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Multivariate Time Series Models

Multivariate time series models allow for investigation of
dynamic relationships between a set of variables, without
imposing endogeneity or exogeneity restrictions.
In the univariate case the Autoregressive Moving Average
(ARMA) Model was introduced.
The generalisation of this type of model to the multivariate
context is called Vector Autoregressive Moving Average
(VARMA) Model.
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Multivariate Time Series Models

A special case of the VARMA models is the Vector
autoregression (VAR) model. The latter is an econometric model
used to capture the evolution and the interdependencies
between multiple time series. All the variables in a VAR are
treated symmetrically by including for each variable an equation
explaining its evolution based on its own lags and the lags of all
the other variables in the model.
Based on this feature, Christopher Sims in 1980 advocated the
use of VAR models as a theory-free method to estimate
macroeconomic relations. For this reason Sims was awarded half
of the Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel 2011.
In this module only the VAR model will be described.
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Stationary multivariate time series

Let Xt = (X1,t, ..., Xk,t)
0 be a k dimensional vector time series.

We can define the following quantities:

Mean: µt = E(Xt) [k� 1 vector]. That is

µt =

264 E[X1,t]
...

E[Xk,t]

375
Variance matrix Γt,t = E[(Xt � µt)(Xt � µt)

0] [k� k matrix]. That
is

Γt,t =

26664
var(X1,t) cov(X1,t, X2,t) � � � cov(X1,t, Xk,t)

cov(X1,t, X2t) var(X2,t) � � � cov(X2,t, Xk,t)
...

...
. . .

...
cov(X1,t, Xk,t) cov(X2,t, Xk,t) � � � var(Xk,t)

37775
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Stationary multivariate time series

Autocovariance matrix Γt,t�` = E[(Xt � µt)(Xt�` � µt�`)
0] [k� k

matrix]. That is

Γt,t�` =

26664
cov(X1t, X1,t�`) cov(X1t, X2,t�`) � � � cov(X1t, Xk,t�`)
cov(X2,t, X1,t�`) cov(X2,t, X2,t�`) � � � cov(X2,t, Xk,t�`)

...
...

. . .
...

cov(Xk,t, X1,t�`) cov(Xk,t, X2,t�`) � � � cov(Xk,t, Xk,t�`)

37775
(note that it is not symmetric)

Definition
Xt is weakly stationary if for all t and ` :

µt = µ,
Γt,t�` = Γ` = Γ0�`
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Stationary multivariate time series

Remarks:

Γ0 is symmetric positive definite matrix.
The diagonal elements of Γ` are the usual (univariate)
autocovariances:

Γii(`) = E[(Xit � µi)(Xi,t�` � µi)],

where µi = E(Xit).
The off-diagonal elements of Γ`are the cross-autocovariance, eg.

Γij(`) = E[(Xit � µi)(Xj,t�` � µj)]

= E[(Xjt � µj)(Xi,t+` � µi)]

= Γji(�`).
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Stationary multivariate time series

Example: k = 2. The mean vector is

µt =

�
E[X1,t]
E[X2,t]

�
=

�
µ1
µ2

�
The Variance matrix is

Γ0 =

�
var(X1,t) cov(X1,t, X2,t)

cov(X1,t, X2t) var(X2,t)

�
=

�
Γ11(0) Γ12(0)
Γ12(0) Γ22(0)

�
.
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Stationary multivariate time series

The autocovariance of order ` is

Γ` =

�
Γ11(`) Γ12(`)
Γ21(`) Γ22(`)

�
=

�
cov(X1t, X1,t�`) cov(X1t, X2,t�`)
cov(X2,t, X1,t�`) cov(X2,t, X2,t�`)

�
=

�
cov(X1t, X1,t+`) cov(X2,t, X1,t+`)
cov(X1,t, X2,t+`) cov(X2,t, X2,t+`)

�
where the last line follows from stationarity.
Note that

Γ�` =

�
Γ11(�`) Γ12(�`)
Γ21(�`) Γ22(�`)

�
=

�
cov(X1t, X1,t+`) cov(X1t, X2,t+`)
cov(X2,t, X1,t+`) cov(X2,t, X2,t+`)

�
and consequently Γ` = Γ0�`.
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Stationary multivariate time series

Stationarity:

Arrows of the same colour mean that the covariances are identical.
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Stationary multivariate time series

We define the cross correlations as

ρij(`) = Corr[Xit, Xj,t�`] =
Γij(`)q

Γii(0)Γjj(0)
.

We can collect these cross-correlations in the cross-correlation
matrix

ρ` = D�1Γ`D�1,

D = diagf
q

Γ11(0), ...,
q

Γkk(0)g

Stationarity implies that ρ` = ρ0�`.

Diagonal elements of ρ` define the ACF of Xkt
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Stationary multivariate time series

Definition
Multivariate White Noise εt is a stationary process with

1 E(εt) = 0 ( a k� 1 vector of zeros)

2 var(εt) = E
n
[εt � E(εt)] [εt � E(εt)]

0
o
= E(εtε

0
t) = Ω (a constant

variance-covariance matrix)

3 cov(εt, εs) = E
n
[εt � E(εt)] [εs � E(εs)]

0
o
= E(εtε

0
s) = 0 for s 6= t

(uncorrelated).
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Stationary multivariate time series

Sample cross-covariance:

Γ̂` =
1
T ∑T

t=`+1(Xt � X̄)(Xt�` � X̄)0, ` � 0

where X̄ = 1
T ∑T

t=1 Xt.
Cross-correlation matrices

ρ̂` = D̂�1Γ̂`D̂�1,

where D̂ = diagf
q

Γ̂11(0), ...,
q

Γ̂kk(0)g.
Under the Assumption of multivariate i.i.d.(hence ρ` = 0 for all
` 6= 0) we have p

Tρ̂ij(`)
D! N(0, 1).

Multivariate Q�statistic

Qk(m) = T2 ∑m
`=1

1
T� ` tr(Γ̂0`Γ̂

�1
0 Γ̂`Γ̂

�1
0 ).

Under H0 : Xt is i.i.d. Qk(m)
D! χ2(k2m)
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Multivariate Wold decomposition theorem

Theorem
(Multivariate Wold decomposition theorem) If the k-variate Xt time series
process is weakly stationary, then it has the representation

Xt = ∑∞
s=0 Λsεt�s +Wt

where the k� k matrices Λs are such that Λ0 = Ik, ∑∞
s=1 ΛsΛ0s converges,

the process εt is a k variate white noise process and Wt 2 Rk is a linear
deterministic process, that this there exists a k vector c0 and k� k matrices
Cs such that Wt = c0 +∑∞

s=0 CsWt�s, and E[εtWt�m] = 0, for m = 0, �1,
�2, ...

Remarks: Usually we ignore the determinist process Wt (or assume
that it is a constant) and try to approximate ∑∞

s=0 Λsεt�s.
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Multivariate Polynomials in L

Similarly to the univariate case we can define a (finite or infinite
order) multivariate polynomial in L or a filter according to:

A(L) = A0 +A1L+A2L2 + . . .

where the matrices Aj, j = 0, 1, ... are not necessarily square.

Inversion of Polynomials in L
Let H(L) be a finite order polynomial in L. H(L) = I�∑

p
i=1 HiLi.We

define its inverse as H(L)�1 to be the multivariate polynomial in L if

H(L)�1H(L) = I

H(L)�1 will correspond to a series of the form ∑∞
i=0 BiLi.
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Multivariate Polynomials in L

Example: Suppose H(L) = I�ΠL.Note that

(I+ΠL+Π2L2 + . . .)(I�ΠL) = I

so H(L)�1 = ∑+∞
i=0 ΠiLi.

To see this notice that

(I+ΠL+Π2L2 + . . .)(I�ΠL)

= I+ΠL+Π2L2 + . . .
�ΠL�Π2L2 + . . .

= I
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Multivariate Polynomials in L
Absolutely Summable Inverses

The coefficients of the infinite-order polynomial
H(L)�1 = ∑∞

i=0 BiLi are absolutely summable if ∑∞
i=0 jbk`ij < ∞

for all k, `, where bk`i is the element (k, `) of the matrix Bi.
As in the univariate case the conditions that ensure that an inverse
has absolutely summable coefficients play a crucial role in
establishing necessary conditions for a multivariate time series
model to be stationary.
Necessary and sufficient conditions for an inverse to meet the
absolute summability condition:

H(L) has an absolutely summable inverse if the roots of the characteristic
equation ���Iλp �∑p

`=1 H`λ
p�`
��� = 0

are inside the unit circle, where jAj corresponds to the determinant of
A.
Equivalently H(L) has an absolutely summable inverse if all values of z
satisfying ���I�∑p

`=1 H`z`
��� = 0

are outside the unit circle.
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Vector Autoregressive models

Consider the VAR(1) process

Xt = φ0 +Φ1Xt�1 + εt

where

Xt = (X1,t, X2,t, ..., Xk,t)
0.

εt = (ε1t, ε2t, ..., εkt)
0 is a multivariate white noise with

var(εt) = Ω;
φ0 = (φ10, φ20, ..., φk0)

0 is a vector of intercepts;
Φ1 = [Φij(1)] are k� k coefficient matrices.
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Vector Autoregressive models

Let us consider k = 3 for simplicity, then

Xt = φ0 +Φ1Xt�1 + εt

where

Xt =

24 X1,t
X2,t
X3,t

35 , φ0 =

24 φ10
φ20
φ20

35
and

Φ1 =

24 Φ11(1) Φ12(1) Φ13(1)
Φ21(1) Φ22(1) Φ23(1)
Φ31(1) Φ32(1) Φ33(1)

35
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Vector Autoregressive models

Equivalently the model can be written in the system of equations
form:

X1,t = φ10 +Φ11(1)X1,t�1 +Φ12(1)X2,t�1 +Φ13(1)X3,t�1 + ε1t,
X2,t = φ20 +Φ21(1)X1,t�1 +Φ22(1)X2,t�1 +Φ23(1)X3,t�1 + ε2t,
X3,t = φ30 +Φ31(1)X1,t�1 +Φ32(1)X2,t�1 +Φ33(1)X3,t�1 + ε3t

where εt = (ε1t, ε2t, ε3t)
0 is a multivariate white noise with

var(εt) = Ω;
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Vector Autoregressive models

Example: VAR(1) process:24 GNPt
M2t
IRt

35 =
24 2

1
0

35+
24 0.7 0.1 0

0 0.4 0.1
0.9 0 0.8

3524 GNPt�1
M2t�1
IRt�1

35+
24 ε1t

ε2t
ε3t

35
where GNPt is the Gross National Product, M2t is money supply,
and IRt is interest rate.
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Vector Autoregressive models

Example (cont):

GNPt = 2+ 0.7GNPt�1 + 0.1M2t�1 + ε1t,
M2t = 1+ 0.4M2t�1 + 0.1IRt�1 + ε2t,
IRt = 0.9GNPt�1 + 0.8IRt�1 + ε3t
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Vector Autoregressive models

Any k the Vector autoregressive model of order p - VAR(p) model - is
defined as

Xt = φ0 +∑p
`=1 Φ`Xt�` + εt,

where

Xt = (X1,t, X2,t, ..., Xk,t)
0.

εt = (ε1t, ε2t, ..., εkt)
0 is a multivariate white noise with

var(εt) = Ω;
φ0 = (φ10, φ20, ..., φk0)

0 is a vector of intercepts;
Φ` = [Φij(`)] are k� k coefficient matrices.
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Vector Autoregressive models

This model can be written in the system of equations notations:

X1,t = φ10 +∑
p
`=1 ∑k

j=1 Φ1j(`)Xj,t�` + ε1t

X2,t = φ20 +∑
p
`=1 ∑k

j=1 Φ2j(`)Xj,t�` + ε2t
...

Xk,t = φk0 +∑
p
`=1 ∑k

j=1 Φkj(`)Xj,t�` + εkt
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Stationarity of VAR(1)

Consider the VAR(1) process

Xt = φ0 +Φ1Xt�1 + εt

Stationary condition: All eigenvalues λ� of Φ,i.e. all roots of
jλIk �Φ1j = 0, should lie inside the unit circle. j.j is the determinant
of the , matrix.
Equivalent condition: roots z� of the characteristic equation
jIk �Φ1zj = 0 should lie outside the unit circle (z = 1/λ).
Remark: ∑∞

j=0 Φj
1 is only convergent under the stationary condition.
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Stationarity of VAR(1)

Using the Lag operator notation we can write the model as

Φ(L)Xt = φ0 + εt

where Φ(L) = Ik �Φ1L is a matrix lag polynomial.
To see this notice that

Xt = φ0 +Φ1Xt�1 + εt

= φ0 +Φ1LXt + εt

Therefore

Xt �Φ1LXt = φ0 + εt

(Ik �Φ1L)Xt = φ0 + εt,
Φ(L)Xt = φ0 + εt,

where Φ(L) = (Ik �Φ1L).
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Stationarity of VAR(1)

Φ(L)Xt = φ0 + εt

Under this stationarity condition Φ(L) has an absolutely summable
inverse:

Φ(L)�1 = (Ik �Φ1L)�1

= ∑∞
j=0 Φj

1Lj.

Thus

Xt = Φ(L)�1[φ0 + εt]

= ∑∞
j=0 Φj

1Lj[φ0 + εt]

= ∑∞
j=0 Φj

1Ljφ0 +∑∞
j=0 Φj

1Ljεt

= ∑∞
j=0 Φj

1φ0 +∑∞
j=0 Φj

1εt�j

=
�
∑∞

j=0 Φj
1

�
φ0 +∑∞

j=0 Φj
1εt�j
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Stationarity of VAR(1)

Now notice that ∑∞
j=0 Φj

1 is only convergent under the stationary
condition. Consequently

(Ik +Φ1 +Φ2
1 + . . .)(Ik �Φ1)

= Ik +Φ1 +Φ2
1 + . . . . . .

�Φ1 �Φ2
1 � . . .

= Ik

hence ∑∞
j=0 Φj

1 = (Ik �Φ1)
�1 and

Xt =
�
∑∞

j=0 Φj
1

�
φ0 +∑∞

j=0 Φj
1εt�j

Xt = (Ik �Φ1)
�1φ0 +∑∞

j=0 Φj
1εt�j
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Stationarity of VAR(1)
Under stationarity condition

µ = E(Xt) = ∑∞
j=0 Φj

1φ0 = (Ik �Φ1)
�1φ0,

Γ0 = var(Xt) = ∑∞
j=0 Φj

1Ω(Φj
1)
0,

Γ` = cov(Xt, Xt�`) = Φ`
1Γ0,

ρ` = corr(Xt, Xt�`) = A`ρ0,

where ρ0 = D�1Γ0D�1, A = D�1Φ1D where
D = diagf

p
Γ11(0), ...,

p
Γkk(0)g.

To see this notice that

µ = E(Xt) = E((Ik �Φ1)
�1φ0 +∑∞

j=0 Φj
1εt�j)

= E((Ik �Φ1)
�1φ0) + E(∑∞

j=0 Φj
1εt�j)

= (Ik �Φ1)
�1φ0 +∑∞

j=0 Φj
1E(εt�j)

= (Ik �Φ1)
�1φ0
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Stationarity of VAR(1)

Additionally

Γ0 = var(Xt) = var((Ik �Φ1)
�1φ0 +∑∞

j=0 Φj
1εt�j)

= var(∑∞
j=0 Φj

1εt�j)

= ∑∞
j=0 var(Φj

1εt�j), cov (εt, εs) = 0 for t 6= s,

= ∑∞
j=0 Φj

1var(εt�j)
�

Φj
1

�0
= ∑∞

j=0 Φj
1Ω
�

Φj
1

�0
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Stationarity of VAR(1)
Now notice that

Γ` = cov(Xt, Xt�`)

= E
h
(Xt � µ) (Xt�` � µ)0

i
Now

Xt = µ+∑∞
j=0 Φj

1εt�j, µ = (Ik �Φ1)
�1φ0

Therefore
Xt � µ = ∑∞

j=0 Φj
1εt�j

Similarly
Xt�` � µ = ∑∞

j=0 Φj
1εt�`�j

Hence

Γ` = E
h
(Xt � µ) (Xt�` � µ)0

i
= E

��
∑∞

j=0 Φj
1εt�j

� �
∑∞

j=0 Φj
1εt�`�j

�0�
= E

��
∑∞

j=0 Φj
1εt�j

��
∑∞

j=0 ε0t�`�j

�
Φj

1

�0��
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Stationarity of VAR(1)

Γ` = E
��

∑∞
j=0 Φj

1εt�j

��
∑∞

j=0 ε0t�`�j

�
Φj

1

�0��
= E

�
∑∞

i=0 ∑∞
j=0 Φj

1εt�jε
0
t�`�i

�
Φi

1

�0�
= ∑∞

i=0 ∑∞
j=0 Φj

1E
�
εt�jε

0
t�`�i

� �
Φi

1

�0
= ∑∞

i=0 Φ`+i
1 Ω

�
Φi

1

�0
, as

�
E
�
εt�jε

0
t�`�i

�
= 0, j 6= `+ i

E
�
εt�jε

0
t�`�i

�
= Ω, j = `+ i ,

= Φ`
1 ∑∞

i=0 Φi
1Ω
�

Φi
1

�0
= Φ`

1Γ0

31 / 63



Stationarity of VAR(1)

ρ` = corr(Xt, Xt�`) = D�1Γ`D�1

= D�1Φ`
1Γ0D�1

= D�1Φ`
1DD�1Γ0D�1

= D�1Φ`
1Dρ0

Now notice that A = D�1Φ1D and

A` = A�A� ...�A| {z }
`�

=
�

D�1Φ1D
�
�
�

D�1Φ1D
�
� ...�

�
D�1Φ1D

�
| {z }

`�

= D�1Φ1 �Φ1 � ...�Φ1| {z }
`�

D

= D�1Φ`
1D

Therefore A` = D�1Φ`
1D and ρ` = A`ρ0.
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Vector Autoregressive models

Example: VAR(1) process:24 GNPt
M2t
IRt

35 =
24 2

1
0

35+
24 0.7 0.1 0

0 0.4 0.1
0.9 0 0.8

3524 GNPt�1
M2t�1
IRt�1

35+
24 ε1t

ε2t
ε3t

35 ,

where GNPt is the Gross National Product, M2t is money supply,
and IRt is interest rate.������

24 λ 0 0
0 λ 0
0 0 λ

35�
24 0.7 0.1 0

0 0.4 0.1
0.9 0 0.8

35������ = 0

λ3 � 1. 9λ2 + 1. 16λ� 0.233 = 0

Roots:

λ1 = 0.893 95, λ2 = 0.503 03+ 0.087213i, λ3 = 0.503 03� 0.087213i.

Thus
jλ1j = 0.893 95, jλ2j = jλ3j = 0.51053

Hence the process is stationary
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Stationarity of VAR(p)

Consider now general VAR(p) model:

Xt = φ0 +∑p
`=1 Φ`Xt�` + εt,

or

Φ(L)Xt = φ0 + εt,

Φ(L) = Ik �∑p
`=1 Φ`L`

A VAR(p) process is stationary if the roots of���Ikλp �∑p
`=1 Φ`λ

p�`
��� = 0

are inside the unit circle.
Equivalently the VAR(p) process is stationary if all values of z
satisfying ���Ik �∑p

`=1 Φ`z`
��� = 0

jΦ(z)j = 0

are outside the unit circle.
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VMA representation of a VAR(p) process

If all roots of jΦ(z)j = 0 lie outside the unit circle, stationarity
implies that Φ(L) has an absolutely summable inverse and the
VAR(p) process has the Vector Moving Average representation
(VMA):

Xt = Φ(L)�1(φ0 + εt)

=
�
∑∞

j=0 ΨjLj
�
(φ0 + εt)

= ∑∞
j=0 ΨjLjφ0 +∑∞

j=0 ΨjLjεt

= ∑∞
j=0 Ψjφ0 +∑∞

j=0 Ψjεt�j

where Φ(L)�1 = Ψ(L) = ∑∞
j=0 ΨjLj and ∑∞

j=0 Ψj and ∑∞
j=0 ΨjΨ0j

converge.
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VMA representation of a VAR(p) process

Example: Recall that if p = 1 then Xt = µ+∑∞
j=0 Ψjεt�j where

Ψj = Φj
1, j � 0.

For any p we have

µ = E(Xt)

= ∑∞
j=0 Ψjφ0

= Ψ(1)φ0,

Γ` = cov(Xt, Xt�`)

= ∑∞
j=0 Ψj+`ΩΨ0j , ` � 0

36 / 63



Impulse response functions

Consider the MA representation of the VAR(p) process

Xt = c+∑∞
r=0 Ψrεt�r

where c = ∑∞
r=0 Ψrφ0.

Notice that
∂Xt+`

∂ε0t
= Ψ` )

∂Xi,t+`

∂εjt
= Ψij(`)

where Ψij(`) is the element in row i and column j of Ψ`.

A plot of Ψij(`) against ` is the impulse response function.
To see what is going on let us consider the case that k = 2, that is
Xt = (X1t, X2t)

0 therefore the model becomes

X1,t = c1 +∑∞
r=0 Ψ11(r)ε1,t�r +∑∞

r=0 Ψ12(r)ε2,t�r,

X2,t = c2 +∑∞
r=0 Ψ21(r)ε1,t�r +∑∞

r=0 Ψ22(r)ε2,t�r

where c = (c1, c2)
0.
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Impulse response functions

Consider the first equation for simplicity

X1,t = c1 +∑∞
r=0 Ψ11(r)ε1,t�r +∑∞

r=0 Ψ12(r)ε2,t�r,

In period t+ ` we have

X1,t+` = c1 +∑∞
r=0 Ψ11(r)ε1,t+`�r +∑∞

r=0 Ψ12(r)ε2,t+`�r,

= c1 +Ψ11(0)ε1,t+` +Ψ11(1)ε1,t+`�1 + ...+Ψ11(`)ε1,t + ...
+Ψ12(0)ε2,t+` +Ψ12(1)ε2,t+`�1 + ...+Ψ12(`)ε2,t + ....

Hence

∂X1,t+`

∂ε1,t
= Ψ11(`),

∂X1,t+`

∂ε2,t
= Ψ12(`).
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Impulse response functions

Consider the general setting:

∂Xi,t+`

∂εjt
= Ψij(`)

The impulse response function describes the response of Xi,t+` to a
one-time unit change in εjt. where the units are those that εjt is
measured.
Usually we multiply Ψij(`) by the standard deviation of εjt so we
obtain the response of Xi,t+` to a one-time change in εjt of
var(εjt)

1/2 units.
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Estimation
Let us assume that

Xt = φ0 +∑p
`=1 Φ`Xt�` + εt, t = 1, ..., T

where εt � i.i.d N(0, Ω).
We shall condition on the p first observations and derive the
conditional likelihood function for X1, ..., XT.
Let θ denote the vector of unknown parameters: φ0, Φ`

(` = 1, ..., p) and Ω. The dimension of θ is k+ pk2 + k(k+ 1)/2.
Let:

Zt = (1, X0t�1, ..., X0t�p)
0 ((kp+ 1)� 1)

B0 = [φ0, Φ1, ..., Φp], (k� (kp+ 1)).
Z�t = (X

0
t, ..., X0t�p)

0, t � p+ 1

Then the VAR(p) model can be written more compactly as

Xt = B0Zt + εt, t = p+ 1, .., T

Conditioning on the past values we obtain

XtjZ�t � N(B0Zt, Ω)
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Estimation

Hence the conditional density of XtjZ�t is

fXtjZ�t (xtjz�t , θ) = (2π)�k/2 jΩj�1/2 expf�(1/2)

�
�
xt � B0zt

�0 Ω�1 �xt � B0zt
�
g.

Recall that the formula of the conditional log-likelihood is given
by

logL(θ) = ∑T
t=p+1 log fXtjZ�t (xtjz�t , θ)

= �kT�

2
log(2π)� T�

2
log jΩj

�(1/2)∑T
t=p+1

�
xt � B0zt

�0 Ω�1 �xt � B0zt
�

with T� = T� p.
There is a closed form solution for the conditional MLE:

B̂ = [∑T
t=p+1 xtz0t][∑T

t=p+1 ztz0t]
�1

Ω̂ =
1
T ∑T

t=p+1 ε̂t ε̂
0
t, where ε̂t = xt � B̂0zt
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Estimation

Note that the j row of B̂ is given by

b̂j = [∑T
t=p+1 ztz0t]

�1[∑T
t=p+1 xj,tz0t]

(where j = 1, .., k)
Conclusion the conditional MLE of B̂ is obtained by applying
ordinary least squares separately to each equation. One can
show that for b̂ = vec(B̂) = (b̂01, ..., b̂0j)

0

Remark: The vec operator applied to a matrix A (vec(A)) creates
a column vector from a matrix A by stacking the column vectors
of A.
One can show that

p
T(b̂� b) D! N(0, Ω
 E(ztz0t))

where 
 denotes the Kronecker product.
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Testing

The Likelihood ratio to test h restrictions H0 : r(θ) = 0 has the form

LR = T(log
��Ω̂r

��� log
��Ω̂��)

where Ω̂r is the restricted MLE.
One can show that

LR D! χ2(h)

where h is the dimension of r(θ).
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Bivariate Granger causality

A scalar variable X Granger-causes another scalar variable Y if Y can
be better predicted using the histories of both X and Y than it can
using the history of Y alone.
Formally:

Definition
X fails to Granger cause Y if

MSE[Ê(Yt+sjYt, Yt�1, ...)] = MSE[Ê(Yt+sjXt, Xt�1, ..., Yt, Yt�1, ...)]

where MSE is the mean square error of prediction:
MSE(Ê(.)) = E[(Yt+s � Ê(.))2].
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Impulse response functions

In a VAR model with k = 2 with Zt = (Xt, Yt)0:

Zt = φ0 +∑p
`=1 Φ`Zt�` + εt,

Writing the model as a system of equations we have

Xt = φ10 +∑
p
`=1 Φ11(`)Xt�` +∑

p
`=1 Φ12(`)Yt�` + ε1t

Yt = φ20 +∑
p
`=1 Φ21(`)Xt�` +∑

p
`=1 Φ22(`)Yt�` + ε2t

If Φ12(`) = 0 for ` = 1, ..., p, Y does not Granger Cause X.
If Φ21(`) = 0 for ` = 1, ..., p, X does not Granger Cause Y.
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Bivariate Granger causality

Example: Consider the following VAR(2) process�
Xt
Yt

�
=

�
2
0

�
+

�
0.7 0
0.9 0.8

� �
Xt�1
Yt�1

�
+

�
ε1,t
ε2,t

�
,

where (ε1
t , ε2

t )
0 is a vector of white noise processes. Equivalently

Xt = 2+ 0.7Xt�1 + ε1t
Yt = 0.9Xt�1 + 0.8Yt�1 + ε2t

Y is not Granger Causal to X.
X Granger causes Y.
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Simple econometric tests for bivariate Granger
Causality

The tests based on the VAR methodology can be used to test
Granger Causality.
However, there is a simpler alternative way to test this based on
a multivariate regression model:

Let
yt = c+∑p

i=1[αixt�i + βiyt�i] + ut

where for zt = (xt�1, ..., xt�p, yt�1, ..., yt�p) we have:

E(utjzt) = 0 the regressors are contemporaneously exogenous
var(utjzt) = σ2 the regressors are contemporaneously homoskedastic,
cov(ut, usjzt, zs) = 0, s 6= t (no autocorrelation).

x fails to Granger cause y if

H0 : αi = 0, for i = 1, ..., p
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Simple Econometric tests for bivariate Granger
Causality

We can test this hypothesis in the following way under the above
assumptions:

Let RSS1 be the residual sum of squares of the regression

yt = c+∑p
i=1[αixt�i + βiyt�i] + ut, t = 1, .., T

Let RSS0 be the residual sum of squares of the regression

yt = c+∑p
i=1 βiyt�i + ut, t = 1, ..., T,

Under H0

S =
T(RSS0 � RSS1)

RSS1

D! χ2(p)

We can use this statistic to test H0. Let cα the 100� α% critical
value. We reject H0 if the actual value of S is bigger than cα.
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Specification testing in VAR models

The residuals ε̂it can be used for usual (univariate) misspecification
tests.
Stronger results are obtained from vector tests:

Multivariate Q�statistic can be applied to residuals with
asymptotic χ2(k2(m� p)) distribution.
One can also apply vector LM tests of serial correlation.

Lag Length selection can be based on the minimization of the
information criteria:

AIC(p) = � 2
T�

logL(θ̂p) +
2k2p
T�

, Akaike information criterion

BIC(p) = � 2
T�

logL(θ̂p) +
k2p log(T�)

T�
, Schwarz Information criterion

where θ̂p is the conditional MLE estimator for the parameters of the
VAR(p) model and with T� = T� p (usual definitions).
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Structural VAR

Structural VAR (SVAR) allows contemporaneous relationships
between elements of Xt :

B0Xt = c0 + B1Xt�1 + B2Xt�2 + ...+ BpXt�p +Ut

where
Xt = (X1,t, X2,t, ..., Xk,t)

0.
Ut = (U1t, U2t, ..., Ukt)

0 is a multivariate white noise with
var(Ut) = D;
c0 = (c10, c20, ..., ck0)

0 is a vector of intercepts;
B` = [Bij(`)] are k� k coefficient matrices, ` = 0, ..., p.
This model allows for contemporaneous relationships between
the variables:

∑k
j=1 B1j(0)Xj,t = c10 +∑

p
`=1 ∑k

j=1 B1j(`)Xj,t�` +U1t

∑k
j=1 B2j(0)Xj,t = c20 +∑

p
`=1 ∑k

j=1 B2j(`)Xj,t�` +U2t
...

∑k
j=1 Bkj(0)Xj,t = ck0 +∑

p
`=1 ∑k

j=1 Bkj(`)Xj,t�` +Ukt

50 / 63



Structural VAR

B0Xt = c0 +∑p
`=1 B`Xt�` +Ut

If B0 is invertible, then this model is equivalent to a reduced
form VAR

Xt = B�1
0 c0 +∑p

`=1 B�1
0 B`Xt�` + B�1

0 Ut

= φ0 +∑p
`=1 Φ`Xt�` + εt,

where

φ0 = B�1
0 c0, Φ` = B�1

0 B`,

εt = B�1
0 Ut
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Impulse response functions

Thus

E(εt) = E(B�1
0 Ut)

= B�1
0 E(Ut)

= B�1
0 � 0

= 0

and

var(εt) = var(B�1
0 Ut)

= B�1
0 var(Ut)[B�1

0 ]0

= B�1
0 D[B�1

0 ]0.

We define Ω = B�1
0 D[B�1

0 ]0.
Can we derive the elements of the structural VAR uniquely from
the reduced form VAR?
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Structural VAR

Consider the number of elements in each model
The SVAR model:

c0 is a k� 1 vector therefore it has k unknown elements.
B` = [Bij(`)] are k� k coefficient matrices and therefore each has k2

unknown elements and ` = 0, ..., p.
D is a symmetric k� k matrix, hence it has k(k+ 1)/2 distinct
unknown elements.

The VAR model:
φ0 is a k� 1 vector therefore it has k unknown elements.
Φ` = [Φij(`)] are k� k coefficient matrices and therefore each has
k2 unknown elements and ` = 1, ..., p.
Ω is a symmetric k� k matrix, hence it has k(k+ 1)/2 distinct
unknown elements.
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Structural VAR

In summary the number of unknown elements of each model
are:

SVAR VAR
c0 k φ0 k

B0, ..., Bp (1+ p)k2 Φ1, ..., Φp pk2

D k(k+ 1)/2 Ω k(k+ 1)/2

The SVAR has k2 more parameters than the VAR and so we need
k2 restrictions in order to identify the parameters of the SVAR.
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Structural VAR

Essentially a necessary condition for identification requires B0
and D to have no more unknown elements than Ω which is
k(k+ 1)/2. This condition is known the order condition for
identification.
Normalization restrictions: Assign the coefficient of 1 to Xjt in each
equation (k): we we can write for i = 1, ..., k

∑k
j=1 Bij(0)Xj,t = ci0 +∑

p
`=1 ∑k

j=1 Bij(`)Xj,t�` +Uit,
Xi,t +∑k

j=1,i 6=j Bij(0)Xj,t = ci0 +∑
p
`=1 ∑k

j=1 Bij(`)Xj,t�` +Uit,
Xi,t = ci0 �∑k

j=1,i 6=j Bij(0)Xj,t +∑
p
`=1 ∑k

j=1 Bij(`)Xj,t�` +Uit

Covariance matrix restrictions: e.g. Specifying D to be diagonal (k).
So under these restrictions B0 has k2 � k elements and D has k
elements and therefore in total they have k2 elements
On the other hand Ω has k(k+ 1)/2 elements.
We still need to impose k2 � k(k+ 1)/2 = k(k� 1)/2 restrictions.
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Structural VAR

A solution: Cholesky Decomposition - B0 is lower triangular

B0 =

26664
1 0 0 � � � 0

b21 1 0 � � � 0
...

...
...

. . . 0
bk1 bk2 bk3 � � � 1

37775
Remark: The Cholesky decomposition does not have a direct
economic interpretation.
This approach is called Cholesky decomposition because it is
based on a Cholesky type decomposition of a positive definite matrix:
Any symmetric positive definite matrix A can be decomposed as
A = LGL0 where G is a diagonal matrix a L is a lower triangular
matrix with 1’s in the diagonal.
So basically we are applying this decomposition to Ω = LGL0,
with G = D and L = B�1

0 .
Remark: Other alternative is to impose some restrictions based
on Economic Theory.

56 / 63



Impulse response functions in the structural model
Consider the MA representation of the VAR(p) process

Xt = ∑∞
j=0 Ψjφ0 +∑∞

j=0 Ψjεt�j (1)

and recall that
εt = B�1

0 Ut, t = 1, ...
Replacing this in (1) we have

Xt = ∑∞
j=0 Ψjφ0 +∑∞

j=0 ΨjB�1
0 Ut�j

Consequently

Xt+` = ∑∞
j=0 Ψjφ0 +∑∞

j=0 ΨjB�1
0 Ut+`�j

and therefore
∂Xt+`
∂U0

t
= Ψ`B�1

0

To simplify the notation write A` = Ψ`B�1
0 and denote Aij(`) the

element i,j of this matrix. Then

∂Xi,t+`

∂Ujt
= Aij(`)
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Impulse response functions in the structural model

A plot of Aij(`) against ` is the structural impulse response function
(Enders denotes this function simply as impulse response
function.)
It describes the response of Xi,t+` to a one-time unit change in
Ujt. where the units are those that Ujt is measured.
As before some researchers prefer to multiply Aij(`) by the
standard deviation of ujt so we obtain the response of Xi,t+` to a
one-time change in Ujt of var(Ujt)

1/2 units.
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Forecasting VAR models

Consider a stationary VAR(p) model:

Xt = φ0 +∑p
i=1 ΦiXt�i + εt.

Suppose we are in period h and we want to forecast the
observations in period h+ `, ` > 0.
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Forecasting VAR models
Forecasting in stationary VAR(p) models similar to univariate AR(p):

`� step forecasts Xh(`) = Eh[Xh+`], ` > 0 (assuming that εh is a
martingale difference sequence: Eh[εh+`] = 0)
In period h+ ` we have

Xh+` = φ0 +∑p
i=1 ΦiXh+`�i + εh+`.

Therefore

Eh [Xh+`] = Eh

�
φ0 +∑p

i=1 ΦiXh+`�i + εh+`

�
= φ0 +∑p

i=1 ΦiEh [Xh+`�i] + Eh [εh+`] .

by the tower property we have

Eh [εh+`] = Eh [Eh+`�1 [εh+`]] = Eh [0] = 0

Notice also that if i � ` Eh [Xh+`�i] = Xh+`�i.
In summary using the notation Xh(`) = Eh[Xh+`] we have

Xh(`) = φ0 +∑p
i=1 ΦiXh(`� i)

where Xh(`� i) = Xh+`�i for i � `.
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Forecasting VAR models

Let us now obtain the variance of the forecasting error
From the MA(∞) representation we have

Xh+` = ∑∞
j=0 Ψjφ0 +∑∞

j=0 Ψjεh+`�j

Thus

Xh(`) = Eh[Xh+`]

= Eh[∑∞
j=0 Ψjφ0 +∑∞

j=0 Ψjεh+`�j]

= ∑∞
j=0 Ψjφ0 +∑∞

j=` ΨjEh

�
εh+`�j

�
+∑`�1

j=0 ΨjEh

�
εh+`�j

�
Now for any j � `, `� j � 0 and hence Eh

�
εh+`�j

�
= εh+`�j,

for any j < `, `� j � 1 and therefore by the tower-property

Eh

�
εh+`�j

�
= Eh

�
Eh+`�j�1

�
εh+`�j

��
= Eh (0) = 0

Hence
Xh(`) = ∑∞

j=0 Ψjφ0 +∑∞
j=` Ψjεh+`�j
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Forecasting VAR models

Hence we obtain the forecast error

eh(`) = Xh+` �Xh(`)

= ∑∞
j=0 Ψjφ0 +∑∞

j=0 Ψjεh+`�j

�∑∞
j=0 Ψjφ0 �∑∞

j=` Ψjεh+`�j

= ∑∞
j=0 Ψjφ0 +∑∞

j=` Ψjεh+`�j +∑`�1
j=0 Ψjεh+`�j

�∑∞
j=0 Ψjφ0 �∑∞

j=` Ψjεh+`�j

= ∑`�1
j=0 Ψjεh+`�j
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Forecasting VAR models

Because var(εh+`�j) = Ω and εh+`�j is a multivariate White noise
process the variance of eh(`) is

var(eh(`)) = var(∑`�1
j=0 Ψjεh+`�j)

= ∑`�1
j=0 var(Ψjεh+`�j), as cov

�
εt, εj

�
= 0, t 6= j

= ∑`�1
j=0 Ψjvar(εh+`�j)Ψ

0
j

= ∑`�1
j=0 ΨjΩΨ0j .
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