

Financial Markets and Management

- We will use the basic framework of Modigliani-Miller's 1958 seminal article to establish the first theoretical results on capital structure:
 - Modigliani-Miller (1958) set of assumptions;
 - MM Proposition I:
 - The Irrelevance Result;
 - Example
 - MM Proposition II:
 - Leverage increases risk and expected return for equity-holders.
 - Homemade leverage: Example
- Later we will adapt these results to accommodate our real-world imperfections, such as taxes, costs of bankruptcy,...

MiM - ISEG LISBON

- The Capital Structure of a firm (or project) is the mix of Equity and Debt that the firm uses.
- In a Perfect World, as presented first by Modigliani and Miller in 1958, we will see that the capital structure choice is irrelevant.
- Why? The total value of the firm depends on the value of its assets, independently of them being financed with equity or debt. (MM Proposition I)
- Even if the cost of debt is lower than the cost of equity, on average the cost of capital of the firm is always the same (「WACC does not change with the capital structure). This happens because when a firm increases its cheaper source of financing debt it also increases the risk for equity-holders, and hence the cost of equity goes up.

Capital
Structure in
a Perfect
World:
an overview

Modigliani-Miller: Assumptions

- Modigliani and Miller (MM) showed in 1958 their capital structure results under a set of conditions referred to as perfect capital markets:
 - Investors and firms can trade the same set of securities at competitive market prices equal to the present value of their future cash flows.
 - There are no taxes, transaction costs, or issuance costs associated with security trading.
 - A firm's financing decisions do not change the cash flows generated by its investments, nor do they reveal new information about them.

Modigliani-Miller: Proposition I (MMI)

MM Proposition I:

In a perfect capital market, the total value of a firm is equal to the market value of the total cash flows generated by its assets and is not affected by its choice of capital structure.

Value of the Levered Firm

$$V^L = V^U$$
 Value of the Unlevered Firm

This is also known as the Irrelevance result: the choice of capital structure does not affect the value of the firm.

Example: Compare Different Structures

Consider the following investment opportunity, with equal probability for

the date 1 scenarios.

•	Date 0	Date 1		
		Strong Economy	Weak Economy	
	- \$800	\$1400	\$900	

- Capital Structure #1: 100% Equity Financing (Unlevered Equity)
 - Consider a Rf interest rate of 5%, and that you require a 10% risk premium.
 - The project's NPV is:

$$NPV = -800 + \frac{0.5 \times 1400 + 0.5 \times 900}{1 + 0.15} = $200$$

- You can actually raise \$1000 in equity, and gain \$200 on top of your required return.
- The cash flows and returns for Unlevered Equity-holders are:

	Date 0	Date 1: Cash Flows		Date 1: Returns	
	Initial Value	Strong Economy	Weak Economy	Strong Economy	Weak Economy
Unlevered equity	\$1000	\$1400	\$900	} 40%	→ -10%

Example: Compare Different Structures

- Capital Structure #2: 50% Debt / 50% Equity (Levered equity)
 - Borrow \$500. At rate Rf=5%, because debt will be riskless (look at cash flows)
 - Get the remainder as equity. What's the value of equity?
 - Look at the Cash Flows:

	Date 0	Date 1: Cash Flows	
	Initial Value	Strong Economy	Weak Economy
Debt	\$500	\$525	\$525
Levered equity	<i>E</i> = ?	\$875	\$375
Firm	\$1000	\$1400	\$900

- In equilibrium the value of equity must be E=\$500.
- How can we check this?

Example: Compare Different Structures

- Levered Equity has higher risk! The variability of returns is higher. Therefore, the expected return of levered equity is higher than the expected return of unlevered equity.
 - Check it:

_	Date 0	Date 1: Cash Flows		Date 1: Returns		
	Initial Value	Strong Economy	Weak Economy	Strong Economy	Weak Economy	Expected Return
Debt	\$500	\$525	\$525	5%	5%	5%
Levered equity	\$500	\$875	\$375	75%	-25%	25%
Unlevered equity	\$1000	\$1400	\$900	40%	-10%	15%

- While debt might be cheaper on its own, it increases the cost of equity.
- Therefore the cash flows for equity-holders cannot be discounted at rate 15% anymore, but rather at 25%!

Example: Homemade Leverage

- Turning to our previous example we can understand MM's result by considering homemade leverage made by the investors themselves in case the firm is unlevered.
 - Suppose the firm is unlevered, and the investor creates his own leverage by borrowing \$500 (or getting a margin loan) at Rf=5%.

	Date 0	Date 1: Cash Flows	
	Initial Cost	Strong Economy	Weak Economy
Unlevered equity	\$1000	\$1400	\$900
Margin loan	-\$500	-\$525	-\$525
Levered equity	\$500	\$875	\$375

• Likewise, if the firm is levered (with 50% Debt and 50% equity) an investor who wants to invest in the firm as if it were unlevered, can buy both the equity and the debt of the firm.

	Date 0	Date 1: Cash Flows	
	Initial Cost	Strong Economy	Weak Economy
Debt	\$500	\$525	\$525
Levered equity	\$500	\$875	\$375
Unlevered equity	\$1000	\$1400	\$900

Modigliani-Miller: Proposition II (MM II)

- In their Proposition II, MM give the justification for Proposition I.
 - The reason why the value of the firm is unaltered by the capital structure is that higher leverage causes higher risk for equity-holders, and hence a higher cost of equity.
- Proposition II:
 - The cost of capital of levered equity is equal to the cost of capital of unlevered equity plus a premium that is proportional to the market value debt-equity ratio.

$$r_E = r_U + \frac{D}{E}(r_U - r_D)$$

Cost of Levered Equity

Cost of Unlevered Equity

Market Value of Debt

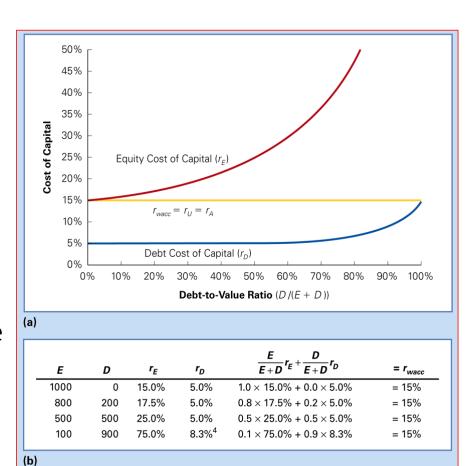
Marke Value of Equity

Modigliani-Miller Propositions

• If we want we can visualize MM's reasoning by looking at a Market Value Balance-Sheet:

■ Therefore when we compute the average cost of capital of the firm, we find that it's always the same in a perfect world. It equals the unlevered cost of capital $(R\nu)$:

$$R_U = \frac{E}{E+D}R_E + \frac{D}{E+D}R_D$$


Cost of Capital in a perfect world

• We define the Unlevered Cost of Capital (or pre-tax WACC) as:

$$r_U = \frac{E}{E+D} r_E + \frac{D}{E+D} r_D$$

• And we know that in the MM world, the WACC equals the Unlevered Cost of Equity, which is the Cost of Capital of the firm's Assets:

$$r_{wacc} = r_U = r_A$$

Additional Comments

- Computing the WACC with multiple securities:
 - It is possible to compute the WACC rate if we want to consider more securities than just debt and common stock.
- Levered betas (βΕ) and Unlevered Betas (βU):
 - The Beta of a stock will vary according to the debt-equity ratio of the firm. We can apply the same logic of MM II to betas: $\begin{bmatrix} E & D \end{bmatrix}$

$$\beta_{U} = \frac{E}{E+D} \beta_{E} + \frac{D}{E+D} \beta_{D}$$

$$\beta_{E} = \beta_{U} + \frac{D}{E} (\beta_{U} - \beta_{D})$$

- Holding Cash: Holding cash has the opposite effect of having debt.
 - When calculating D, we use Net Debt.
 - **Example**: E=\$114.8 billion; Debt=\$10.3 billion; and Cash and Short term investments = \$33.6 billion.
 - D = 10.3 33.6 = \$ 23.33 billion