Multivariate Time Series Models

Outline:

@ Stationary multivariate time series

@ Vector autoregressive models

@ Estimation and testing of VAR models
@ Impulse response functions

@ Granger Causality.

@ Structural VAR

@ Forecasting VAR models



Multivariate Time Series Models

@ Multivariate time series models allow for investigation of
dynamic relationships between a set of variables, without
imposing endogeneity or exogeneity restrictions.

@ In the univariate case the Autoregressive Moving Average
(ARMA) Model was introduced.

@ The generalisation of this type of model to the multivariate
context is called Vector Autoregressive Moving Average
(VARMA) Model.



Multivariate Time Series Models

@ A special case of the VARMA models is the Vector
autoregression (VAR) model. The latter is an econometric model
used to capture the evolution and the interdependencies
between multiple time series. All the variables in a VAR are
treated symmetrically by including for each variable an equation
explaining its evolution based on its own lags and the lags of all
the other variables in the model.

@ Based on this feature, Christopher Sims in 1980 advocated the
use of VAR models as a theory-free method to estimate
macroeconomic relations. For this reason Sims was awarded half
of the Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel 2011.

@ In this module only the VAR model will be described.



Stationary multivariate time series

Let X; = (Xy4, ..., Xkt)' be a k dimensional vector time series.
We can define the following quantities:

@ Mean: y, = E(X;) [k x 1 vector]. That is

E[X1 ]
My = :
E[Xp]
@ Variance matrix I'ys = E[(X; — ;) (X¢ — u;)’] [k % k matrix]. That
is
var(Xy) cov(Xqp, Xop) -+ cov(Xyp Xir)
. cov(Xy s, Xot) var(Xp ) <o cov(Xop, Xir)
Lt = . . ) :
cov(Xy, Xi) cov(Xop Xgr) o var(X)
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Stationary multivariate time series

e Autocovariance matrix Iy, = E[(X¢ — p;) (X;—p — p;_p)'] [k x k
matrix]. That is

cov(Xq, Xip—¢) cov(Xyy, Xopp) -+ cov(Xug, Xis—g)

r cov(Xops, X1p—¢) cov(Xop, Xopg) -+ cov(Xos Xir—p)
b=l = : : ) :

COV(Xk,t/Xl,t—Z) COV(Xk,tfxz,t—é) e COV(Xk,tr Xk,t—é)

(note that it is not symmetric)

Definition

X is weakly stationary if for all t and £ :

He = W
Ty = Iy=T",




Stationary multivariate time series

Remarks:

@ I’y is symmetric positive definite matrix.

@ The diagonal elements of I'; are the usual (univariate)
autocovariances:

Tii(€) = B[(Xit — p;) Xip—e — 1;)),
where y; = E(Xj).
@ The off-diagonal elements of I'jare the cross-autocovariance, eg.
L) = E[(Xit — 1) (Xj -0 — ;)]
= E[(X;— ,uj)(Xi,t—i-é = 1)l



Stationary multivariate time series

Example: k = 2. The mean vector is

= o] =]

The Variance matrix is

- var(Xy ;) cov (Xt Xot)
0 cov(Xyp Xor)  var(Xay)

_ {1"11(0) 1"12(0)}
I12(0) Tp(0) |°



Stationary multivariate time series

The autocovariance of order / is

r, — [ T () r12(6)1|
: | T21(6) Taa(f)
_ [ cov(Xu Xipg)  cov(Xay, Xppo) ]
cov(Xop, Xip—¢) cov(Xos, Xor—¢)
_ | cov(Xay Xq 1) COV(Xz,t/XLtM)]
cov (X, Xopre)  cov(Xop Xopir)
where the last line follows from stationarity.
Note that
r, — {Tn(f) I'12(—£) }
- [o1(=0) Ton(—4)

{ cov(Xyp, Xy pv0)  cov(Xap, Xopir)
cov(Xos, Xip40)  cov(Xos, Xpq0)

and consequently I'y =T" .

8/



Stationary multivariate time series

Stationarity:
| | |
I I |
{—( [ t+ (
Xl,r—ﬁ Xlt Xl J+
Xy Xoy X210

Arrows of the same colour mean that the covariances are identical.
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Stationary multivariate time series

@ We define the cross correlations as
I'(€)
T;(0)T;(0)

We can collect these cross-correlations in the cross-correlation
matrix

pi],(é) = Corr[Xit, Xj—¢] =

p, = D7D,
D = diag{\/l"n(O),..., \/rkk(o)}

Stationarity implies that o, = o’ ,.

Diagonal elements of p, define the ACF of X},

S 10/6



Stationary multivariate time series

Multivariate White Noise €; is a stationary process with
Q E(e&) =0 (ak x 1 vector of zeros)
Q var(e;) = E {[st — E(ey)] e — E(st)]'} — E(e€}) = O (a constant
variance-covariance matrix)
Q covlee) =E {[st — E(er)] [es — E(ss)]’} — E(eel) = Ofors # ¢
(uncorrelated).

B E R



Stationary multivariate time series

@ Sample cross-covariance:

fo= TZt /+1 X)X —X),£20

where X = T YL, X
@ Cross-correlation matrices

/\

py=D7'T,D7!

where D = diag{ \/f11 (0), ..., \/fkk(O)}
e Under the Assumption of multivariate i.i.d.(hence p, = 0 for all
¢ # 0) we have

VTpy(£) L N(0,1).
@ Multivariate Q—statistic

A A

2 f/ T -1
TZ“T (il T,

Under Hy : X; isii.d. Qx(m) A x> (k2m)
] 12/ 63



Multivariate Wold decomposition theorem

Theorem

(Multivariate Wold decomposition theorem) If the k-variate X; time series
process is weakly stationary, then it has the representation

Xe=Y " Asers+ Wi

where the k x k matrices Ag are such that Ag = I, Yoo 1 AsAL converges,
the process ¢; is a k variate white noise process and Wy € RF is a linear
deterministic process, that this there exists a k vector co and k x k matrices
Cs such that Wy = ¢o + Yoo g CsWi—s, and E[e;Wi_y] = 0, for m = 0, £1,
+2, ...

Remarks: Usually we ignore the determinist process W; (or assume
that it is a constant) and try to approximate Y o> ; As€;—s.

B E RO



Multivariate Polynomials in L

@ Similarly to the univariate case we can define a (finite or infinite
order) multivariate polynomial in L or a filter according to:

A(L) = Ag+ AjL 4+ Aol + ...

where the matrices A;,j = 0,1, ... are not necessarily square.

Inversion of Polynomials in L ‘
Let H(L) be a finite order polynomialin L. H(L) =1 — Zf:l H;L' We
define its inverse as H(L) ! to be the multivariate polynomial in L if

H(L)'H(L) =1

o H(L)~! will correspond to a series of the form ¥, B;L'.



Multivariate Polynomials in L

Example: Suppose H(L) = I — I'L.Note that
(I+TIL+ T2+ . ) (I —TIL) =1

so H(L)™! = S ITLY.
To see this notice that
(I+TIL4T1PL% +...)(I - I1L)
= I+TIL+T1PL2+...
—TIL — TT1212 + . ..
= I



Multivariate Polynomials in L

Absolutely Summable Inverses

@ The coefficients of the infinite-order polynomial
H(L)~! = Y° , B,L" are absolutely summable if Y%°  |bys| < o0
for all k, £, where byy; is the element (k, £) of the matrix B;.

o As in the univariate case the conditions that ensure that an inverse
has absolutely summable coefficients play a crucial role in
establishing necessary conditions for a multivariate time series
model to be stationary.

e Necessary and sufficient conditions for an inverse to meet the
absolute summability condition:

o H(L) has an absolutely summable inverse if the roots of the characteristic
equation
(W —Y " Ha! ) =0
are inside the unit circle, where |A| corresponds to the determinant of

A.
o Equivalently H(L) has an absolutely summable inverse if all values of z

satisfying
=Y He| =0

are outside the unit circle.



Vector Autoregressive models

Consider the VAR(1) process
Xt = ¢y + D1 X1 + &

where
o Xt = (Xl,t/ XZ,t/--'/ Xk,t)/'
@ & = (&1, €, -, €)' is @a multivariate white noise with
var(e) = Q;
® Py = (P10, Pags -+ Pio)’ is @ vector of intercepts;
o Oy = [®;(1)] are k x k coefficient matrices.



Vector Autoregressive models

Let us consider k = 3 for simplicity, then

Xt = (PO + q)lxtfl + &

P10
Po= | P
P20

where

and

Dy (1) Pp(l) Dp3(1)

d11(1) D12(1) @13(1)]
D31(1) Pxp(l) Ps3(l)




Vector Autoregressive models

Equivalently the model can be written in the system of equations

form:
Xip = ¢+ P1rn(D)Xy—1+P12(1)Xpp—1 + P13(1) X531 + €14,
Xop = oo+ Por(1)X14-1 + P (1)Xo 1 + Po3(1) X341 + €21,
Xzt = P50+ P31(1) X101 + P3p(1)Xp 1 + P33(1) X341 + €3¢
where ¢ = (e, €y, €3¢)' is a multivariate white noise with

var(e) = Q;

S 19/6



Vector Autoregressive models

e Example: VAR(1) process:

GNP; 2 07 01 0 GNP;_; £1s
M2 |=|1]+| 0 04 01 M2 1 |+ | ex
IR; 0 09 0 0.8 IR; 1 £

where GNP; is the Gross National Product, M2; is money supply,
and IR; is interest rate.

Sy 20/68



Vector Autoregressive models

e Example (cont):

GNPy = 2+ 0.7GNPt_1 + 0.1M2t_1 + €14,
M2y = 1404M2; 1+ 0.1IR; 1 + €y,
IRy = 0.9GNP;_; +0.8IR;_1 + ¢3



Vector Autoregressive models

Any k the Vector autoregressive model of order p - VAR(p) model - is
defined as

Xe=do+ Y ) PXio+e,
where
o X = (X1t, Xa s er Xit)'-
@ & = (&1, &y, ..., &)’ is @ multivariate white noise with
var(e) = Q;
® Py = (P10, Pags -+ Pio)’ is @ vector of intercepts;
o &y = [®;i({)] are k x k coefficient matrices.



Vector Autoregressive models

This model can be written in the system of equations notations:

Xip = 1o+ )y 2};1 D1 ()Xo + e
Xog = oo+ Loy Loy Poj(O) X + e

Xt = Py + Xf_y Z;‘ﬂ Dy (0) X s ¢ + ext



Stationarity of VAR(1)

Consider the VAR(1) process
Xp=¢g+P1Xi1 + &

Stationary condition: All eigenvalues A* of ®,i.e. all roots of

|AL, — ®1| = 0, should lie inside the unit circle. |.| is the determinant
of the , matrix.

Equivalent condition: roots z* of the characteristic equation

|Ix — P1z| = 0 should lie outside the unit circle (z = 1/A).

Remark: Z]?'io @/, is only convergent under the stationary condition.



Stationarity of VAR(1)

Using the Lag operator notation we can write the model as
CD(L)Xt = 4)0 + &

where ®(L) = Iy — ®4L is a matrix lag polynomial.
To see this notice that

Xi = ¢gt+P1Xp 1+ &
= ¢g+ D LX; + &
Therefore
Xt — qD]LXt = (PO + &t
(Ik — q)lL)Xt = 4)0 + &,
PL)Xy = ¢y+er,

where ®(L) = (I — ®1L).

] 25/ 63



Stationarity of VAR(1)

D(L)X; = Py + &

Under this stationarity condition ®(L) has an absolutely summable

inverse:
L) = (k—®L)
= Yool
Thus
X = (L) gy +e
= Yo @iLlgg + e

= Z]io q>éLj¢0 + Z]io cpileEf
= Z;io Py + ZJZO q)ilst*j
= (Z/Zo q>ll) $o+ Z]io e

o %6/6



Stationarity of VAR(1)

Now notice that E]?io <I>]l is only convergent under the stationary
condition. Consequently

(It + @1+ D2 +..) (I, — P1)
= L+P+P+......

—P — D7 — ...
= Ik

hence }°, <1>71 = (I — ®;) ' and

Xy = (Zfio q>71> $o+ Z;io Dhey |
X = (e=@1) g+ Y 2, et



Stationarity of VAR(1)

Under stationarity condition

p = EXi)= Z;io CDQ% = (Ix — (Dl)_l%f
Iy = var(X;) = Z;OQQQ(CDQ)’,

I, = cov(Xy, X, ) = ®iTy,

o, = corr(Xe, Xp—y) = Agpo,

where p, = D 'IyD™1, A = D~1®;D where
D= dlag{ \/FH (O), ceey \/l“kk(O)}

To see this notice that
Ho= E(X) = E((l—®1) g+ Y Pher )
= B((l— 1)) + E(L ) Pher )
= (= ®1) gy + Ly PECer)
= (k—®1) ¢y

8/




Stationarity of VAR(1)

Additionally
Ty = var(X;) = var((l— ®1)"'¢g + Y7 Pher )
(e )
= Z]i‘io var(®)g;_;), cov (e, &) = 0fort #s,
= L @var(a) ()
= Troelo(e])



Stationarity of VAR(1)

Now notice that

rg = COV(Xt,Xt,g)
= E[(X—#) (X —p)]
Now o i
Xe=p+) g Phejo = (I = P1) "y
Therefore o i
Xe—p= Zj:o e
Similarly ‘
Xpp—p= 2}20 qjlstfzfj
Hence
I = E|(Xi—m) Xeo—p)]
r o . oo . ’
= BT ®e) (K e ) }
[ oo / o i/
= E|(E5, %) (Z]’—o ety (1) ”

] %0/ 63



Stationarity of VAR(1)

r, = E[(Z@Oq”igu) (Z‘.”Oe;“ (‘Dll),ﬂ
= [E 0 o‘Dl‘“'t—Jgt (- I(CD )l}
= LTI PE (el ) (94)
- Ocp”'()(cpl) as { EE((; ]]:f:l'))_(o)', iiﬁ: /

= CD{ Zizo CI>11Q (q>ll)

= @i



Stationarity of VAR(1)

o, = corr(Xy,Xs_y) =D7',D7?
= D 'o{r, D!
= D '®{DD'I,D!
15/
= D ®Dp,
Now notice that A = D~1®;D and
A = AxAx.xA
~—_———
2%
- (D‘1®1D> X (D‘1<D1D) X . X (D—1©1D)

Ix
= D7'®; x Py x ... x PD
{x

= D'®{D
Therefore A! = D_1CI>€D and p, = Aﬁpo.
] 2/ 6



Vector Autoregressive models

e Example: VAR(1) process:
GNP 2 07 01 0 GNP, ; -
M2 1({+| 0 04 01 M2;_4 + | e |,
IR 0 09 0 08 IR, £3;

where GNP; is the Gross National Product, M2; is money supply,
and IR; is interest rate.

A0 O 07 01 O
0 A O0|—| 0 04 01
0 0 A 09 0 08

A% —1.9024+1.16A-0233 = 0

|
o

Roots:
A1 = 0.89395, A, = 0.50303 + 0.087213i, A3 = 0.50303 — 0.087213i.

Thus
M| = 0.89395,[A;| = [A3] = 0.51053
Hence the process is stationary

] 53/ 63



Stationarity of VAR(p)

e Consider now general VAR(p) model:
Xt =¢g+ Zzzl DXyt
or
CD(L)X,} = QDO + &,
— p 4
O(L) = L—), DL
@ A VAR(p) process is stationary if the roots of
A =Y @t =0

are inside the unit circle.
e Equivalently the VAR(p) process is stationary if all values of z
satisfying
=Y @ = 0
[@(z)] = 0
are outside the unit circle.



VMA representation of a VAR(p) process

e If all roots of |®(z)| = 0 lie outside the unit circle, stationarity
implies that ®(L) has an absolutely summable inverse and the
VAR(p) process has the Vector Moving Average representation
(VMA):

Xi = O(L) " (pg+er)
= (E0%l) (9o +e)
= Y Y+ 3 Yile
= Y0¥t t )y e

where ®(L) ' = ¥(L) = 1% ¥;l/ and Y2 ¥; and 17, ¥} ¥/
converge.



VMA representation of a VAR(p) process

o Example: Recall that if p = 1 then X; = p + Y2 ¥;¢;j where

Y, =@),j>0.
@ For any p we have
o= EX)
- Z]’:o Fi¢o
= YDy,
1“/; = COU(Xt, thf)

— ®© /



Impulse response functions

Consider the MA representation of the VAR(p) process
Xy=c+ Z:O:O Yeer—r

wherec = Y7 ¥, ¢,.

Notice that X
t+0
=Y, =
oe; ¢ dej;

where ¥;;(¢) is the element in row i and column j of Y.

o Aplotof ¥;;(£) against / is the impulse response function.
@ To see what is going on let us consider the case that k = 2, that is
X; = (Xy4, Xot)' therefore the model becomes

Xip = a+y, o Yuler+Y, ¥,
Xor = a+y o Yaeyr+Y, o Yol

where ¢ = (c1,¢)".



Impulse response functions

@ Consider the first equation for simplicity

Xip=c1+Y, o Yuenr+Y, o ¥2(er
@ In period t + ¢ we have
Xipre = a+), o ¥Yuenr+Y o Y12(Neiro—r

c1 +¥11(0)er e+ Fr1(Der o1 + - + Yrr(f)egs + ...
+¥12(0)ez 410 + Y12(Deg o1 + o + Y12(O)ers + .

@ Hence
X1 440
7 - — \Ij
Tt = (),
0X1 140
. = YY)
- ()

] 58/ 63



Impulse response functions

Consider the general setting:

@ The impulse response function describes the response of X;;,,to a
one-time unit change in ¢;;. where the units are those that ¢;; is
measured.

o Usually we multiply ¥;;(¢) by the standard deviation of ej; so we
obtain the response of X;; to a one-time change in ¢;; of

1/2

var(gj)'/* units.

B E S T



Let us assume that
Xe=¢o+ Y ®Xo+et=1,.,T

where & ~ i.i.d N(0, Q).
@ We shall condition on the p first observations and derive the
conditional likelihood function for Xi, ..., X7.
@ Let 0 denote the vector of unknown parameters: ¢, D,
(¢ =1,..,p) and Q. The dimension of 8 is k + pk? + k(k + 1) /2.
Let:
e Z = (1,X;71,...,X£7p)’ (kp+1) x 1)
® B = [py, D1,..., Dp], (k x (kp +1)).
° Zf = (Xj,.. Xj_,) , t > p+1
Then the VAR(p) model can be written more compactly as
Xy = B/Zt + &, t = p+1,,T
Conditioning on the past values we obtain
Xt|Zf ~ N(B'Zi, Q)

S a0/6



e Hence the conditional density of X;|Z] is
froiz; (xilzi, 0) = @m) 72101 exp{-(1/2)
X (xt —B Zt) Qi (.Xt —B Zt)}.

@ Recall that the formula of the conditional log-likelihood is given
by

T s
log £(8) = Zt:p+1108fx,\zy(xt|ztr9)
(27) - 7 log 0}

—(1/2) ZL‘T:p—I—l (xt — B/Zt)/ Qil (xt — B/Zt)

withT* =T —p.
@ There is a closed form solution for the conditional MLE:

N

T T -1
N T A N A
QO = 7 Zt:p+1 &18;, where & = x; — B'z

] 41/ 63



e Note that the j row of B is given by

B T — T
b] = [Zt:p—H th’/f] l[Zt:p—H xjrtzi]

(wherej =1, .,k)
e Conclusion the conditional MLE of B is obtained by applying

ordinary least squares separately to each equation. One can
show that for b = vec(B) = (b}, ..., b]’-)’

@ Remark: The vec operator applied to a matrix A (vec(A)) creates
a column vector from a matrix A by stacking the column vectors
of A.

@ One can show that
VT(h—b) 2 N(0,Q®E(z2)))

where ® denotes the Kronecker product.

] 2/ 63



The Likelihood ratio to test h restrictions Hy : 7(6) = 0 has the form
LR = T(log || —log |€2])

where (), is the restricted MLE.
One can show that

LR 2 ¥ ()

where & is the dimension of 7(6).



Bivariate Granger causality

A scalar variable X Granger-causes another scalar variable Y if Y can
be better predicted using the histories of both X and Y than it can
using the history of Y alone.

Formally:

Definition

X fails to Granger cause Y if
MSE[E(Yt4s|Yt, Yi_1,...)] = MSE[E(Y1as|Xt, Xt 1,00 Y1, Yi1,.00)]

where MSE is the mean square error of prediction:
MSE(E(.)) = E[(Yess — E())2.




Impulse response functions

@ In a VAR model with k = 2 with Z; = (X, Y;)":
Zi=¢g+Y ) PZio+e,
@ Writing the model as a system of equations we have

Xe =g+ Pri(O)Xi—p+ X, P12(0)Yiy +en
Y=g+ 0 P (O)Xe—p+ X Poo(0) Yy + 2

o If Pyp(¢) =0for ¢ =1,...,p, Y does not Granger Cause X.
o If &y (¢) =0for ¢ =1,...,p, X does not Granger Cause Y.



Bivariate Granger causality

Example: Consider the following VAR(2) process

X; . 2 0.7 0 Xt,1 €1,
{Yt]_[o}Jr{w O.BHYH}JF[QJ'

where (e, €2)’ is a vector of white noise processes. Equivalentl
tr &t y

Xy =2407Xi—1 + €14
Yt = O.9Xt_1 + O.SYt_l + &3¢

@ Yis not Granger Causal to X.
@ X Granger causes Y.



Simple econometric tests for bivariate Granger

Causality

@ The tests based on the VAR methodology can be used to test
Granger Causality.

o However, there is a simpler alternative way to test this based on
a multivariate regression model:

e Let
ye=c+ Zf;l lacix; i + Biys—i] + ur
where for z; = (X1, ..., Xt—p,Yt—1, -, Yi—p) We have:

@ E(ut|z;) = 0 the regressors are contemporaneously exogenous
o var(ut|z;) = o? the regressors are contemporaneously homoskedastic,
o cov(uy, us|zt, zs) = 0,8 # t (no autocorrelation).

o x fails to Granger cause y if

Hy:a; =0, fori=1,..,p

L T e



Simple Econometric tests for bivariate Granger

Causality

We can test this hypothesis in the following way under the above
assumptions:

@ Let RSS; be the residual sum of squares of the regression
yp=c+ Zf:l[“z‘xt—i + Byl +ur,t=1,.,T

@ Let RSS be the residual sum of squares of the regression

yr=c+ Z’;:l Bivi—i+u,t=1,..,T,
e Under Hy
_ T(RSSy—RSS1) b »
S = RSS, = x“(p)

We can use this statistic to test H. Let ¢, the 100 x a% critical
value. We reject H) if the actual value of S is bigger than c,.



Specification testing in VAR models

The residuals &; can be used for usual (univariate) misspecification
tests.
Stronger results are obtained from vector tests:

@ Multivariate Q—statistic can be applied to residuals with
asymptotic x?(k*(m — p)) distribution.
@ One can also apply vector LM tests of serial correlation.

Lag Length selection can be based on the minimization of the
information criteria:

2 Ay 22
AIC(p) = T log L(6) + %, Akaike information criterion
2 *
BIC(p) = - % log £(0)) + %%(T)’ Schwarz Information criterion

where ép is the conditional MLE estimator for the parameters of the
VAR(p) model and with T* = T — p (usual definitions).

S /6



Structural VAR

@ Structural VAR (SVAR) allows contemporaneous relationships
between elements of X; :

BoXt =co+B1 Xy 1+ B Xy o+ ... + Bpr*P + U

where

X = (X1,6 Xo s s X )

U; = (Uyy, Uy, ..., Uy)' is a multivariate white noise with
var(U;) = D;

co = (€10, 20, - Cko)’ is a vector of intercepts;

By = [B;j(¢)] are k x k coefficient matrices, { = 0, ..., p.

This model allows for contemporaneous relationships between
the variables:

Z;(:l B1j(0)X;¢ = c10+ Y, 2};1 Byj(0)Xjs—¢ + Uy
Z};l Byi(0)Xy = co0 + ¥, Z;-Ll Boj(£)Xjp—¢ + Usy

Y1 Bii(0)Xjs = cro + Ty Ty Bii(O) X0 + Uiy



Structural VAR

BoXt = co + 25:1 ByX;_p+ Uy

@ If By is invertible, then this model is equivalent to a reduced

form VAR
Xy = Byleo+) ) By'BeX,_p+By'Uy
= ot Y, DX +e,
where
_ -1 _ n—1
(PO - BO CO/q)f _BO Bf/
&g = Bglllt



Impulse response functions

@ Thus

E(g) = E(By'Uy)
= By'E(l)
= B,'x0
=0

and

var(ey) = war(By 'U)
= By lvar(Uy)[By ')
= B,'D[B;'].
o We define Q) = B, 'D[B,]'.

@ Can we derive the elements of the structural VAR uniquely from
the reduced form VAR?

] 52/ 63



Structural VAR

@ Consider the number of elements in each model
@ The SVAR model:

e cpisak x 1 vector therefore it has k unknown elements.

o By = [Bj;({)] are k x k coefficient matrices and therefore each has K>
unknown elements and ¢ =0, ..., p.

e Disasymmetric k x k matrix, hence it has k(k + 1) /2 distinct
unknown elements.

@ The VAR model:
e ¢, is ak x 1 vector therefore it has k unknown elements.
o &, = [®;;(¢)] are k x k coefficient matrices and therefore each has

k? unknown elements and £ =1, ..., p.
e () is a symmetric k x k matrix, hence it has k(k 4 1) /2 distinct
unknown elements.



Structural VAR

@ In summary the number of unknown elements of each model

are:
SVAR VAR
Co k 4)0 k
By, ...By | (L+p)k* | @1,.., P, pk?
D k(k+1)/2 Q k(k+1)/2

@ The SVAR has k? more parameters than the VAR and so we need
k? restrictions in order to identify the parameters of the SVAR.



Structural VAR

@ Essentially a necessary condition for identification requires B
and D to have no more unknown elements than () which is
k(k +1)/2. This condition is known the order condition for
identification.

o Normalization restrictions: Assign the coefficient of 1 to Xj; in each
equation (k): we we can write fori =1, ...,k

Y Bij(0) X, = cio + X_y Ly Bi(O) X + Uiy,
Xip+ i Bi(0) X5 = cio + Xy Ty B (0) X + U,
Xip = Cio = L1, Bij (0) X + T_y Ty Bi(0) X ¢+ Uit

e Covariance matrix restrictions: e.g. Specifying D to be diagonal (k).
@ So under these restrictions By has k? — k elements and D has k
elements and therefore in total they have k? elements

@ On the other hand Q) has k(k + 1) /2 elements.
o We still need to impose k? — k(k + 1) /2 = k(k — 1) /2 restrictions.



Structural VAR

@ A solution: Cholesky Decomposition - By is lower triangular

1 0 0 0

by 1 0 0

By = : )
b b by, 1

@ Remark: The Cholesky decomposition does not have a direct
economic interpretation.

@ This approach is called Cholesky decomposition because it is
based on a Cholesky type decomposition of a positive definite matrix:
Any symmetric positive definite matrix A can be decomposed as
A = LGL' where G is a diagonal matrix a L is a lower triangular
matrix with 1’s in the diagonal.

@ So basically we are applying this decomposition to Q = LGL/,
withG=Dand L = B .

@ Remark: Other alternative is to impose some restrictions based
on Economic Theory.



Impulse response functions in the structural model

Consider the MA representation of the VAR(p) process
Xe=Y o ¥ipo+ Yo Y (1)
and recall that
& =By Uyt =1,..
Replacing this in (1) we have
. oo 00 -1 )
Xe =) o ¥ido+ 20 ¥iBy Uy
Consequently
[e0] (e0) -1
Xeve =Yoo+ Yo ¥iBy Urpej

and therefore
Y
ou;
To simplify the notation write Ay = ¥;B, ' and denote Ajj(0) the
element i,j of this matrix. Then

OXitre

= ‘Pngl




Impulse response functions in the structural model

o A plot of A;;({) against ¢ is the structural impulse response function
(Enders denotes this function simply as impulse response
function.)

@ It describes the response of X; ;. to a one-time unit change in
Uj;. where the units are those that Uj; is measured.

@ As before some researchers prefer to multiply A;(¢) by the
standard deviation of uj; so we obtain the response of X;;, ¢ to a

one-time change in Uj; of ZJIZT’(Uj )1/2 units.



Forecasting VAR models

e Consider a stationary VAR(p) model:
X = (PO =+ Zf):l cDithi + &.

@ Suppose we are in period / and we want to forecast the
observations in period h + ¢, £ > 0.

B E S T



Forecasting VAR models

Forecasting in stationary VAR(p) models similar to univariate AR(p):

o (— step forecasts X}, (¢) = E;[Xp1¢], ¢ > 0 (assuming that ¢, is a
martingale difference sequence: Ej[ej, o] = 0)
@ In period i 4 ¢ we have

Xnto =P + 2?:1 DQiXpyo—i + Enve-
Therefore
Ep[Xniel = En (4’0 +Y P Xy it €h+f)
= @+ Yo PiEn [Xnro—i] + Ep [ense] -
by the tower property we have
Ep [en+e] = En [Ente—1 [en+e]] = En [0] = 0

Notice also thatif i > ¢ Ej, [ X1 ¢ = Xp0_i-
@ In summary using the notation Xj,(¢) = E;[X},1¢] we have

Xu(l) = g+ Yy @iXy (€ — 1)
where X, (¢ — i) = X}, ¢_; fori > (.
S e0/6



Forecasting VAR models

@ Let us now obtain the variance of the forecasting error
@ From the MA(c0) representation we have

o (o]
Xnto = ijo Fio + ijo Yienso-j
@ Thus

Xp(6) = Ep[Xpt]
Ep| Jio Yipy + Zfio Yieni o

= Z]io Yigo + Z;ié Y,Ep (€h+£—j) + ]62—01 YEp (€h+€—j)

@ Now foranyj > /¢, ¢ —j < 0 and hence E, (Sthj) = &hyo—j,s

e forany;j < ¢,/ —j > 1and therefore by the tower-property

E, (£h+£7j) = Ey, (Eh+£fjfl (€h+€7j>) =E,(0)=0

@ Hence
Xp(0) =) o ¥ipo+ ) Yignse—



Forecasting VAR models

Hence we obtain the forecast error

en(?)

Xnt0 — Xn(€)

Yo ¥ido + g Yo

= Lo ¥ido — Ly Yiente

Z]io Figo + Z;i[ Yieno—j+ Zf;(} Yienroj
= Y0 Y0 = L Yene e

(-1
Yo Fieni—j



Forecasting VAR models

Because var(ej,4.¢—j) = Q2 and g, ¢_; is a multivariate White noise
process the variance of ¢, (¢) is

(-1
var(en(€)) = var(} o ¥ienie—y)
-1 .
= ijo var(¥iepo—j), ascov (e, &) = 0,t #
-1
= Zj:o ‘I{leZT(Sh+g_j)T]/<

_ =1y /
= Y, 40Y;



