambda (l_k))$

Illustration: CT, p. 575 Duration models Nonparametric analysis: $\lambda(t)$ and $S(t)$

Illustration: CT, p. 583 Duration models Nonparametric analysis: $\lambda(t)$ and $S(t)$

Day	Beginning Total	Failures	Survivor Function	Standard Error
	566	10	0.9823	0.0055
$\overline{2}$	556	21	0.9452	0.0096
3	535	16	0.9170	0.0116
4	519	17	0.8869	0.0133
5	502	18	0.8551	0.0148
6	484	9	0.8392	0.0154
	475	12	0.8180	0.0162
8	463	12	0.7968	0.0169

Table 17.3. Strike Duration: Kaplan-Meier Survivor Function **Estimates**

Puration models
Proporation of covariates
Proportional hazard (PH) models (Cox, 1972)
Proportional hazard over time: **Example 18 Exercises**
 Proportional hazard (PH) models (Cox, 1972)

Proportional hazard over time:
 $\lambda_i(t|x) = \lambda_0(t)exp(x_i\beta)$ Duration models Incorporation of covariates

$$
\lambda_i(t|x) = \lambda_0(t) \exp(x_i \beta)
$$

where

- **Proportional hazard (PH) models (Cox, 1972)**
 Proportional hazard (PH) models (Cox, 1972)

Proportional hazard over time:
 $\lambda_i(t|x) = \lambda_0(t)exp(x_i\beta)$

where
 $\cdot \lambda_0(t)$ is the baseline hazard (depends on time but not on X): **orporation of covariates

oportional hazard (PH) models (Cox, 1972)**

pportional hazard over time:
 $\lambda_i(t|x) = \lambda_0(t)exp(x_i\beta)$

here
 $\lambda_0(t)$ is the baseline hazard (depends on time but not on X):

describes the risk of leav **oportional hazard (PH) models (Cox, 1972)**

pportional hazard over time:
 $\lambda_i(t|x) = \lambda_0(t)exp(x_i\beta)$

here
 $\lambda_0(t)$ is the baseline hazard (depends on time but not on X):

describes the risk of leaving the state for individu Proportional hazard over time:
 $\lambda_i(t|x) = \lambda_0(t) exp(x_i \beta)$

where
 $\cdot \lambda_0(t)$ is the baseline hazard (depends on time but not on X):

describes the risk of leaving the state for individuals with $x_i=0$,

who are considered the $\lambda_i(t|x) = \lambda_0(t)exp(x_i\beta)$

ere
 $\lambda_0(t)$ is the baseline hazard (depends on time but not on X):

describes the risk of leaving the state for individuals with x_i =0,

who are considered the reference group
 $exp(x_i\beta)$ shifts th $\lambda_i(t|x) = \lambda_0(t)exp(x_i\beta)$

here
 $\lambda_0(t)$ is the baseline hazard (depends on time but not on

describes the risk of leaving the state for individuals with

who are considered the reference group
 $exp(x_i\beta)$ shifts the baseline
- $\mathcal{A}_0(t)exp(x_i p)$

depends on time but not on X):

g the state for individuals with x_i =0,

erence group

e proportinaly according to X (shifts

alente to changing the units of

axis)

due to identification matters
	-

PH models: Weibull, …

Duration models Incorporation of covariates

Partial effects of PH models

Over $\lambda(t)$

$$
\nabla_{x_{ij}} \lambda_i(t) = \lambda_0(t) \beta_j exp(x_i \beta) = \beta_j \lambda_i(t)
$$

- because $\lambda(t)$ is positive, β_i informs on the partial effect on $\lambda(t)$ \bullet
- β_i is a semi-elasticity: informs on the proportional change of the hazard \bullet rate $\lambda(t)$ as $\Delta x_j = 1$ (means that harzard changes β_j *100%). Note that this effect does not depend on t

Over the ratio of hazard rates

$$
\frac{\lambda_0(t)exp(x_1\beta_1 + \dots + (x_j + 1)\beta_j + \dots + x_k\beta_k)}{\lambda_0(t)exp(x_1\beta_1 + \dots + x_j\beta_j + \dots + x_k\beta_k)} = exp(\beta_j)
$$

 $exp(\beta_i)$ is the factor by which the hazard rate $\lambda(t)$ changes as $\Delta x_i = 1$: the hazard rate changes $[exp(\beta_i)-1]100\%$

Duration models Incorporation of covariates

• If x_j is a dummy variable: the risk of leaving the state is $exp(\beta_i)=2$ times higher for those with x_i = relative to those with $x_i = 0$

Duration models Incorporation of covariates

Accelerated failure time (AFT) models

A model is specified for $ln(t_i)$ instead of t_i

$$
ln(t_i) = x_i \beta + u_i
$$

- Because $ln(t_i)$ is unbounded, the linear form is admissible
- Reason for the ACF designation:

 $t_i = exp(x_i \beta) exp(u_i)$

has hazard rate

$$
\lambda(t_i|x) = \lambda_0 \big(\exp(-x_i \beta) \big) \exp(x_i \beta)
$$

which displays an aceleration (deceleration) of the baseline λ_0 for $exp(-x_i \beta) > 1 \ (< 1)$

Models: log-normal $(u \sim N(0, \sigma^2))$, log-logistic (u logistic), Weibull \bullet

Accounts for the nature of t, the possibility of (right) censoring and whether the sampling is a flow or a stock

 $_i$ — $min(t_i^-, t_i^+)$ and $o =$ $\lambda_i^*, c_i)$ and $\delta = 1[t_i^* < c_i]$ i \Box

. LL function allowing right censored observations i^{i} λ_{i}^{j} λ_{i}^{r} λ_{i}^{r} λ_{i}^{r} $\delta_i Pr(t_i = c_i | x_i)$ $i - c_i |x_i|$ \qquad ${}_{i=3}^{N} \{f(t_i|x_i)^{\delta_i} Pr(t_i = c_i|x_i)^{1-\delta_i}\} = \prod_{i=3}^{N} \{f(t_i)x_i\}$ $i=1$ [$\bigcup U_i|\lambda_i\big)$ $i\in I$ $\bigcup U_i - U_i|\lambda_i\big)$ $i=1$ $\bigcup U_i|\lambda_i\big)$ $i \in I$ $\delta_{i} S(c_i | \chi_i)^{1-\delta_i}$ $i\begin{bmatrix}x_i\\j\end{bmatrix}$ $i\begin{bmatrix}y_i\\j\end{bmatrix}$ $\int_{i=1}^{N} \{f(t_i|x_i)\delta_i S(c_i|x_i)^{1-\delta_i}\}$ $i=1$ U $(i|\lambda_i)$'s $(i|\lambda_i)$ $i^{|\mathcal{X}_i|}$ $\mathcal{S}(t_i|\mathcal{X}_i)$ $\delta_{i} S(t_i|\chi_i)^{1-\delta_i}$ $i^{[\mathcal{X}_i]}$ $\qquad \qquad$ $\int_{i=1}^{N} \{f(t_i|x_i)\delta_iS(t_i|x_i)^{1-\delta_i}\}$ $i=1$ (*l* $(i|\lambda_i)$ λ $(i|\lambda_i)$

$$
LL_{flow} = \sum_{i=1}^{N} {\delta_i ln f(t_i | x_i) + (1 - \delta_i) ln S(t_i | x_i)}
$$

=
$$
\sum_{i=1}^{N} {\delta_i ln [\lambda(t_i | x_i) S(t_i | x_i)] + ln S(t_i | x_i) - \delta_i ln S(t_i | x_i)}
$$

=
$$
\sum_{i=1}^{N} {\delta_i ln \lambda(t_i | x_i) + \delta_i ln S(t_i | x_i) + ln S(t_i | x_i) - \delta_i ln S(t_i | x_i)}
$$

=
$$
\sum_{i=1}^{N} {\delta_i ln \lambda(t_i | x_i) + ln S(t_i | x_i)}
$$

LL function for stock sampling and right censored observations

Consider the time interval time interval $[b, c]$ and observation at c : stock sampling includes individuals at the state at moment c . Those individuals enter the state at a , which may occur before or after b . The fact that only individuals at the state are observed creates a similar problem to truncation: small durations are not observed • LL function for stock sampling and right censored observations

Consider the time interval time interval [*b*, *c*] and observation at *c*:

stock sampling includes individuals at the state at moment *c*. Those

indiv

yields $t^* \geq c-a$ and

$$
Pr(t_i^* \ge c_i - a_i | x_i) = 1 - F(c_i - a_i | x_i) = S(c_i - a_i | x_i)
$$

$$
L = \prod_{i=1}^{N} \{ f(t_i | x_i, t^* \ge c - a)^{\delta_i} S(t_i | x_i, t^* \ge c - a)^{1 - \delta_i} \}
$$

=
$$
\prod_{i=1}^{N} \{ \left[\frac{f(t_i | x_i)}{S(c_i - a_i | x_i)} \right]^{\delta_i} \left[\frac{S(t_i | x_i)}{S(c_i - a_i | x_i)} \right]^{1 - \delta_i} \}
$$

=
$$
\prod_{i=1}^{N} \{ f(t_i | x_i)^{\delta_i} S(t_i | x_i)^{1 - \delta_i} \frac{1}{S(c_i - a_i | x_i)} \}
$$

$$
LL_{stock} = LL_{flow} - \sum_{i=1}^{N} lnS(c_i - a_i | x_i)
$$

Summary of components of L functions of CT, p. 588

complete durations: $f(t)$, left-truncated at t_L $(t \geq t_L)$: $f(t)/S(t_L)$, left-censored at t_{C_L} : $1 - S(t_{C_L})$, right-censored at t_{C_R} : $S(t_{C_R})$, right-truncated at t_{C_R} $(t \le t_R)$: $f(t_R) / [1 - S(t_R)]$, interval-censored at t_{C_L} , t_{C_R} : $S(t_{C_L}) - S(t_{C_R})$.

Duration models Partial ML estimation

- **Duration models

Partial ML estimation**

Applies to Cox (1972) PH model: $\lambda_i(t|x) = \lambda_0(t)exp(x_i\beta)$

Avoids estimation of $\lambda_0(t)$, by using conditioning to remove the

dependence on this feature **Duration models**
Partial ML estimation
Applies to Cox (1972) PH model: $\lambda_i(t|x) = \lambda_0(t)exp(x_i\beta)$
• Avoids estimation of $\lambda_0(t)$, by using conditioning to remove the
• Consider the notation for the Kaplan Meier estimator (**ration models**
 rial ML estimation

plies to Cox (1972) PH model: $\lambda_i(t|x) = \lambda_0(t)exp(x_i\beta)$

Avoids estimation of $\lambda_0(t)$, by using conditioning to remove t

dependence on this feature

Consider the notation for the Kapla **Duration models**
Partial ML estimation
Applies to Cox (1972) PH model: $\lambda_i(t|x) = \lambda_0(t)exp(x_i\beta)$
• Avoids estimation of $\lambda_0(t)$, by using conditioning to remove the
dependence on this feature
• Consider the notation for t
-

Duration models
 Partial ML estimation

Applies to Cox (1972) PH model: $\lambda_i(t|x) = \lambda_0(t)exp(x_i\beta)$

• Avoids estimation of $\lambda_0(t)$, by using conditioning to remove the

dependence on this feature

• Consider the notation

Duration models\nPartial **ML estimation**

\nApplies to Cox (1972) PH model:
$$
\lambda_i(t|x) = \lambda_0(t) \exp(x_i \beta)
$$
.

\nAvoids estimation of $\lambda_0(t)$, by using conditioning to remove the dependence on this feature.

\nConsider the notation for the Kaplan Meier estimator (ordered spells)

\nThe probability that an individual exits the state at T_k , given that that individual is at the state at T_k is

\n
$$
P(t_i = T_k | R_k) = \frac{P(t_i = T_k | t_i \geq T_k)}{\sum_{l \in R_k} P(t_i = T_l | t_i \geq T_l)} = \frac{\lambda_0(T_k) \exp(x_k \beta)}{\sum_{l \in R_k} \lambda_0(T_l) \exp(x_l \beta)}
$$
\n
$$
= \frac{\exp(x_k \beta)}{\sum_{l \in R_k} \exp(x_l \beta)}
$$
\nwhere the intercept term is not identified given that $\lambda_0(T_k)$ is dropped.

\nAdaptation is required for tied observations

\nisomendda Atambilo

\n28

Duration models Heterogeneity

Duration models
 Heterogeneitv

Define the unobserved individual characteristics as ε_i , with $v_i = exp(\varepsilon_i)$ and incorporate v_i in the exponential function togheter

with the observed covariates x_i , $exp(x_i \beta)v_i = \mu_i v$ **and incorporate incorporation**
and incorporate v_i in the exponential function togheter
observed covariates x_i , $exp(x_i\beta)v_i = \mu_i v_i$, $v_i > 0$ **Duration models

Heterogeneity**

Define the unobserved individual characteristics as ε_i , with $exp(\varepsilon_i)$ and incorporate v_i in the exponential function togh

with the observed covariates $x_i, exp(x_i \beta)v_i = \mu_i v_i, v_i > 0$

Ge **Heterogeneitv**

Define the unobserved individual characteristics as ε_i
 $exp(\varepsilon_i)$ and incorporate v_i in the exponential functio

with the observed covariates x_i , $exp(x_i\beta)v_i = \mu_i v_i$, i

General idea: for a given fe

Duration models
 Heterogeneitv

Define the unobserved individual characteristics as ε_i , with $v_i = exp(\varepsilon_i)$ and incorporate v_i in the exponential function togheter

with the observed covariates x_i , $exp(x_i\beta)v_i = \mu_i v$ **Duration models**
 Heterogeneity
 Define the unobserved individual characteristics as ε_i **, with** $v_i = exp(\varepsilon_i)$ **and incorporate** v_i **in the exponential function togheter

with the observed covariates** x_i **, exp(x_i\beta)v_i = \mu_i** with the observed covariates x_i , $exp(x_i\beta)v_i = \mu_i v_i$, $v_i > 0$
General idea: for a given feature (survivor function, density o
hazard) $H(t_i|x_i, v_i)$, remove the dependence on heterogenei
integrating out this feature:
 $H(t_i|x_i) = \$ General idea: for a given feature (survivor function, density or
hazard) $H(t_i|x_i, v_i)$, remove the dependence on heterogeneity by
integrating out this feature:
 $H(t_i|x_i) = \int H(t_i|x_i, v_i)h(v_i) dv_i$
This gives rise to a mixture model
D

$$
H(t_i|x_i) = \int H(t_i|x_i, v_i)h(v_i) dv_i
$$

hazard) $H(t_i|x_i, v_i)$, remove the dependence on hetertintegrating out this feature:
 $H(t_i|x_i) = \int H(t_i|x_i, v_i)h(v_i) dv_i$

This gives rise to a mixture model

Due to the positivity of v_i , $h(v_i)$ is mainly specified as

inverse Gaus

Duration models Heterogeneity

Weibull-gamma model

Because the gamma choice for $h(v_i)$, combined with a Weibull model produces closed form marginals for features of interest, this model is widely known to incorporate heterogeneity

For
$$
E(v) = 1
$$
 and $V(v) = \frac{1}{\delta}$:
\n
$$
\lambda(t) = \lambda_0(t) \mu \alpha t^{\alpha - 1} \left[1 + \frac{\mu t^{\alpha}}{\delta} \right]^{-1}
$$
\n
$$
S(t) = \left[1 + \frac{\mu t^{\alpha}}{\delta} \right]^{-\delta}
$$
\n
$$
f(t) = \mu \alpha t^{\alpha - 1} \left[1 + \frac{\mu t^{\alpha}}{\delta} \right]^{-(\delta + 1)}
$$

As $V(v) = \frac{1}{s}$ goes to 0, the Weibull model arises \bullet

For α =1, this is the Exponential-gamma model, also known as Pareto \bullet of second kind

Duration models Heterogeneity

Weibull-gamma model

**In the simple models
In the simpler model
In the simpler model, the exponential-gamma, it is clear that even
with a constant baseline (that caracterizes the exponential), the
hazard decays in t and this not mean that we h Quration models
|eterogeneity
Weibull-gamma model**
|In the simpler model, the exponential-gamma, it is clear that even
with a constant baseline (that caracterizes the exponential), the
hazard decays in t and this not mean **)uration models
Heterogeneitv
Weibull-gamma model
In the simpler model, the exponential-gamma, it is clear that even
with a constant baseline (that caracterizes the exponential), the
hazard decays in t and this not mean t Duration models
|eterogeneity
| Weibull-gamma model
| In the simpler model, the exponential-gamma, it is clear that ev
| with a constant baseline (that caracterizes the exponential), the
| hazard decays in t and this not In the simple model**
 This extends to the Simpler model

In the simpler model, the exponential-gamma, it is clear that even

with a constant baseline (that caracterizes the exponential), the

hazard decays in t and this Weibull-gamma model
In the simpler model, the exponential-gamma, it is clear that even
with a constant baseline (that caracterizes the exponential), the
hazard decays in t and this not mean that we have negative
duration d

**Duration models

Specification check

The generalized residual/cumulative hazard rate
** $\epsilon = \Lambda(t) = -lnS(t)$ **
follows an unit exponential distribution where** $S(\epsilon) = exp(-\epsilon)$ Duration models Specification check

**Duration models

Specification check**
 The generalized residual/cumulative hazard rate
 $\epsilon = \Lambda(t) = -\ln S(t)$

follows an unit exponential distribution where $S(\epsilon) = exp(-\epsilon)$

which yields
 $-\ln[S(\epsilon)] = -\ln[exp(-\epsilon)] = \epsilon$ **Duration models

Specification check**

The generalized residual/cumulati
 $\epsilon = \Lambda(t) = -lnS$

follows an unit exponential distribution

which yields
 $-ln[S(\epsilon)] = -ln[exp(\epsilon)]$ **The generalized residual/cumulative hazard rate**
 $\epsilon = \Lambda(t) = -\ln S(t)$

follows an unit exponential distribution where $S(\epsilon) = exp(-\epsilon)$

which yields
 $-\ln[S(\epsilon)] = -\ln[exp(-\epsilon)] = \epsilon$

Therefore, plotting $-\ln[S(\epsilon)]$ with ϵ should produce

$$
-ln[S(\epsilon)] = -ln[exp(-\epsilon)] = \epsilon
$$

- Weibull: $\hat{\epsilon} = \hat{\mu} t^{\hat{\alpha}}$
- $\,\cdot\,$ Weibull-gamma: $\hat{\epsilon}=\delta ln$ $\widehat{\alpha}$ $-ln[S(\epsilon)] = -ln[exp(-\epsilon)] = \epsilon$
Therefore, plotting $-ln[S(\epsilon)]$ with ϵ should produce a
• Weibull: $\hat{\epsilon} = \hat{\mu}t^{\hat{\alpha}}$
• Weibull-gamma: $\hat{\epsilon} = \hat{\delta}ln\left(\frac{\hat{\delta} + \hat{\mu}t^{\hat{\alpha}}}{\hat{\delta}}\right)$
• With censor at L: use $\tilde{\epsilon} = 1 + \hat{\epsilon}(L)$
-