Quantile regression

Framework Specification Testing heteroskedasticity Estimation in STATA **Quantile regression
Framework
Specification
Testing heteroskedasticity
Estimation in STATA
Quantiles for counts**

Quantile regression Framework

Aim: modelling the relationship between a response and explanatory variables at different points of the conditional distribution of Y|X **amework**
 n: modelling the relationship between a response and

blanatory variables at different points of the conditional

tribution of Y|X

Conditional mean models focus only on the mean E(Y|X)

Median or least absol Framework

Aim: modelling the relationship between a response and

explanatory variables at different points of the conditional

distribution of Y|X

• Conditional mean models focus only on the mean E(Y|X)

• Median or lea

- Conditional mean models focus only on the mean $E(Y|X)$
- Median or least absolute deviation (LAD) is the most well
-

Quantile regression Framework

Figure CT, pp. 89, 90

• See also: http://www.econ.uiuc.edu/~roger/research/intro/jep.pdf

Quantile regression Framework

Advantages of QR:

- Median is more robust to outliers that the mean
- No distribution is assumed for the error
- Analysis can be made at different locations, providing a richer characterization of the data
- Retransformation for recovering original scale is straightforward:
	- While for the mean $E[h(y)] \neq h[E(y)]$
	- $Q[h(y)] = h[Q(y)]$

Let $q, q \in (0,1)$ be a quantile. q splits the sample into a proportion q bellow and a proportion $(1 - q)$ above **example into a**
 h a cdf $F(y) = P(Y \le y)$
 · $F(y_q) = q \rightarrow y_q = F^{-1}(q)$
 · For the median: $F(y_{0.5}) = 0.5 \rightarrow y_{0.5} = F^{-$

With a cdf $F(y) = P(Y \le y)$

$$
\cdot \quad \mathsf{F}(y_q) = q \to y_q = \mathsf{F}^{-1}(q)
$$

- For the median: $F(y_{0.5}) = 0.5 \rightarrow y_{0.5} = F^{-1}(0.5)$
- Conversely, for a given $y_{0.9} = 10 \rightarrow P(Y \le 10) = 0.9$

Objective function

• While for

• OLS: $\sum (y_i - x_i \beta)^2$ with $E[\widehat{Y|X}] = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \cdots \hat{\beta}_k x_{ik}$

- LAD: $\sum |y_i x_i \beta|$ with $Q_{0.5}[Y|X] = \hat{\beta}_{0.0.5} + \hat{\beta}_{1.0.5} x_{i1} + \cdots \hat{\beta}_{k.0.5} x_{ik}$
- For QR, for a given β_a :

$$
\sum\nolimits_{i|y_i \geq x_i \beta_q} q |y_i - x_i \beta_q| + \sum\nolimits_{i|y_i < x_i \beta_q} (1 - q) |y_i - x_i \beta_q|
$$

- Uses asymmetric penalties, except for LAD ($q = 0.5$)
- OLS: $\sum (y_i x_i \beta)^2$ with $E[Y|X] = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \cdots \hat{\beta}_k x_{ik}$
• LAD: $\sum |y_i x_i \beta|$ with $Q_{0.5}[Y|X] = \hat{\beta}_{0,0.5} + \hat{\beta}_{1,0.5} x_{i1} + \cdots \hat{\beta}_{k,0.5} x_{ik}$
For QR, for a given β_q :
 $\sum_{i|y_i \ge x_i \beta_q} q |y_i x_i \beta_q| + \sum_{i|y_i < x$ nature of the objective function uses linear programming (simplex) as optimization method

Asymptotic distribution

$$
\sqrt{n}(\hat{\beta}-\beta_0) \stackrel{d}{\rightarrow} N[0, A^{-1}BA'^{-1}]
$$

where $A = plim \frac{1}{N} \sum_{i=1}^{N} f_{u_n}(0|x_i)x_ix_i'$, \overline{N} $\Delta i=1$ $\int u_q$ (\cup $\vert x_i \rangle x_i x_i$, $\vert D =$ \int \int $\vert T \vert$ $\int_{i=1}^N f_{u_q}(0|x_i)x_ix_i', B = plim\frac{1}{\Lambda}$ $\frac{1}{N}$ $\sum N$ \approx (1 \approx) \approx \approx $\frac{1}{N}$ \overline{N} $\Delta i = 1$ $q(1 - q)x_i x_i$, $_{i=1}^{N} q(1-q)x_{i}x_{i}^{\prime},$ and $f_{u_q}(0|x_i)$ is the conditional pdf of the error u_q evaluated at 0. $\left[1BA'^{-1}\right]$
 $plim \frac{1}{N} \sum_{i=1}^{N} q(1-q)x_i x'_i$,

error u_q evaluated at 0.

the paired boostrap is

• To avoid obtaining an estimator for f_{u_q} the paired boostrap is usually employed

**Quantile regression

Decification

Conditional quantile function & partial effects
** $Q_q[y_i|x_i] = \beta_0^q + \beta_1^q X_{i1} + \dots + \beta_k^q X_{ik} + F_{u_i}^{-1}(q)$

$$
Q_q[y_i|x_i] = \beta_0^q + \beta_1^q X_{i1} + \dots + \beta_k^q X_{ik} + F_{u_i}^{-1}(q)
$$

- With hereroscedasticity, all partial effects will depend on X, which is contained in u_i
- With homoscedasticity $F_{u_i}^{-1}(q) = F_u^{-1}(q)$: $\mathcal{E}_{u}^{-1}(q)$:

$$
Q_q(y_i|x_i) = [\beta_0^q + F_u^{-1}(q)] + \beta_1^q X_{i1} + \dots + \beta_k^q X_{ik}
$$

partial effects will not depend on X, $F^{-1}_u(q)$ is included in the intercept

• Partial effects of dummies: assume that the individual remains in the same quantile

Transformation & retransformation

Consider the transformation α **retransformation

Consider the transformation** $ln(y)$ **, which yields the conditional

quantile function
** α **is the condition of the conditional of the conditional Quantile regression

pecification

Transformation & retransformation

Consider the transformation** $ln(y)$ **, which yiel

quantile function
** $Q_q[ln(y_i)|x_i] = \beta_{q0} + \beta_{q1}X_{i1} + \cdots + \beta_{q0}X_{iq}$

$$
Q_q[ln(y_i)|x_i] = \beta_{q0} + \beta_{q1}X_{i1} + \dots + \beta_{qk}X_{ik} + F_{u_i}^{-1}(q)
$$

- **cification**
 nsformation & retransformation

sider the transformation $ln(y)$, which yields the conditional
 $Q_q[ln(y_i)|x_i] = \beta_{q0} + \beta_{q1}X_{i1} + \cdots + \beta_{qk}X_{ik} + F_{u_i}^{-1}(q)$

The corresponding quantile in the original scale is
 $Q_q(y_i|x_i) = exp\{Q_q[ln(y_i)|x_i]\}$ $q_0 + p_{q_1} \Lambda_{i1} + \cdots + p_{q_k} \Lambda_{ik} + r_{u_i} (q)$ $\lceil \frac{1}{a} \rceil$
- Under homoscedasticity, partial effects will depend on X but not on $F^{-1}_{u_i}(q)$ $\beta_{qj}Q_q(y_i|x_i) = \exp(\rho_0 + r_u - (q) + \rho_{q1}\Lambda_i)$ q_{L} $r^{-1}(q)$ \downarrow ρ \vee v_{u} -(q)] + p_{q1} Λ_{i1} + … + $\begin{bmatrix} -1(a) \end{bmatrix} + B \cdot X_{11} + \cdots$ $q_1 \Lambda_{i1}$ + \cdots + $\rho_{qk} \Lambda_{ik}$) ρ_{qj}

**uantile regression
• Sting heteroskedasticitv
• Test BP in the framework of a linear model
• Consider** Quantile regression Testing heteroskedasticity

Consider

$$
Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + u_i
$$

-
- Estimate by OLS to obtain ^ଶ **1111 The Augle School Setter Contains the auxiliary of the framework of a linear model

Sonsider

For** $Y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_k x_{ik} + u_i$ **

For Estimate by OLS to obtain** \hat{u}^2 **

For Estimate the auxiliary regression \hat Eimate the auxiliary regression** $\hat{u}^2 = \gamma_0 + \gamma_1 X_1 + \cdots + \gamma_k X_k$ + **The interpretation of a linear model**

Sonsider
 $Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + u_i$

Fastimate by OLS to obtain \hat{u}^2

Fastimate the auxiliary regression $\hat{u}^2 = \gamma_0 + \gamma_1 X_1 + \dots + \gamma_k X_k + e$

Fast the joint significance
-
- Consider
 $Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + u_i$

 Estimate by OLS to obtain \hat{u}^2

 Estimate the auxiliary regression $\hat{u}^2 = \gamma_0 + \gamma_1 X_1 + \dots + \gamma_k X_k + e$

 Test the joint significance of regressors (F or LM)

 Heteroske **Example 18 Set** $Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + u_i$ **

• Estimate by OLS to obtain** \hat{u}^2 **

• Estimate the auxiliary regression** $\hat{u}^2 = \gamma_0 + \gamma_1 X_1 + \dots + \gamma_k X_k + e$ **

• Test the joint significance of regressors (F or LM)

Heter Example 19 OLS to obtain** \hat{u}^2
 Example 19 OLS to obtain $\hat{u}^2 = \gamma_0 + \gamma_1 X_1 + \cdots + \gamma_k X_k + e$ **

Example 19 OLS to obtain** $\hat{u}^2 = \gamma_0 + \gamma_1 X_1 + \cdots + \gamma_k X_k + e$
 Example 19 Test the joint significance of regressors (F o

Quantile regression Estimation in STATA

• Estimating QR with analytic standard errors (default quantile: 0.5). No vce() option available Stata

qreg $Y X_1 ... X_k$ qreg $Y \overline{X_1}$... X_k , quantile(.25)

• Estimating QR with bootstrap standard errors, retaining the assumption of independent errors but relaxing the assumption of identically distributed errors. Analogous to robust standard errors in linear regression

Stata set seed(123) bsqreg $Y X_1 ... X_k$, reps(400) quantile(.25)

• Estimating QR for several values of q simultaneously, allowing for differences between coefficients for different quantiles to be tested. Bootstrap standard errors are produced

> **Stata** set seed(123) sqreg $Y X_1 ... X_k$, reps(400) quantile(.25,.5,.75)

Quantile regression Estimation in STATA

• Testing the equality of a regression coefficient at different quantiles (Wald test) **Stata**

set seed(123) sqreg $Y X_1 ... X_k$, reps(400) quantile(.25,.5,.75) test $[q25=q50=q75]:X_1$ set seed(123)

sqreg $Y X_1 ... X_k$, reps(400) quantile(.25,.5,.75)

test [q25=q50=q75]: X_1

mates over different quantiles. Install

install grqreg)

Stata

qreg $Y X_1 ... X_k$, quantile(.50) nolog

grqreg, cons ci ols olsci rep

• Illustrating the coefficient estimates over different quantiles. Install Testing the equality of a regression coefficient at different quantiles

(Wald test)

set seed(123)

set seed(123)

set seed(123)

set seed(123)

test $|q25=q50=q75|X_1$

test $|q25=q50=q75|X_1$

Illustrating the coefficient

Stata qreg $\overline{Y}X_1 ... X_k$, quantile(.50) nolog
grqreg, cons ci ols olsci reps(40)

Quantile regression Quantiles for counts

Seminal paper: Machado & Santos Silva (2005)

Let $y \in \{0,1,2,...\}$. The idea is transforming Y into a continuous **uantile regression**
vantiles for counts
Seminal paper: Machado & Santos Silva (2005)
Let $y \in \{0,1,2,...\}$. The idea is transforming Y into a continuous
variable, estimate as usual in QR, and then retransformate to the
ori original scale Let $y \in \{0,1,2,...\}$. The idea is transforming Y into a continuous
variable, estimate as usual in QR, and then retransformate to the
original scale
• Transformation ("jittering the count"):
 $z = y + u$
where $u \sim U(0,1)$. The r

• Transformation ("jittering the count"):

$$
Q_q(z_i|x_i) = q + exp(\beta_{q0} + \beta_{q1}X_{i1} + \dots + \beta_{qk}X_{ik})
$$

which includes *q* as the lower limit of $Q_q(z_i|x_i)$, required due to the
jittering

Quantile regression Quantiles for counts

• The quantile $Q_q(z_i|x_i)$ is linearized: the dependent variable in QR is

$$
\begin{cases} \ln(z-q) \text{ for } z-q > 0\\ \ln(\varepsilon) \text{ for } z-q \le 0 \end{cases}
$$

where ε is a small constant

• Independent replications are taken from u and the resulting coefficient estimates averaged, giving rise to $\hat{\beta}_a$

**uantile regression
• Retransformation to the original scale uses a ceilling function
•** $Q_q(y_i|x_i) = [Q_q(y_i|x_i) - 1]$ Quantile regression Quantiles for counts

lantile regression

\n**lantiles for counts**

\n• Retransformation to the original scale uses a ceiling function

\n
$$
Q_q(y_i|x_i) = [Q_q(y_i|x_i) - 1]
$$
\nwhere [.] denotes the smallest integer $\geq (Q_q(y_i|x_i) - 1)$

\nTaking into account the averaging of the coefficients, we obtain

\n
$$
\hat{Q}_q(y_i|x_i) = [\hat{Q}_q(y_i|x_i) - 1]
$$

$$
\widehat{Q}_q(y_i|x_i) = \left[\widehat{Q}_q(y_i|x_i) - 1\right]
$$

$$
= \left[q + exp\left(\overline{\widehat{\beta}}_{q0} + \overline{\widehat{\beta}}_{q1}X_{i1} + \dots + \overline{\widehat{\beta}}_{qk}X_{ik}\right) - 1\right]
$$