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Stochastic Processes
Some definitions

+0c0

t=—00

Stochastic Process: A stochastic process {X; }
random variables ordered by time.

is a sequence of

@ A sequence {xt};;“ioo ={..,X_2,X_1,X0,X1,X2, ...} is regarded as
a realization of a stochastic process i.e. for each value of t (each
point in time) x; is drawn from a distribution (or population) of
Xt’S.

@ Let fx, (x¢) denote the probability density function (pdf) of X; —note
that it depends on ¢ so that each element in the realization may
be drawn from a different distribution.
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Stochastic Processes
Some definitions

Definition |

The expectation (or mean) of X; is given by
EX:) = w
—+00
= / xifx, (x¢)dx;.
—0c0
S

The variance of X; is given by
var(Xe) = E[(Xe— )] = Tor
—+00
= [ P, ()i
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Stochastic Processes

Some definitions

The autocovariance of X; are given by (forj = 0,+1,+2,...)
Ve = cov(Xe, Xi—;)
= E[(Xe — ) (Xej — 1y p)]
= R+ (xt — Vt) (xt_j — thj)th,thl,..-,Xf_,- (xt, Xt—1yeeer xt_j)dxtdxt_l...dxt_]-.

whereth,thl,m,Xt_j (xt, %1, .-, ;) denotes the joint pdf of
(X, X1, s Xp—j)-

Note that all quantities are indexed with ¢




Stochastic Processes
Estimation?

@ In order to be able to estimate such quantities it would be
necessary to obtain a sample of observations on X for each ¢,
which is simply not possible.

@ In practice we are faced with the task of making inferences about
the statistical properties of the variable X from a single finite
realization or set of (T) observations: {xt}thl = {x1,xp, ..., xT}.

@ In order to do this we need to impose some structure e.g.
stationarity.
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Stationary Processes

Definition

A Strictly Stationary Process: A stochastic process is strictly (or
strongly) stationary if for every collection of time indices

1<t <... <ty thejoint distribution of (Xy,, .. ., X4, ) is the same as
that of (X;, 4p, ..., X, 41) forh > 1

Implications:

@ Xj, X5, X3 have the same distribution
@ (X1,Xp) and (X}, Xt4+1) have the same joint distribution for t > 1,
@ etc.
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Stationary Processes

In some cases a weaker for of stationary suffices

Definition

(0.9)

A stochastic process {X;},-°
stationary if

is covariance (or weakly or wide-sense)

» E(X:) = p (does not vary with t)

» var(X;) = 1, is constant,

» forany j > 1, cov(Xs, X;—;) = cov(Xe, Xi15) = 7
depends only on j and not on ¢.

Remark:

@ Strong stationary does not imply weak stationary, though strong

stationary + E(X?) finite implies weak stationary.

@ Multivariate Normality+weak stationary=>strong stationary
Remarks:In this case

@ 7;is denoted as the j th lag autocovariance

® p; = 7j/ 7o = is the jth lag autocorrelation.

o Henceforth stationary process will mean weakly stationary.




Stationary Processes

e Example: The process {e;,t =1,...} suchas E(g) =0,
var(g) = o and cov(e, &-j) = 0,j # 0,is known as a white noise
process (it will be denoted as &; ~ WN(0,¢2). It is covariance
stationary.)
Examples of nonstationary variables
Q@ X;=Bt+e, e~ WN(,0?2)
o In this case E(X;) = Bt (hence nonstationary)

@ The random walk: Xy = X;_1 + &, & ~ WN(0,02), Xy constant

Solving recursively we obtain X; = th':l ¢ + Xo.

Thus E(X;) = Xo, var(X;) = to? (hence nonstationary)




Wold’s Decomposition Theorem

@ The white noise process is the building block of the time series
models that we are going to study.

Theorem

(Wold's Decomposition Theorem) Any covariance stationary process with
mean zero can be represented as

+o00
Xt = ijo ejSt_]' + vy,

where & ~ WN(0,02),00 = 1 and ijg 9]«2 < o, E(vte_j) = 0 for all j

and there exists constants g, &1, ... such that var(Z]?’io ajv;_;) = 0.

@ v; is called deterministic component of X;: It means as it can be
predicted arbitrarily well from a linear function of past values of
Ot.

@ The term Z;:g 0e;j is called the indeterministic component of
X;.




Wold’s Decomposition Theorem

@ In practice it is usually assumed that we have a purely
indeterministic process, i.e. v; = 0 and try to approximate

Z « G]Et —j-

@ Obviously it is impossible to estimate 2;:8 0;€;—; because it
requires the estimation of an infinite number of parameters
(01,62, ...).

@ The traditional approach here is to approximate Z;:S 0jer—j , such
that E+°° 92 < 00, by a parsimonious model that is a model with
a small number of parameters.

@ The most famous models are known as Autoregressive Moving
Average Models (ARMA) (Box-Jenkins 1976).

@ These models have as special cases the Moving Average (MA) and
the Autoregressive model (AR).




ARMA processes
Lag Operator

The Lag operator L (or backshift operator) operates on an element of
a time series to produce the previous element, that is

LX; = X;_1.

The lag operator can be raised to arbitrary integer powers so that if
raised to the g power, we obtain

L1X; = X4
Also If raised to the —q power, we obtain
L™1X; = Xpiyg.
Using this operator the first difference of x; can be written as
AX; = X — X1 = (1 - L)X
The second difference is

A?Xy = A(AX) = A((1 - L)X¢) = (1 - L)2X;




ARMA processes
Polynomials in L

We can define a (finite or infinite order) polynomial in L or a filter
according to:

a(L) = ap+aL + apl? + ...
Thus

a(L)X; = aoXi+aLX; 4 apl?X; + ...
ap Xy + i Xi— 1+ X o+ ...




ARMA processes

Inversion of Polynomials in L

Let a(L) be a finite order polynomial in L. a(L) = 1 — Y/, a,L'.We
define a(L) ! to be the polynomial in L that satisfies
a(L)la(L) =1

That is,
a(L)ta(L)X; = X;
e a(L)~! will correspond to a series of the form Y2, b;L.

Example: Suppose
a(L) =1-pL.

Note that

(14+pL+p*2+...)(1—pL) =1

soa(L)™t =y p'Ll.




ARMA processes

Absolutely Summable Inverses

@ The coefficients of this infinite-order polynomial are absolutely
summable if } 7°  |b;| < co.

@ Note that } ;° |bj| < 0o = Y2 blz < o0, that is absolute
summability implies square summability.

@ We will often be interested in inverses whose coefficients are
absolutely summable:

o The conditions that ensure that an inverse has absolutely
summable coefficients (and therefore squared summable) play a
crucial role in establishing necessary conditions for a time series to
be stationary.




ARMA processes

Absolutely Summable Inverses

@ A necessary and sufficient condition for an inverse to meet the
absolute summability condition:

o The characteristic roots of a(z) lie outside the unit circle, where z is
a complex variable.

o That is, we have to find the zeros of the function 4(z). Denote one of
them as z*, for it to be outside the unit circle we must have |z*| > 1.

Example: Suppose
a(L) =1—pL,

a(L)™' = L5 p'Ll. To see if
too |
Yo ’Pl

it is convergent we have to compute the zeros of a(z) = 1 — pz. In this
case itis z* = 1/p. Thus we require |z*| > 1 or |p| < 1.
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ARMA processes
Absolutely Summable Inverses

Remarks:
Let
P(z) = apz" +ay,_12" 4 ..+ a1z +ag
be a polynomial of degree n where ay, a1,43,..., 4, are constant
coefficients.

o Fundamental Theorem of Algebra: every non-zero single-variable
polynomial P(z) of degree n has n values z; for which P(z;) =0
(some of them possibly complex) .

@ If z = a + bi, where a and b are real numbers and i = v/—1, then
|z = Va2 + b2

@ the roots of a real-valued polynomial can occur in complex
conjugate pairs, in which case we require their modulus to be
greater than one. If z = a + bi its complex conjugate is Z = a — bi

Example: Consider the operator
P(L) = (1+1?)

Does P(L) have a absolutely summable inverse?




ARMA processes

Moving average model of order q (MA(q))

Xt = Z?:o 0er—j e ~ WN(O, 02, 6y =1,
Or
Xt = @(L)Et
where O(L) = Z]C.’:O GjU, 6o = 1.

@ Notice that by the Wold decomposition theorem the true model
of the data is a MA(c0).

@ Here we approximate a MA(oo) process by a a MA(g) process
with g finite.

The MA(q) is always stationary as
@ E(X;) =0
° 1o =Y 0ict
© = [0+ 64101+ 0j1202 + ... + 00, jlo7,j=1,....q
7 =0j>¢




ARMA processes
Autoregressive model of order p (AR(p))

X; = Z;.’Zl ¢ X + et e ~ WN(O, o?)

Or
CD(L)Xt = &

where ®(L) =1 — 2?:1 quU.

@ It can be shown that the AR(p) is stationary if the roots of ®(z)
are outside the unit circle. Therefore ®(L) has a a absolutely
summable inverse.




ARMA processes
Autoregressive model of order p (AR(p))

This model corresponds to a MA (o).

@ Example:Consider the casep =1
Xy =g X4 1+ ¢
@ Notice that the model is equivalent to
P(L)X; =&

where ®(L) =1 — ¢;L. We know that ®(L) has a absolutely
summable inverse if [¢;| < 1 and it is equal to
(14 ¢;L+ ¢$2L? +...) thus multiplying both sides by ®(L) ! we
have

O(L)'o(L)X; = O(L) g

or

Xi = (1+¢,L+§IL%+..)e
= Z 4’]1£t1




ARMA processes

Autoregressive Moving Average models of order p and ¢ ARMA(p,q)

X = Zf:l ¢]‘Xt7j + 27:0 9]'815,]‘, & ~ WN(O, 0'5)
with 8y = 1 or
@(L)Xt = @)(L)et
where (L) = Zp 1 ‘P]U and O(L) = Z?:O 6:L)
@ It can be shown that the ARMA(p, q) is stationary if the roots of

®(z) are outside the unit circle. Therefore ®(L) has an absolutely
summable inverse.
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ARMA processes

Autoregressive Moving Average models of order p and ¢ ARMA(p,q)

Under these conditions it equivalent to a MA(co) model.

Example: For instance consider the model ARMA(1,1)

Xi = ¢ Xp1+&+ 0181
There are two ways to show that it is equivalent to a MA(oo) process.

@ Using the method of undetermined coefficients.

@ Using the operator L




ARMA processes
Method of undetermined coefficients

Assume that the process is stationary thus

oo
Xy = Zi:O Xi€rj
which implies that
o0
Xi1 = Zizo Xi€r—1—i
The objective is to find the values of the coefficients ag, a1, &y, ...

@ Replacing this in the equation above we have

Yo oier—i = (Yo wig—1-i) + & + 61611

@ Now we match the coefficients of the terms containing
€, €_1,€—_2,... and obtaining
@ Ny = 1
o a1 =¢ap+01 = a1 =¢; +06;
o =1 = ;= ‘Pl 1041,1' >2




ARMA processes
Using the operator L

We have
O(L)X; = O(L)e

with ®(L) =1 — ¢;L and ©(L) = 1 + 6,L, thus assuming again that
|¢1] < 1 we have
X = Lol
= (1+¢,L+¢L2+..)(1+06:L)e
= (14 (¢ +01)L+ Py (¢ +61)L* + .. )&
= Zzo Ki€—i
with
o wg=1
° ny =¢ap+61 = a1 =¢;+6
&= Piai g = =Py lag,i>2




ARMA processes

Invertibility and AR representations

The ARMA(p, q) process is said to be invertible if the roots of

©(z) = 0 lie outside the unit circle. Therefore ®(L) has a a absolutely
summable inverse.

If O(L) is invertible we can pre-multiply both sides by @(L)~! to
obtain

O(L)'o(L)X;
(1 — Z;il ogU) Xt = &

for some coefficients a1, a5, ..., which corresponds to a AR(c0) process.

&t




ARMA processes

Characterization of ARMA processes

ARMA Processes are well characterized by two functions
@ The autocorrelation function (ACF):

_Yi_
0 = 7—0,] =12,..

@ The partial autocorrelation function (PACF).
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ARMA processes

The partial autocorrelation function (PACEF).

@ The partial autocorrelation function is more difficult to define.
Informally it is defined as a measure of the association between
Xt and X;_; whilst taking away the effects of the variables
Xt-1, -, X¢—j+1 on this relationship (for j > 1).

e Formally the partial autocorrelation between X; and X;_; is
defined as the coefficient of the variable X;_; in the linear
projection of X; on X;_1, ..., Xij.

o Remark: The linear projection of X; on X;_1, .., X;_j is given by
P(Xt|Xt-1, 000y Xp—j) = 0] + /3;1th1 + ..+ ﬁj*,]-Xt,j,
where uc]?‘, ,[3;1, . ,B]* i the values of a;, [3]-,1, . ‘B]’,j that minimize
E[(Xt —aj = i1 Xp—q — o — ,5]',/'Xt—j)2]-

So the partial autocorrelation of order j is ,B;




ARMA processes

The partial autocorrelation function (PACEF).

@ Fortunately, there are formulas that allow us to compute the
PACEF in a easy way for any stochastic process which are given
by the Yule Walker Equations:

‘BT,l = P

By = (pz—p%)/(l—p%)
j—

5]'*,]' _ 21]15] 1,1Pj— z].:3,4,5,m
Li- 15] 1,10

/3;} = :Bj—l,i - :Bj,j:iji,jfi’ =12.,j-1




Properties of some ARMA processes

Moments of the stationary MA(1) process with a constant

Xi=c+e+ 0161, ~ WN(O,U?)

We would like to compute u = E(X¢), g = var(Xs),
V= cov(Xy, Xt,j) forj > 1.

Notice that # = c. and 7y = (1 + 62)02. and

71 = E((Xt—c)(X¢—1—¢))
= 910’3

v = E((Xi—0o)(Xi—j—0))
= 0,j>1

thus the ACF is given by




Properties of some ARMA processes

Moments of the stationary MA(1) process with a constant

PACF
Notice that X; = ¢ + O(L)g;, assuming that @(L) = (1+61L) is
invertible we have if [0;] < 1

QL) X =0(L) e+ g

where @(L) ! = (1 — 6,1 + 6312 — 631% — ....).Thus

c

X:
! 1464

4+ 601X 1 — G%Xt,Z + G?Xt,?, + ...t &

Therefore X; is correlated with all its lags. The PACF with exhibit a
geometrically decaying pattern. If ; < 0 its decay is direct. If §; > 0
the PACEF coefficients oscillate.




Properties of some ARMA processes

Moments of the stationary MA(1) process with a constant

MA(1), 8; < 0

ACF FACF

eannnll




Properties of some ARMA processes

Moments of the stationary AR(1) process with a constant

Let us now consider the AR(1) with a constant.

Xi=c+ ¢ X4_1 +ep e~ WN(0,0’%)

where & ~ WN(0,0?). We would like to compute y = E(X;),
Yo = var(Xy), ; = cov(Xy, X; ;) forj > 1.
Assuming stationary we have

C
1-¢;

E(Xt) =

and
o

1—¢?

var(X;) =

=7




Properties of some ARMA processes

Moments of the stationary AR(1) process with a constant

The auto-covariances are given by

7= $17-1 = $ho-

Thus the ACF is given by
P; = 4771,]' > 1
The PACF is given by
Bin = ¢




Properties of some ARMA processes

Moments of the stationary AR(1) process with a constant

AR(1) ¢, >0

ACF PACF




Properties of some ARMA processes

Moments of the stationary AR(1) process with a constant

AR(1) ¢, <0
ACF PACF
— —
——
—
—
—
-
=
-
-1 [:] 1 -1 o 1




Properties of some ARMA processes

Moments of the stationary AR(2) process with a constant

Let us now consider the AR(2) with a constant.

Xi=c+ ¢ X1+ ¢, X2+ &
Properties
@ The ACF in this case will be exponentially declining.
@ AR(2) processes spike in the first two lags of the PACF and it will
be equal to zero for lags bigger than two.

ACF PACF




Properties of some ARMA processes

Autoregressive Moving Average models of order 1 and 1 ARMA(1,1)

Xi=c+ ¢1Xt,1 + & + 0161, € ~ WN(O, 0’3)
The ARMA(1,1) process shows exponential declines in both the ACF

and the PACE.
ACF PACF
I | —
1 —
—] [ —
1 —]
—] —]
— —
] ]
] (.
-1 [:] 1 1 ] 1




Properties of some ARMA processes

General Characteristics of ARMA processes

@ Autoregressive processes have an exponentially declining ACF
and spikes in the first one or more lags of the PACF. The number
of spikes in the PACF indicates the order of the autoregression.

@ Moving average processes have spikes in the first one or more
lags of the ACF and an exponentially declining PACFE. The
number of spikes in the ACF indicates the order of the moving
average.

@ Mixed (ARMA) processes typically show exponential declines in
both the ACF and the PACF




Common factors

e Consider the MA (o) representation of the ARMA(1,1) model
(without a constant for simplicity.):

Xy = Z;io ‘P]l (e—j+018_j-1)
which implies ACF

1 (14 ¢101)(¢; +61)
o =gl 4’12 1 I>1.

e If6; = —¢; = p; = 0, ARMA(1,1) reduces to white noise: AR
and MA polynomials cancel in (1 — ¢,L)X; = (1 + 61L)e;.
Implies that ¢; and 67 are not identified.

@ Same occurs in ARMA(p, q) models, if z* is a zero of ®(z) and
—z* is a zero of O(z)

@ To avoid identification problems reduce the model to
ARMA(p—1,9—1).




Integrated Processes

If a stochastic process X; must be differenced exactly d times to admit
Auto-Regressive (AR) and Moving-Average (MA) representations that
are both absolutely summable, then the series is I(d) and we write

X¢ ~ I(d) (in words the process X; is said to be integrated of order d.)




Integrated Processes

If a stochastic process X; must be differenced exactly d times to admit
Auto-Regressive (AR) and Moving-Average (MA) representations that
are both absolutely summable, then the series is I(d) and we write

X¢ ~ I(d) (in words the process X; is said to be integrated of order d.)

Remarks:

@ A stationary and invertible ARMA(p, q) process is I(0)




Integrated Processes

If a stochastic process X; must be differenced exactly d times to admit
Auto-Regressive (AR) and Moving-Average (MA) representations that
are both absolutely summable, then the series is I(d) and we write

X¢ ~ I(d) (in words the process X; is said to be integrated of order d.)

Remarks:

@ A stationary and invertible ARMA(p, q) process is I(0)
o X; ~I(3) & A3X; = A[A(AX;)] ~ 1(0).




Integrated Processes

If a stochastic process X; must be differenced exactly d times to admit
Auto-Regressive (AR) and Moving-Average (MA) representations that
are both absolutely summable, then the series is I(d) and we write

X¢ ~ I(d) (in words the process X; is said to be integrated of order d.)

Remarks:

@ A stationary and invertible ARMA(p, q) process is I(0)

o X; ~I(3) & A3X; = A[A(AX;)] ~ 1(0).

@ The random walk is I(1): X; = X;_1 + &, & ~ WN(0,0?), thus
AX[ = &t.




ARIMA Models

o If AdXt follows an ARMA(p,q) model,
O(L)AX; = ¢+ O(L)g

with all roots of ®(z) and ©(z) outside the unit circle, then X;
follows an autoregressive integrated moving average model of order
(p,d,q) denoted ARIMA(p,d, q).

e The ARIMA(p,d,q) is a non-stationary ARMA(p + d, q) where
the autoregressive polynomial ®*(L) = ®(L)(1 — L)% has d unit
roots. Therefore testing procedures to determine d focus on the
number of autoregressive unit roots.




Stationary versus Integrated Processes

Usually choice between I(0) or I(1). Main differences are:
e If X; ~ I(0), then

@ Shock ¢ has a transient decaying effect on X, as k — oo;
o X; fluctuates around its mean, i.e. displays mean-reversion
o ACF of X; has either a cut-off point or decays exponentially.

e If X; ~ I(1), then

o Shock ¢ has a permanent or persistent effect on Xy as k — oo;

e X; is not mean-reversion and displays a (time-varying) trend.

o ACF of X; is not defined, but sample ACF (defined later) stays
close to one. Decays slowly (approximately linearly).




Stationary versus Integrated Processes

Examples of simulated AR(1) models with ¢; = 0.9 (left) and ¢; =1

(right):
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Box Jenkins Methodology

@ Transform the data, if necessary, so that the assumption of
covariance stationarity is a reasonable one (E.g. take first
differences.)

@ Identification: Make an initial guess for the values of p and q
@ Estimate the parameters of the proposed ARMA(p, q) model

@ Perform diagnostic analysis to confirm that the proposed model
adequately describes the data (e.g. examine residuals from fitted
model)




Identification of Stationary ARMA(p,q) Processes

Intuition: The autocorrelations and partial autocorrelations define
the properties of an ARMA(p,q) model. A natural way to identify an
ARMA model is to match the pattern of the observed sample
autocorrelations (partial autocorrelations) with the patterns of the
theoretical autocorrelations (partial autocorrelations) of a particular
ARMA(p, q) model.




Identification of Stationary ARMA(p,q) Processes

Sample autocorrelation function (SACF)

Sample autocovariances

Zt—]Jrl (Xt -~ )’] >0
Sample autocorrelatlons

b= 7]] =1,2,..

Result: If X; is i.i.d. for all £ then p; = 0 we have

VTp; L.N(0,1).
forallj =1, ..., k. Thus to test Hy : P = OvsHj : 0] # 0 we can use the

statistic /T, f)]-.
Rejection rule: Let z, /, be the 100 x «% critical value (that is the
constant such that P(Z > z,,,) = /2 where Z ~ N(0,1)) Reject Hy

in favour of Hj if ‘\/Tp]‘ > z, /2. For instance for &« = 0.05 reject Hy if




Identification of Stationary ARMA(p,q) Processes

Remark: p,, ..., o, are asymptotically independent (assuming that X;
isii.d.):

©
VT ;1 B N(0, )
[
@ Box-Pierce Portmonteau statistic:
Let

k2
Qk:T jzlpj'

If X; is i.i.d for all t, then Q. DA x> (k).

Hg:p; =0,j=1,..,kvs Hy : there is at least one p; # 0.

Rejection Rule: Reject Hy if Q. > c, where ¢, is the 100 X a% critical
value (that is the constant such that P(X > ¢,) = « where

X~ x2(K)).




Identification of Stationary ARMA(p,q) Processes

o Ljung and Box showed that a simple degrees-of freedom
adjustment improves the finite sample performance:

A2
" ko P
QG =T(T+2)) ., Tij_]

If X; is i.i.d for all ¢, then Qy b, X2 (k) (same Rejection rule)




Identification of Stationary ARMA(p,q) Processes

The Sample Partial Autocorrelation Function (SPACF)

The jth order sample partial autocorrelation of X; Bjj is the estimated
coefficient of X; ; in the regression of X; on X;_1, X}, ..., X;_j.for
j=12..
@ Result: If X; is i.i.d for all ¢, then ﬁ]‘j =0thusforallj =1,2,..we
have

VTR, 2 N(0,1).
Thus to test Hy : f;; = 0 vs Hy : B, # 0 we can use the statistic
VTP
@ Rejection rule: Let z, /, be the 100 x a% critical value (that is the
constant such that P(Z > z,,,) = /2 where Z ~ N(0,1)) Reject

Hj in favour of Hy if ‘\/T‘Bjj
reject H if ‘Bjj‘ > 1.96/\T

> z, /2. For instance for @ = 0.05




Maximum likelihood estimation of ARMA models.

@ For i.id. date the marginal pdf f(x;, ), the joint pdf for a sample
(Xlr veey XT) is

f(xl/“'lel Ht 1f xt/

mdependence

The likelihood function is this joint density treated as a function
of the parameters given the random sample

T
LY X1, X1) = [ [, f(Xei7)
@ The log-likelihood is given by

1og(L(Y|X1, -, X7)) = Y, logf(Xe; 7).

@ Problem: in time series

Fot e xr; ) # [Ty f(x67)

because the random variables in sample (Xj, ..., XT) are not iid.




Maximum likelihood estimation of ARMA models

One possible solution: Conditional factorization of the density
function.

Intuition: Suppose that X; only depends on X;_; (as in a AR(1)
process).

Consider the joint density of two adjacent observations f(x, x1; 7).
The joint density can always be factored as the product of the
conditional density of x; given x; and the marginal density of x; :

f oo, x157) = fx2loxr; v)f (x1;7)
For three observations, the factorization becomes.
f(xs,x2,x1;7) = f(x3]x2, %1 7)f (x2]x1;7)f (x1;7)
Continuing with this reasoning we have
T
fr, o xi7) = ([ o f elFrr9))f (15 7)

where F; = (x4, ...,x1) = information available at time ¢.




Maximum likelihood estimation of ARMA models

The exact log-likelihood function:

lOgﬁ('ﬂXl,...,XT) = Zt 2& —|—£1 )
b(y) = logf(X¢|Fi—1;7)
t(y) = logf(X1;7)

The conditional log-likelihood:

* T
log‘c (W‘Xlr ceey XT) = ZtZZ Kf Y




Maximum likelihood estimation of ARMA models

In a AR(1) process we have

C 0'2

1= 1-¢]
Remark: The assumption of (unconditional) normality (gaussianity)

is imposed.
Thus

X ~ N(

)

) = 0_1

21T
1-¢2 1-¢7

where v = (¢, ¢;,02)’.




Maximum likelihood estimation of ARMA models

We know that X; = ¢ + ¢, X;_1 + & if we assume that ¢ ~ N(0, o?)
and i.id., then X;|X;_1 = x;_1 ~ N(c+ ¢;x1_1,02).

1 (xy—c— ¢1xt,1)2
Xt|Xp_q, 0, X1, Y) = exp { —
f( t| t—1 1 r)/) 0_\/277_1_ p{ 202

Frq

@ The log-likelihood function for the general ARMA(p,q) model
can be constructed in a similar way.




Maximum likelihood estimation of ARMA models

@ Two types of maximum likelihood estimates (mles) may be
computed. The first type is based on maximizing the conditional
log-likelihood function log £*(y| X3, ..., X7). This estimator is
called conditional Maximum Likelihood Estimator (CML) [§cpr]-

@ The second type is based on maximizing the exact loglikelihood
function log £(y|Xj, ..., X1) and is called exact Maximum
Likelihood estimator (EML).

@ It is possible to show that both estimators are consistent and
asymptotically normal under some regularity conditions:

N D _
\/T(')’CML —7) — N(Oer 1)

2
where Ay = E[— aai’%] and 7y, are the true parameter values.

Moreover, the CML and EML estimators are asymptotically
equivalent.

@ They will not yield the same estimates in finite samples.
@ Inferences similar to the i.i.d. case.




Diagnostic testing involves checking if the residuals & have white
noise properties:

@ Check the Sample autocorrelation function and Sample partial
autocorrelation function of the residuals [check if the absolute
values are bigger than 1.96/+/T* where T* = T — p (effective
sample size)].

@ Use the Box-Pierce and Ljung-Box Statistics applied to the
residuals.

@ Alternative test: Test for serial correlation using the (Breusch
Godfrey) Lagrange multiplier statistic. Example: Test for white
noise against rth order autocorrelation in the residuals in a AR(p)
model amounts to Test f; = ..., = 0 in auxiliary regression

& =wayg+u1Xp_ 1+ ...+ OCpthp + ,Blét—l + ..+ ﬁrétfr + e,

where & are the residuals of the model. Test Statistic.
IM=TxR22 X?(r) (R? of the auxiliary regression.)




Goodness of Fit

@ Inspection of the SACF and SPACF to identify ARMA models is
somewhat of an art rather than a science. A Less arbitrary
procedure to identify an ARMA model is to use formal model
selection criteria. The two most widely used criteria are the
Akaike information criterion (AIC) and the Bayesian (Schwarz)
Information criterion (BIC or SIC). The usual definitions are:

e AIC(p,q) =log(0) + 2%, where ¢ is the estimate of 0.

e BIC(p,q) =log(0) + M (recommended)
@ Given several models we should choose the one having the
lowest information criteria.
Interpretation:

® Models with a good fit should have a low log (&)

o 2 ;Zq) and IOg(T*T)*(pJFq) penalize models with a large number of

parameters. Penalty of extra parameters is more severe in BIC.

Remark: Models with a large number of parameters have a poor
forecast ability.




Preliminaries
e F; = {Xs,Xs_1, ...}, information on process X; up tos.

e Conditional expectation E(X;|F;), s < t, is best (under squared
error loss) predictor of X; given F; :

E((X: — E(X¢|Fs))?) < E((X; — g(Fs)))?)

for all functions g(Fs).
@ Best Linear predictor: P(X;|F;), s < f,

E((Xt — P(Xt[F:))?) < E((X: — g(F:)))?)
for all linear functions g(Fs).

Some definitions

@ A the process X; is a martingale if E(X;;1|F;) = X;, forall .

@ A the process Y; is a martingale difference sequence if
E(Yt1|F) = 0 forall £.

@ Remark: If X; is a martingale, Z; = X; — X;_1 is a martingale
difference sequence.




@ Under the assumptions considered on the white noise process &;
so far we are able to estimate P(X;|Fs) [cov(gj, ;) = 0 for i # j].

o If we assume that the errors are i.i.d. or a martingale difference

sequence, that is
E(gy1|Fr) =0, forallt,

we are able to estimate E(X;|Fs).




Useful properties of conditional expectations
@ E(E(X¢|Fs)) = E(X¢) (law of iterated expectations)
o E(E(X¢|Fs)|F;) = E(X¢|F;) (r < s < t) (tower property).

Let us write E(X;, ) = E(X;4|F¢) to simplify the notation.
Assuming that the errors ¢ are a martingale difference sequence, we can
use these properties to show that the estimator for best forecast
E¢(X;4) is given by

Ev(Xiy1) = c+ Zle 4’jEt(Xt+l—j) + 2?21 Oie(l—J)

where E¢(X;yj) = X;yj forj > land

. g j>1
St(l_]):{ tJE)l] ;Zz




Example: For an ARMA(1,1) process
Xp=c+ ¢ Xp1+e& +018_1.
As X1 = c+ ¢ Xy + &1 + 018 we have
Ef(Xi41) = c+ ¢ Xi + Oh
Also X0 = ¢+ ¢ Xy 1 + €42 + 01841 and

Et(Xiy2) = ¢+ ¢ Er(X11)
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@ The variance of the prediction errors e;(I) = X;,; — E¢(X;1) is
obtained from the MA (o) representation of the ARMA(p,q)
process Xy = E(X;) + Y20 $jer—j. Assuming that var(g;) = o2 for
all t, one can show that

2
var(ei(l)) = 2 0 1])]
@ For stationary process as [ — oo we have

E¢(Xi11) — E(Xt)

and

var(e(1)) — var(Xy)




@ In practice to make (out of sample) predictions we have to
replace the unknown parameters by their estimators yielding

Er(Xry) =¢+ Zle $;Er(Xry1-j) + 2?21 Ojer(I—j),1>0

where Er (X)) = Xrqy-jforj > ¢, 43]- and 9]- are estimators of
¢, ¢; and 6; and

R . éryp—i j>1
gt(l_])_{ T—BIJ ;<l ’

where &, t =p+1,..., T are the residuals.

@ For I(1) processes the above methods are applied to AX;,
yielding E(AX;;|F¢). The forecasts of X;,; are given by

I
Ei(Xi1) = Xe + ) g E(BX 1)




Comparison of the forecasts among different ARMA /ARIMA
models:

@ leave the last observations of the time series out of the estimation
of the models,
@ produce forecasts for these observations for each model;

@ choose the model that yields the minimum value of the (sample)
mean squared prediction error among the estimated models.




