Models in Finance - Part 15
 Master in Actuarial Science

João Guerra

ISEG

B-S model: replication of European call

- Discounted values: $E_{t}=e^{-r t} V_{t}$ and $D_{t}=e^{-r t} S_{t}$ are both martingales under Q.
- Moreover, we know that under Q,

$$
\begin{align*}
d S_{t} & =S_{t}\left(r d t+\sigma d \widetilde{Z}_{t}\right) \tag{1}\\
d D_{t} & =\sigma D_{t} d \widetilde{Z}_{t} \tag{2}\\
d E_{t} & =-r e^{-r t} V_{t} d t+e^{-r t} d V_{t} \\
& =e^{-r t}\left(-r V_{t} d t+d V_{t}\right) \tag{3}
\end{align*}
$$

B-S model: replication of European call

- By Ito's formula:

$$
\begin{aligned}
d V_{t} & =\frac{\partial V}{\partial t} d t+\frac{\partial V}{\partial s} d S_{t}+\frac{1}{2} \frac{\partial^{2} V}{\partial s^{2}}\left(d S_{t}\right)^{2} \\
& =\left[\frac{\partial V}{\partial t}+r S_{t} \frac{\partial V}{\partial s}+\frac{1}{2} \sigma^{2} S_{t}^{2} \frac{\partial^{2} V}{\partial s^{2}}\right] d t+ \\
& +\sigma \frac{\partial V}{\partial s} S_{t} d \widetilde{Z}_{t} \\
& =\left[\frac{\partial V}{\partial t}+r S_{t} \frac{\partial V}{\partial s}+\frac{1}{2} \sigma^{2} S_{t}^{2} \frac{\partial^{2} V}{\partial s^{2}}\right] d t+ \\
& +\frac{\partial V}{\partial s} e^{r t} d D_{t}
\end{aligned}
$$

B-S model: replication of European call

- Using Eq. (3) we obtain:

$$
\begin{align*}
d E_{t} & =e^{-r t}\left(-r V_{t}+\frac{\partial V}{\partial t}+r S_{t} \frac{\partial V}{\partial s}+\frac{1}{2} \sigma^{2} S_{t}^{2} \frac{\partial^{2} V}{\partial s^{2}}\right) d t \tag{4}\\
& +\frac{\partial V}{\partial s} d D_{t} \tag{5}
\end{align*}
$$

- Since E_{t} and D_{t} are both martingales under Q, by the MRT, exists previsible process ϕ_{t} such that

$$
\begin{equation*}
d E_{t}=\phi_{t} d D_{t}=\sigma \phi_{t} D_{t} d \widetilde{Z}_{t} \tag{6}
\end{equation*}
$$

- Comparing Eqs (4)-(5) with Eq. (6), we have that:

$$
\begin{align*}
\phi_{t} & =\frac{\partial V}{\partial s} \tag{7}\\
r V_{t} & =\frac{\partial V}{\partial t}+r S_{t} \frac{\partial V}{\partial s}+\frac{1}{2} \sigma^{2} S_{t}^{2} \frac{\partial^{2} V}{\partial s^{2}} \tag{8}
\end{align*}
$$

B-S model: replication of European call

- The last PDE equation is the Black-Scholes PDE.
- We can show that:

$$
\begin{equation*}
\phi_{t}=\frac{\partial V}{\partial s}=\Phi\left(d_{1}\right) \tag{9}
\end{equation*}
$$

- The martingale approach has provided an alternative derivation of the B.-S. PDE and Eq. (9) gives explicit formula for ϕ_{t} of the replicating portfolio (is equal to the Delta Δ).

Advantages of the martingale approach

- The martingale approach is much more clear in the process of pricing derivatives, comparing to the PDE approach.
- Under the PDE approach we derived a PDE and had to "guess" the solution for a given set of boundary conditions.
- Under the martingale approach we have an expectation which can be evaluated explicitly in some cases and in a straightforward numerical way in other cases.
- The martingale approach also gives us the replicating strategy for the derivative.
- The martingale approach can be applied to any \mathcal{F}_{T}-measurable derivative payment, including path-dependent options (for example, Asian options), whereas the PDE approach, in general, cannot.

Risk neutral pricing

- Exercise: You are trying to replicate a 6-month European call option with strike price 500, which you purchased 4 months ago. If $r=0.05$, $\sigma=0.2$, and the current share price is 475 , what portfolio should you be holding (assuming no dividends) ?
- The martingale approach is also known as risk-neutral pricing. The measure Q is commonly called the risk-neutral measure. However, Q is also referred to as the equivalent martingale measure because the discounted prices D_{t} and E_{t} are martingales under Q.

State price deflator approach

- Recall that:

$$
\begin{align*}
& d S_{t}=S_{t}\left(\mu d t+\sigma d Z_{t}\right), \text { under } P \tag{10}\\
& d S_{t}=S_{t}\left(r d t+\sigma d \widetilde{Z}_{t}\right), \text { under } Q \tag{11}
\end{align*}
$$

where

$$
\begin{equation*}
d \widetilde{Z}_{t}=d Z_{t}+\gamma d t \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma=\frac{\mu-r}{\sigma} \tag{13}
\end{equation*}
$$

- A corollary to the Cameron-Martin-Girsanov theorem states that there exists a process η_{t} such that for a payoff X we have:

$$
E_{Q}\left[X \mid \mathcal{F}_{t}\right]=E_{P}\left[\left.\frac{\eta_{T}}{\eta_{t}} X \right\rvert\, \mathcal{F}_{t}\right]
$$

where (in this case):

$$
\begin{equation*}
\eta_{t}=e^{-\gamma Z_{t}-\frac{1}{2} \gamma^{2} t} \tag{14}
\end{equation*}
$$

State price deflator approach

- Define

$$
\begin{equation*}
A_{t}=e^{-r t} \eta_{t} \tag{15}
\end{equation*}
$$

- The price of the derivative is:

$$
\begin{align*}
V_{t} & =e^{-r(T-t)} E_{Q}\left[X \mid \mathcal{F}_{t}\right]=e^{-r(T-t)} E_{P}\left[\left.\frac{\eta_{T}}{\eta_{t}} X \right\rvert\, \mathcal{F}_{t}\right] \\
& =\frac{E_{P}\left[A_{T} X \mid \mathcal{F}_{t}\right]}{A_{t}} \tag{16}
\end{align*}
$$

- A_{t} is called a state-price deflator (also deflator; state-price density; pricing kernel; or stochastic discount factor).

The B-S model with dividends

- Suppose that dividends are payable continuously at the constant rate of q p.a.: that is, the dividend payable over the interval $[t, t+d t]$ is $q S_{t} d t$.
- Suppose that S_{t} is subject to the same SDE:

$$
d S_{t}=S_{t}\left(\mu d t+\sigma d Z_{t}\right), \text { under } P
$$

- Let \widetilde{S}_{t} be the value of an investment of $\widetilde{S}_{0}=S_{0}$ at time 0 in the underlying asset assuming that all dividends are reinvested in the same asset at the time of payment of the dividend.
- $\frac{\widetilde{S}_{t}}{\widetilde{S}_{0}}$ described as the total return on the asset from time 0 to time t.

The B-S model with dividends

- \widetilde{S}_{t} is the tradable asset and not S_{t} in the following sense: If we pay S_{0} at time 0 for the asset then we are buying the right to future dividends as well as future growth of the capital.
- It is straightforward to see that the SDE for \widetilde{S}_{t} is:

$$
\begin{equation*}
d \widetilde{S}_{t}=\widetilde{S}_{t}\left[(\mu+q) d t+\sigma d Z_{t}\right], \text { under } P \tag{17}
\end{equation*}
$$

Solving the SDE we have (geometric Bm):

$$
\begin{equation*}
\widetilde{S}_{t}=\widetilde{S}_{0} \exp \left[\left(\mu+q-\frac{1}{2} \sigma^{2}\right) t+\sigma Z_{t}\right] \tag{18}
\end{equation*}
$$

The B-S model with dividends

- Denote the value at time t of an European call option on the dividend paying share by $f\left(t, S_{t}\right)$.
Then we have:
Proposition: (Garman-Kohlhagen formula):

$$
\begin{equation*}
f\left(t, S_{t}\right)=S_{t} e^{-q(T-t)} \Phi\left(d_{1}\right)-K e^{-r(T-t)} \Phi\left(d_{2}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& d_{1}=\frac{\ln \left(\frac{S_{t}}{K}\right)+\left(r-q+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \tag{20}\\
& d_{2}=d_{1}-\sigma \sqrt{T-t} \tag{21}
\end{align*}
$$

For a put option, we have

$$
\begin{equation*}
f\left(t, S_{t}\right)=K e^{-r(T-t)} \Phi\left(-d_{2}\right)-S_{t} e^{-q(T-t)} \Phi\left(-d_{1}\right) . \tag{22}
\end{equation*}
$$

The B-S model with dividends

- These formulas can be derived by the PDE approach and by the martingale approach (as in the non-dividend-paying case) - see core reading (homework).
- The B.-S. PDE is (substituting $S_{t}=s$)

$$
\begin{equation*}
\frac{\partial f}{\partial t}+(r-q) s \frac{\partial f}{\partial s}+\frac{1}{2} \sigma^{2} s^{2} \frac{\partial^{2} f}{\partial s^{2}}=r f(t, s) \tag{23}
\end{equation*}
$$

- In the martingale approach, the basic SDE's for \widetilde{S}_{t} and S_{t} under Q are (see core reading)

$$
\begin{gather*}
d \widetilde{S}_{t}=\widetilde{S}_{t}\left[r d t+\sigma d \widetilde{Z}_{t}\right] \quad \text { under } Q \tag{24}\\
d S_{t}=S_{t}\left[(r-q) d t+\sigma d \widetilde{Z}_{t}\right] \quad \text { under } Q \tag{25}
\end{gather*}
$$

