

### **Evaluation**

Carlos J. Costa

### **Evauation**

 After a data scientist has chosen a target variable and completed the prerequisites of transforming data and building a model, one of the final steps is evaluating the model's performance.



### **Confusion Matrix**

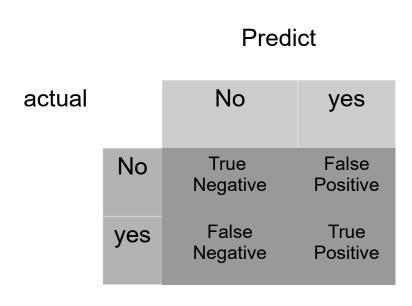
- This matrix describes an output of "yes" vs. "no".
- These two outcomes are the "classes" of each example.

| actual |     | No | yes |
|--------|-----|----|-----|
|        | No  | 90 | 10  |
|        | yes | 5  | 95  |



### **Confusion Matrix**

- To better interpret the table, it is possible to see it in terms of:
  - true positives (TP): number of positive records rightly predicted as positive
  - true negatives (TN): number of negatives records rightly predicted as negative
  - false positives (FP): number of negative records wrongly predicted as positive
  - false negatives (FN): number of positive records wrongly predicted as negative.





### **Confusion Matrix**

- False Positive is Type I Error
- False Negative is Type II Error

|        |     | Predict                        |                               |
|--------|-----|--------------------------------|-------------------------------|
| actual |     | No                             | yes                           |
|        | No  | True<br>Negative               | False<br>Positive<br>(Type I) |
|        | yes | False<br>Negative<br>(Type II) | True<br>Positive              |



## Accuracy

Overall performance of the model

actual

**Predict** 

 Overall, how often is our model correct?

|     | No                | yes               |
|-----|-------------------|-------------------|
| No  | True<br>Negative  | False<br>Positive |
| yes | False<br>Negative | True<br>Positive  |

# Precision or positive predictive value (PPV)

- How accurate the positive predictions are
  - Precision=TP/(TP+FP)
    - or
  - Precision= True positives/predicted positives

actual

- Precision helps when the costs of false positives are high.
  - e.g. detect skin cancer

No yes

No True False Positive

yes False True Positive

**Predict** 

# Recall or true positive rate (TPR)

 Coverage of actual positive sample Recall=TP/(TP+FN)

 Recall helps when the cost of false negatives is high.

- e.g. detect nuclear missil actual

|     | No                | yes               |
|-----|-------------------|-------------------|
| No  | True<br>Negative  | False<br>Positive |
| yes | False<br>Negative | True<br>Positive  |



# Specificity or true negative rate (TNR)

Coverage of Actual negative Sample

**Predict** 

| actual |     | No                | yes               |
|--------|-----|-------------------|-------------------|
|        | No  | True<br>Negative  | False<br>Positive |
|        | yes | False<br>Negative | True<br>Positive  |



### F1 Score

 Hybrid metric useful for unbalanced samples

F1=2((precision x recall)/(precision + recall))

actual

a good F1 score means:

**Predict** 

- low false positives &
- low false negatives
- correctly identifying real threats
- not disturbed by false alarms.

|     | No                | yes               |
|-----|-------------------|-------------------|
| No  | True<br>Negative  | False<br>Positive |
| yes | False<br>Negative | True<br>Positive  |

#### ROC

- Receiver operating characteristic curve
- Specially useful in presence of binary non balanced datasets.
- ROC Charts present the balance between True Positive rate (recall) and False Positive rate in a graphical way,
- ROC Charts are available through the roc\_curve method in the sklearn.metrics



### **ROC**

