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Stochastic Processes
Some definitions

Definition

Stochastic Process: A stochastic process fXtg+∞
t=�∞ is a sequence of

random variables ordered by time.

A sequence fxtg+∞
t=�∞ = f..., x�2, x�1, x0, x1, x2, ...g is regarded as

a realization of a stochastic process i.e. for each value of t (each
point in time) xt is drawn from a distribution (or population) of
Xt’s.
Let fXt(xt) denote the probability density function (pdf) of Xt – note
that it depends on t so that each element in the realization may
be drawn from a different distribution.
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Stochastic Processes
Some definitions

Definition
The expectation (or mean) of Xt is given by

E(Xt) = µt

=
Z +∞

�∞
xtfXt(xt)dxt.

Definition
The variance of Xt is given by

var(Xt) = E[(Xt � µt)
2] = γ0t

=
Z +∞

�∞
(xt � µt)

2fXt(xt)dxt.
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Stochastic Processes
Some definitions

Definition

The autocovariance of Xt are given by (for j = 0,�1,�2, ...)

γjt = cov(Xt, Xt�j)

= E[(Xt � µt)(Xt�j � µt�j)]

=
Z

Rj+1
(xt � µt)(xt�j � µt�j)fXt,Xt�1,...,Xt�j(xt, xt�1, ..., xt�j)dxtdxt�1...dxt�j.

where fXt,Xt�1,...,Xt�j(xt, xt�1, ..., xt�j) denotes the joint pdf of
(Xt, Xt�1, ..., Xt�j).

Note that all quantities are indexed with t
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Stochastic Processes
Estimation?

In order to be able to estimate such quantities it would be
necessary to obtain a sample of observations on X for each t,
which is simply not possible.
In practice we are faced with the task of making inferences about
the statistical properties of the variable X from a single finite
realization or set of (T) observations: fxtgT

t=1 = fx1, x2, ..., xTg.
In order to do this we need to impose some structure e.g.
stationarity.
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Stationary Processes

Definition
A Strictly Stationary Process: A stochastic process is strictly (or
strongly) stationary if for every collection of time indices
1 � t1 < . . . < tm the joint distribution of (Xt1 , . . . , Xtm) is the same as
that of (Xt1+h, . . . , Xtm+h) for h � 1

Implications:

X1, X2, X3 have the same distribution
(X1, X2) and (Xt, Xt+1) have the same joint distribution for t � 1,
etc.
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Stationary Processes
In some cases a weaker for of stationary suffices

Definition

A stochastic process fXtg+∞
t=�∞ is covariance (or weakly or wide-sense)

stationary if

I E(Xt) = µ (does not vary with t)
I var(Xt) = γ0 is constant,
I for any j � 1, cov(Xt, Xt�j) = cov(Xt, Xt+j) = γj
depends only on j and not on t.

Remark:
Strong stationary does not imply weak stationary, though strong
stationary + E(X2

t ) finite implies weak stationary.
Multivariate Normality+weak stationary)strong stationary

Remarks:In this case
γj is denoted as the j th lag autocovariance
ρj = γj/γ0 = is the jth lag autocorrelation.
Henceforth stationary process will mean weakly stationary
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Stationary Processes

Example: The process fεt, t = 1, ...g such as E(εt) = 0,
var(εt) = σ2

ε and cov(εt, εt�j) = 0, j 6= 0, is known as a white noise
process (it will be denoted as εt � WN(0, σ2

ε ). It is covariance
stationary.)

Examples of nonstationary variables
1 Xt = βt+ εt, εt � WN(0, σ2

ε )

In this case E(Xt) = βt (hence nonstationary)

2 The random walk: Xt = Xt�1 + εt, εt � WN(0, σ2
ε ), X0 constant

Solving recursively we obtain Xt = ∑t
j=1 εj +X0.

Thus E(Xt) = X0, var(Xt) = tσ2
ε (hence nonstationary)
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Wold’s Decomposition Theorem

The white noise process is the building block of the time series
models that we are going to study.

Theorem
(Wold’s Decomposition Theorem) Any covariance stationary process with
mean zero can be represented as

Xt = ∑+∞
j=0 θjεt�j + vt,

where εt � WN(0, σ2
ε ), θ0 = 1 and ∑+∞

j=0 θ2
j < ∞, E(vtεt�j) = 0 for all j

and there exists constants α0, α1, ... such that var(∑∞
j=0 αjvt�j) = 0.

vt is called deterministic component of Xt: It means as it can be
predicted arbitrarily well from a linear function of past values of
vt.
The term ∑+∞

j=0 θjεt�j is called the indeterministic component of
Xt.

Author: Paulo M.D.C. Parente 11 / 65



Wold’s Decomposition Theorem

In practice it is usually assumed that we have a purely
indeterministic process, i.e. vt = 0 and try to approximate
∑+∞

j=0 θjεt�j.

Obviously it is impossible to estimate ∑+∞
j=0 θjεt�j because it

requires the estimation of an infinite number of parameters
(θ1, θ2, ...).
The traditional approach here is to approximate ∑+∞

j=0 θjεt�j , such

that ∑+∞
j=0 θ2

j < ∞, by a parsimonious model that is a model with
a small number of parameters.
The most famous models are known as Autoregressive Moving
Average Models (ARMA) (Box-Jenkins 1976).
These models have as special cases the Moving Average (MA) and
the Autoregressive model (AR).
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ARMA processes
Lag Operator

The Lag operator L (or backshift operator) operates on an element of
a time series to produce the previous element, that is

LXt = Xt�1.

The lag operator can be raised to arbitrary integer powers so that if
raised to the q power, we obtain

LqXt = Xt�q

Also If raised to the �q power, we obtain

L�qXt = Xt+q.

Using this operator the first difference of xt can be written as

∆Xt = Xt �Xt�1 = (1� L)Xt

The second difference is

∆2Xt = ∆(∆Xt) = ∆((1� L)Xt) = (1� L)2Xt
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ARMA processes
Polynomials in L

We can define a (finite or infinite order) polynomial in L or a filter
according to:

a(L) = a0 + a1L+ a2L2 + . . .

Thus

a(L)Xt = a0Xt + a1LXt + a2L2Xt + . . .
= a0Xt + a1Xt�1 + a2Xt�2 + . . .
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ARMA processes
Inversion of Polynomials in L

Let a(L) be a finite order polynomial in L. a(L) = 1�∑
p
i=1 aiLi.We

define a(L)�1 to be the polynomial in L that satisfies

a(L)�1a(L) = 1

That is,
a(L)�1a(L)Xt = Xt

a(L)�1 will correspond to a series of the form ∑∞
i=0 biLi.

Example: Suppose
a(L) = 1� ρL.

Note that

(1+ ρL+ ρ2L2 + . . .)(1� ρL) = 1

so a(L)�1 = ∑+∞
i=0 ρiLi.
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ARMA processes
Absolutely Summable Inverses

The coefficients of this infinite-order polynomial are absolutely
summable if ∑∞

i=0 jbij < ∞.

Note that ∑∞
i=0 jbij < ∞ ) ∑∞

i=0 b2
i < ∞, that is absolute

summability implies square summability.
We will often be interested in inverses whose coefficients are
absolutely summable:

The conditions that ensure that an inverse has absolutely
summable coefficients (and therefore squared summable) play a
crucial role in establishing necessary conditions for a time series to
be stationary.

Author: Paulo M.D.C. Parente 16 / 65



ARMA processes
Absolutely Summable Inverses

A necessary and sufficient condition for an inverse to meet the
absolute summability condition:

The characteristic roots of a(z) lie outside the unit circle, where z is
a complex variable.
That is, we have to find the zeros of the function a(z). Denote one of
them as z�, for it to be outside the unit circle we must have jz�j > 1.

Example: Suppose
a(L) = 1� ρL,

a(L)�1 = ∑+∞
i=0 ρiLi. To see if

∑+∞
i=0

���ρi
���

it is convergent we have to compute the zeros of a(z) = 1� ρz. In this
case it is z� = 1/ρ. Thus we require jz�j > 1 or jρj < 1.
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ARMA processes
Absolutely Summable Inverses

Remarks:
Let

P(z) = anzn + an�1zn�1 + ...+ a1z+ a0

be a polynomial of degree n where a0, a1,a2,..., an are constant
coefficients.

Fundamental Theorem of Algebra: every non-zero single-variable
polynomial P(z) of degree n has n values zi for which P(zi) = 0
(some of them possibly complex) .
If z = a+ bi, where a and b are real numbers and i =

p
�1, then

jzj =
p

a2 + b2.
the roots of a real-valued polynomial can occur in complex
conjugate pairs, in which case we require their modulus to be
greater than one. If z = a+ bi its complex conjugate is z̄ = a� bi

Example: Consider the operator

P(L) = (1+ L2)

Does P(L) have a absolutely summable inverse?
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ARMA processes
Moving average model of order q (MA(q))

Xt = ∑q
j=0 θjεt�j, εt � WN(0, σ2

ε ), θ0 = 1,

Or
Xt = Θ(L)εt

where Θ(L) = ∑
q
j=0 θjLj, θ0 = 1.

Notice that by the Wold decomposition theorem the true model
of the data is a MA(∞).
Here we approximate a MA(∞) process by a a MA(q) process
with q finite.

The MA(q) is always stationary as

E(Xt) = 0

γ0 = ∑
q
j=0 θ2

j σ2
ε

γj = [θj + θj+1θ1 + θj+2θ2 + ...+ θqθq�j]σ
2
ε , j = 1, ..., q

γj = 0, j > q
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ARMA processes
Autoregressive model of order p (AR(p))

Xt = ∑p
j=1 φjXt�j + εt, εt � WN(0, σ2

ε )

Or
Φ(L)Xt = εt

where Φ(L) = 1�∑
p
j=1 φjL

j.

It can be shown that the AR(p) is stationary if the roots of Φ(z)
are outside the unit circle. Therefore Φ(L) has a a absolutely
summable inverse.
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ARMA processes
Autoregressive model of order p (AR(p))

This model corresponds to a MA(∞).

Example:Consider the case p = 1

Xt = φ1Xt�1 + εt

Notice that the model is equivalent to

Φ(L)Xt = εt

where Φ(L) = 1� φ1L. We know that Φ(L) has a absolutely
summable inverse if jφ1j < 1 and it is equal to
(1+ φ1L+ φ2

1L2 + . . .) thus multiplying both sides by Φ(L)�1 we
have

Φ(L)�1Φ(L)Xt = Φ(L)�1εt

or

Xt = (1+ φ1L+ φ2
1L2 + . . .)εt

= ∑+∞
j=0 φ

j
1εt�j
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ARMA processes
Autoregressive Moving Average models of order p and q ARMA(p,q)

Xt = ∑p
j=1 φjXt�j +∑q

j=0 θjεt�j, εt � WN(0, σ2
ε )

with θ0 = 1 or
Φ(L)Xt = Θ(L)εt

where Φ(L) = 1�∑
p
j=1 φjL

j and Θ(L) = ∑
q
j=0 θjLj.

It can be shown that the ARMA(p, q) is stationary if the roots of
Φ(z) are outside the unit circle. Therefore Φ(L) has an absolutely
summable inverse.
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ARMA processes
Autoregressive Moving Average models of order p and q ARMA(p,q)

Under these conditions it equivalent to a MA(∞) model.
Example: For instance consider the model ARMA(1, 1)̇

Xt = φ1Xt�1 + εt + θ1εt�1

There are two ways to show that it is equivalent to a MA(∞) process.

Using the method of undetermined coefficients.
Using the operator L
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ARMA processes
Method of undetermined coefficients

Assume that the process is stationary thus

Xt = ∑∞
i=0 αiεt�i

which implies that
Xt�1 = ∑∞

i=0 αiεt�1�i

The objective is to find the values of the coefficients α0, α1, α2, ...

Replacing this in the equation above we have

∑∞
i=0 αiεt�i = φ1(∑

∞
i=0 αiεt�1�i) + εt + θ1εt�1

Now we match the coefficients of the terms containing
εt, εt�1, εt�2, ... and obtaining

α0 = 1
α1 = φ1α0 + θ1 ) α1 = φ1 + θ1

αi = φ1αi�1 ) αi = φi�1
1 α1, i � 2

Author: Paulo M.D.C. Parente 24 / 65



ARMA processes
Using the operator L

We have
Φ(L)Xt = Θ(L)εt

with Φ(L) = 1� φ1L and Θ(L) = 1+ θ1L, thus assuming again that
jφ1j < 1 we have

Xt = Φ�1(L)Θ(L)εt

= (1+ φ1L+ φ2
1L2 + . . .)(1+ θ1L)εt

= (1+ (φ1 + θ1)L+ φ1(φ1 + θ1)L2 + . . .)εt

= ∑∞
i=0 αiεt�i

with

α0 = 1
α1 = φ1α0 + θ1 ) α1 = φ1 + θ1

αi = φ1αi�1 ) αi = φi�1
1 α1, i � 2
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ARMA processes
Invertibility and AR representations

The ARMA(p, q) process is said to be invertible if the roots of
Θ(z) = 0 lie outside the unit circle. Therefore Θ(L) has a a absolutely
summable inverse.
If Θ(L) is invertible we can pre-multiply both sides by Θ(L)�1 to
obtain

Θ(L)�1Φ(L)Xt = εt�
1�∑∞

j=1 αjLj
�

Xt = εt

for some coefficients α1, α2, ..., which corresponds to a AR(∞) process.
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ARMA processes
Characterization of ARMA processes

ARMA Processes are well characterized by two functions

The autocorrelation function (ACF):

ρj =
γj

γ0
, j = 1, 2, ...

The partial autocorrelation function (PACF).
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ARMA processes
The partial autocorrelation function (PACF).

The partial autocorrelation function is more difficult to define.
Informally it is defined as a measure of the association between
Xt and Xt�j whilst taking away the effects of the variables
Xt�1, ..., Xt�j+1 on this relationship (for j � 1).
Formally the partial autocorrelation between Xt and Xt�j is
defined as the coefficient of the variable Xt�j in the linear
projection of Xt on Xt�1, ..., Xt�j.
Remark: The linear projection of Xt on Xt�1, ..., Xt�j is given by

P(XtjXt�1, ..., Xt�j) = α�j + β�j,1Xt�1 + ...+ β�j,jXt�j,

where α�j , β�j,1, ..., β�j,j the values of αj, βj,1, ..., βj,j that minimize

E[(Xt � αj � βj,1Xt�1 � ...� βj,jXt�j)
2].

So the partial autocorrelation of order j is β�jj.
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ARMA processes
The partial autocorrelation function (PACF).

Fortunately, there are formulas that allow us to compute the
PACF in a easy way for any stochastic process which are given
by the Yule Walker Equations:

β�1,1 = ρ1

β�2,2 = (ρ2 � ρ2
1)/(1� ρ2

1)

β�j,j =
ρj �∑

j�1
i=1 β�j�1,1ρj�i

1�∑
j�1
i=1 β�j�1,1ρj

, j = 3, 4, 5, ...

β�j,i = β�j�1,i � β�j,jβ
�
j�i,j�i, i = 1, 2, ..., j� 1
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Properties of some ARMA processes
Moments of the stationary MA(1) process with a constant

Xt = c+ εt + θ1εt�1, εt � WN(0, σ2
ε )

We would like to compute µ = E(Xt), γ0 = var(Xt),
γj = cov(Xt, Xt�j) for j � 1.
Notice that µ = c. and γ0 = (1+ θ2

1)σ
2
ε . and

γ1 = E((Xt � c)(Xt�1 � c))

= θ1σ2
ε

γj = E((Xt � c)(Xt�j � c))
= 0, j > 1.

thus the ACF is given by

ρ1 =
θ1

(1+ θ2
1)

ρj = 0, j > 1.
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Properties of some ARMA processes
Moments of the stationary MA(1) process with a constant

PACF
Notice that Xt = c+Θ(L)εt, assuming that Θ(L) = (1+ θ1L) is
invertible we have if jθ1j < 1

Θ(L)�1Xt = Θ(L)�1c+ εt

where Θ(L)�1 = (1� θ1L+ θ2
1L2 � θ3

1L3 � ....).Thus

Xt =
c

1+ θ1
+ θ1Xt�1 � θ2

1Xt�2 + θ3
1Xt�3 + ...+ εt

Therefore Xt is correlated with all its lags. The PACF with exhibit a
geometrically decaying pattern. If θ1 < 0 its decay is direct. If θ1 > 0
the PACF coefficients oscillate.
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Properties of some ARMA processes
Moments of the stationary MA(1) process with a constant

MA(1), θ1 < 0
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Properties of some ARMA processes
Moments of the stationary AR(1) process with a constant

Let us now consider the AR(1) with a constant.

Xt = c+ φ1Xt�1 + εt, εt � WN(0, σ2
ε )

where εt � WN(0, σ2
ε ). We would like to compute µ = E(Xt),

γ0 = var(Xt), γj = cov(Xt, Xt�j) for j � 1.
Assuming stationary we have

E(Xt) =
c

1� φ1
.

and

var(Xt) =
σ2

ε

1� φ2
1
= γ0
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Properties of some ARMA processes
Moments of the stationary AR(1) process with a constant

The auto-covariances are given by

γj = φ1γj�1 = φ
j
1γ0.

Thus the ACF is given by

ρj = φ
j
1, j � 1

The PACF is given by

β�1,1 = φ1

β�j,j = 0, j > 1
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Properties of some ARMA processes
Moments of the stationary AR(1) process with a constant

AR(1) φ1 > 0
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Properties of some ARMA processes
Moments of the stationary AR(1) process with a constant

AR(1) φ1 < 0
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Properties of some ARMA processes
Moments of the stationary AR(2) process with a constant

Let us now consider the AR(2) with a constant.

Xt = c+ φ1Xt�1 + φ2Xt�2 + εt

Properties
The ACF in this case will be exponentially declining.
AR(2) processes spike in the first two lags of the PACF and it will
be equal to zero for lags bigger than two.
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Properties of some ARMA processes
Autoregressive Moving Average models of order 1 and 1 ARMA(1,1)

Xt = c+ φ1Xt�1 + εt + θ1εt�1, εt � WN(0, σ2
ε )

The ARMA(1,1) process shows exponential declines in both the ACF
and the PACF.
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Properties of some ARMA processes
General Characteristics of ARMA processes

Autoregressive processes have an exponentially declining ACF
and spikes in the first one or more lags of the PACF. The number
of spikes in the PACF indicates the order of the autoregression.
Moving average processes have spikes in the first one or more
lags of the ACF and an exponentially declining PACF. The
number of spikes in the ACF indicates the order of the moving
average.
Mixed (ARMA) processes typically show exponential declines in
both the ACF and the PACF
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Common factors

Consider the MA (∞) representation of the ARMA(1,1) model
(without a constant for simplicity.):

Xt = ∑∞
j=0 φ

j
1(εt�j + θ1εt�j�1)

which implies ACF

ρl = φl�1
1
(1+ φ1θ1)(φ1 + θ1)

1+ θ2
1 + 2φ1θ1

, l � 1.

If θ1 = �φ1 ) ρl = 0, ARMA(1, 1) reduces to white noise: AR
and MA polynomials cancel in (1� φ1L)Xt = (1+ θ1L)εt.
Implies that φ1 and θ1 are not identified.
Same occurs in ARMA(p, q) models, if z� is a zero of Φ(z) and
�z� is a zero of Θ(z)
To avoid identification problems reduce the model to
ARMA(p� 1, q� 1).
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Integrated Processes

Definition
If a stochastic process Xt must be differenced exactly d times to admit
Auto-Regressive (AR) and Moving-Average (MA) representations that
are both absolutely summable, then the series is I(d) and we write
Xt � I(d) (in words the process Xt is said to be integrated of order d.)

Remarks:

A stationary and invertible ARMA(p, q) process is I(0)
Xt � I(3), ∆3Xt = ∆[∆(∆Xt)] � I(0).
The random walk is I(1): Xt = Xt�1 + εt, εt � WN(0, σ2), thus
∆Xt = εt.
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ARIMA Models

If ∆dXt follows an ARMA(p,q) model,

Φ(L)∆dXt = c+Θ(L)εt

with all roots of Φ(z) and Θ(z) outside the unit circle, then Xt
follows an autoregressive integrated moving average model of order
(p,d,q) denoted ARIMA(p, d, q).
The ARIMA(p, d, q) is a non-stationary ARMA(p+ d, q) where
the autoregressive polynomial Φ�(L) = Φ(L)(1� L)d has d unit
roots. Therefore testing procedures to determine d focus on the
number of autoregressive unit roots.
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Stationary versus Integrated Processes

Usually choice between I(0) or I(1). Main differences are:

If Xt � I(0), then
Shock εt has a transient decaying effect on Xt+k as k ! ∞;
Xt fluctuates around its mean, i.e. displays mean-reversion
ACF of Xt has either a cut-off point or decays exponentially.

If Xt � I(1), then
Shock εt has a permanent or persistent effect on Xt+k as k ! ∞;
Xt is not mean-reversion and displays a (time-varying) trend.
ACF of Xt is not defined, but sample ACF (defined later) stays
close to one. Decays slowly (approximately linearly).
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Stationary versus Integrated Processes
Examples of simulated AR(1) models with φ1 = 0.9 (left) and φ1 = 1
(right):
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Box Jenkins Methodology

1 Transform the data, if necessary, so that the assumption of
covariance stationarity is a reasonable one (E.g. take first
differences.)

2 Identification: Make an initial guess for the values of p and q
3 Estimate the parameters of the proposed ARMA(p, q) model
4 Perform diagnostic analysis to confirm that the proposed model

adequately describes the data (e.g. examine residuals from fitted
model)
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Identification of Stationary ARMA(p,q) Processes

Intuition: The autocorrelations and partial autocorrelations define
the properties of an ARMA(p,q) model. A natural way to identify an
ARMA model is to match the pattern of the observed sample
autocorrelations (partial autocorrelations) with the patterns of the
theoretical autocorrelations (partial autocorrelations) of a particular
ARMA(p, q) model.
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Identification of Stationary ARMA(p,q) Processes
Sample autocorrelation function (SACF)

Sample autocovariances

γ̂j =
1
T ∑T

t=j+1(Xt � X̄)(Xt�j � X̄), j � 0

Sample autocorrelations

ρ̂j =
γ̂j

γ̂0
, j = 1, 2, ....

Result: If Xt is i.i.d. for all t then ρj = 0 we have
p

Tρ̂j
D! N(0, 1).

for all j = 1, ..., k. Thus to test H0 : ρj = 0 vs H1 : ρj 6= 0 we can use the

statistic
p

Tρ̂j.
Rejection rule: Let zα/2 be the 100� α% critical value (that is the
constant such that P(Z > zα/2) = α/2 where Z � N(0, 1)) Reject H0

in favour of H1 if
���pTρ̂j

��� > zα/2. For instance for α = 0.05 reject H0 if���ρ̂j

��� > 1.96/
p

T
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Identification of Stationary ARMA(p,q) Processes

Remark: ρ̂1, ..., ρ̂k are asymptotically independent (assuming that Xt
is i.i.d.):

p
T

264 ρ̂1
...

ρ̂k

375 D! N(0, Ik)

Box-Pierce Portmonteau statistic:

Let
Qk = T ∑k

j=1 ρ̂2
j .

If Xt is i.i.d for all t, then Qk
D! χ2(k).

H0 : ρj = 0, j = 1, ..., k vs H0 : there is at least one ρj 6= 0.
Rejection Rule: Reject H0 if Qk > cα where cα is the 100� α% critical
value (that is the constant such that P(X > cα) = α where
X � χ2(k)).
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Identification of Stationary ARMA(p,q) Processes

Ljung and Box showed that a simple degrees-of freedom
adjustment improves the finite sample performance:

Q�k = T(T+ 2)∑k
j=1

ρ̂2
j

T� j
.

If Xt is i.i.d for all t, then Q�k
D! χ2(k) (same Rejection rule)
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Identification of Stationary ARMA(p,q) Processes
The Sample Partial Autocorrelation Function (SPACF)

The jth order sample partial autocorrelation of Xt β̂jj is the estimated
coefficient of Xt�j in the regression of Xt on Xt�1, Xt�2, ..., Xt�j.for
j = 1, 2....

Result: If Xt is i.i.d for all t, then βjj = 0 thus for all j = 1, 2, ... we
have p

Tβ̂jj
D! N(0, 1).

Thus to test H0 : βjj = 0 vs H1 : βjj 6= 0 we can use the statisticp
Tβ̂jj.

Rejection rule: Let zα/2 be the 100� α% critical value (that is the
constant such that P(Z > zα/2) = α/2 where Z � N(0, 1)) Reject

H0 in favour of H1 if
���pTβ̂jj

��� > zα/2. For instance for α = 0.05

reject H0 if
���β̂jj

��� > 1.96/
p

T

Author: Paulo M.D.C. Parente 50 / 65



Maximum likelihood estimation of ARMA models.

For i.i.d. date the marginal pdf f (xt, γ), the joint pdf for a sample
(X1, ..., XT) is

f (x1, ..., xT; γ) =
independence

∏T
t=1 f (xt; γ).

The likelihood function is this joint density treated as a function
of the parameters given the random sample

L(γjX1, ..., XT) = ∏T
t=1 f (Xt; γ).

The log-likelihood is given by

log(L(γjX1, ..., XT)) = ∑T
t=1 log f (Xt; γ).

Problem: in time series

f (x1, ..., xT; γ) 6= ∏T
t=1 f (xt; γ).

because the random variables in sample (X1, ..., XT) are not iid.
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Maximum likelihood estimation of ARMA models

One possible solution: Conditional factorization of the density
function.
Intuition: Suppose that Xt only depends on Xt�1 (as in a AR(1)
process).
Consider the joint density of two adjacent observations f (x2, x1; γ).
The joint density can always be factored as the product of the
conditional density of x2 given x1 and the marginal density of x1 :

f (x2, x1; γ) = f (x2jx1; γ)f (x1; γ)

For three observations, the factorization becomes.

f (x3, x2, x1; γ) = f (x3jx2, x1; γ)f (x2jx1; γ)f (x1; γ)

Continuing with this reasoning we have

f (xT, ..., x1; γ) = (∏T
t=2 f (xtjFt�1; γ))f (x1; γ)

where Ft = (xt, ..., x1) = information available at time t.
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Maximum likelihood estimation of ARMA models

The exact log-likelihood function:

logL(γjX1, ..., XT) = ∑T
t=2 `t(γ) + `1(γ)

`t(γ) = log f (XtjFt�1; γ)

`1(γ) = log f (X1; γ)

The conditional log-likelihood:

logL�(γjX1, ..., XT) = ∑T
t=2 `t(γ)
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Maximum likelihood estimation of ARMA models

In a AR(1) process we have

X1 � N(
c

1� φ1
,

σ2

1� φ2
1
)

Remark: The assumption of (unconditional) normality (gaussianity)
is imposed.
Thus

f (x1, γ) =
1

σ
q

2π
1�φ2

1

exp

8<:� (x1 � c
1�φ1

)2

2σ2

1�φ2
1

9=;
where γ = (c, φ1, σ2)0.
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Maximum likelihood estimation of ARMA models

We know that Xt = c+ φ1Xt�1 + εt if we assume that εt � N(0, σ2)

and i.i.d., then XtjXt�1 = xt�1 � N(c+ φ1xt�1, σ2).

f (xtjxt�1, ..., x1| {z }
Ft�1

, γ) =
1

σ
p

2π
exp

(
� (xt � c� φ1xt�1)

2

2σ2

)

The log-likelihood function for the general ARMA(p,q) model
can be constructed in a similar way.
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Maximum likelihood estimation of ARMA models

Two types of maximum likelihood estimates (mles) may be
computed. The first type is based on maximizing the conditional
log-likelihood function logL�(γjX1, ..., XT). This estimator is
called conditional Maximum Likelihood Estimator (CML) [γ̂CML].
The second type is based on maximizing the exact loglikelihood
function logL(γjX1, ..., XT) and is called exact Maximum
Likelihood estimator (EML).
It is possible to show that both estimators are consistent and
asymptotically normal under some regularity conditions:

p
T(γ̂CML � γ0)

D! N(0, A�1
0 )

where A0 = E[� ∂2`t(γ0)
∂γ∂γ0 ] and γ0 are the true parameter values.

Moreover, the CML and EML estimators are asymptotically
equivalent.
They will not yield the same estimates in finite samples.
Inferences similar to the i.i.d. case.
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Testing

Diagnostic testing involves checking if the residuals ε̂t have white
noise properties:

Check the Sample autocorrelation function and Sample partial
autocorrelation function of the residuals [check if the absolute
values are bigger than 1.96/

p
T� where T� = T� p (effective

sample size)].
Use the Box-Pierce and Ljung-Box Statistics applied to the
residuals.
Alternative test: Test for serial correlation using the (Breusch
Godfrey) Lagrange multiplier statistic. Example: Test for white
noise against rth order autocorrelation in the residuals in a AR(p)
model amounts to Test β1 = ....βr = 0 in auxiliary regression

ε̂t = α0 + α1Xt�1 + ...+ αpXt�p + β1 ε̂t�1 + ...+ βr ε̂t�r + et,

where ε̂t are the residuals of the model. Test Statistic.
LM = T� R2 D! χ2(r) (R2 of the auxiliary regression.)
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Goodness of Fit

Inspection of the SACF and SPACF to identify ARMA models is
somewhat of an art rather than a science. A Less arbitrary
procedure to identify an ARMA model is to use formal model
selection criteria. The two most widely used criteria are the
Akaike information criterion (AIC) and the Bayesian (Schwarz)
Information criterion (BIC or SIC). The usual definitions are:

AIC(p, q) = log(σ̂) + 2 (p+q)
T� , where σ̂ is the estimate of σε.

BIC(p, q) = log(σ̂) + log(T�)(p+q)
T� . (recommended)

Given several models we should choose the one having the
lowest information criteria.

Interpretation:

Models with a good fit should have a low log(σ̂)

2 (p+q)
T� and log(T�)(p+q)

T� penalize models with a large number of
parameters. Penalty of extra parameters is more severe in BIC.

Remark: Models with a large number of parameters have a poor
forecast ability.
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Forecasting
Preliminaries

Fs = fXs, Xs�1, ...g, information on process Xt up to s.
Conditional expectation E(XtjFs), s < t, is best (under squared
error loss) predictor of Xt given Fs :

E((Xt � E(XtjFs))
2) � E((Xt � g(Fs)))

2)

for all functions g(Fs).
Best Linear predictor: P(XtjFs), s < t,

E((Xt � P(XtjFs))
2) � E((Xt � g(Fs)))

2)

for all linear functions g(Fs).

Some definitions

A the process Xt is a martingale if E(Xt+1jFt) = Xt, for all t.
A the process Yt is a martingale difference sequence if
E(Yt+1jFt) = 0 for all t.
Remark: If Xt is a martingale, Zt = Xt �Xt�1 is a martingale
difference sequence.
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Forecasting

Under the assumptions considered on the white noise process εt
so far we are able to estimate P(XtjFs) [cov(εj, εi) = 0 for i 6= j].
If we assume that the errors are i.i.d. or a martingale difference
sequence, that is

E(εt+1jFt) = 0, for all t,

we are able to estimate E(XtjFs).
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Forecasting

Useful properties of conditional expectations

E(E(XtjFs)) = E(Xt) (law of iterated expectations)
E(E(XtjFs)jFr) = E(XtjFr) (r < s < t) (tower property).

Let us write Et(Xt+l) = E(Xt+ljFt) to simplify the notation.
Assuming that the errors εt are a martingale difference sequence, we can
use these properties to show that the estimator for best forecast
Et(Xt+l) is given by

Et(Xt+l) = c+∑p
j=1 φjEt(Xt+l�j) +∑q

j=1 θjεt(l� j)

where Et(Xt+l�j) = Xt+l�j for j � l and

εt(l� j) =
�

εt+l�j j � l
0 j < l
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Forecasting

Example: For an ARMA(1, 1) process

Xt = c+ φ1Xt�1 + εt + θ1εt�1.

As Xt+1 = c+ φ1Xt + εt+1 + θ1εt we have

Et(Xt+1) = c+ φ1Xt + θ1εt

Also Xt+2 = c+ φ1Xt+1 + εt+2 + θ1εt+1 and

Et(Xt+2) = c+ φ1Et(Xt+1)
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Forecasting

The variance of the prediction errors et(l) = Xt+l � Et(Xt+l) is
obtained from the MA(∞) representation of the ARMA(p, q)
process Xt = E(Xt) +∑∞

j=0 ψjεt�j. Assuming that var(εt) = σ2
ε for

all t, one can show that

var(et(l)) = σ2
ε ∑l�1

j=0 ψ2
j

For stationary process as l ! ∞ we have

Et(Xt+l)! E(Xt)

and
var(et(l))! var(Xt)
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Forecasting

In practice to make (out of sample) predictions we have to
replace the unknown parameters by their estimators yielding

ÊT(XT+l) = ĉ+∑p
j=1 φ̂jÊT(XT+l�j) +∑q

j=1 θ̂j ε̂T(l� j), l > 0

where ET(Xt+l�j) = XT+l�j for j � l, ĉ, φ̂j and θ̂j are estimators of
c, φj and θj and

ε̂t(l� j) =
�

ε̂T+l�j j � l
0 j < l ,

where ε̂t, t = p+ 1, ..., T are the residuals.
For I(1) processes the above methods are applied to ∆Xt,
yielding E(∆Xt+ljFt). The forecasts of Xt+l are given by

Et(Xt+l) = Xt +∑l
i=1 Et(∆Xt+i).

Author: Paulo M.D.C. Parente 64 / 65



Forecasting

Comparison of the forecasts among different ARMA/ARIMA
models:

leave the last observations of the time series out of the estimation
of the models,
produce forecasts for these observations for each model;
choose the model that yields the minimum value of the (sample)
mean squared prediction error among the estimated models.
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