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Ordered data

In some problems, the variate of interest assumes more than two
discrete outcomes, but these are inherently ordered.
Examples that have appeared in the literature include the
following: Bond ratings; Results of taste tests; Surveys on the
degree of satisfaction with some service; The level of insurance
coverage taken by a consumer: none, part, or full; Employment:
unemployed, part time, or full time
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Ordered data

Zavoina and McElvey (1975) modelled ordered data using the
following latent variable framework:

Y�i = X0i β0 + ui, Yi =

8>>>>>>>><>>>>>>>>:

0 Y�i � µ0

1 µ0 < Y�i � µ1
2 µ1 < Y�i � µ2
...

...
J� 1 µJ�1 < Y�i � µJ�1

J µJ�1 < Y�i

where the threshold parameters are such that
0 = µ0 < µ1 < � � � < µJ�1 and Y�i is a latent variable.
If the distribution of ui is specified, the unknown parameters β and
µ2, . . . , µJ�1 can be estimated by maximum likelihood.

Assume that ui has distribution function F (�) and is independent
of Xi.
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Ordered data

Notice that

p0(Xi, β0) = P (Yi = 0jXi) = P
�
X0i β0 + ui � 0jXi

�
= P

�
ui � �X0i β0jXi

�
= F

�
�X0i β0

�
p1(Xi, β0) = P (Yi = 1jXi) = P

�
0 < X0i β0 + ui � µ1jXi

�
= P

�
ui � µ1 � X0i β0jXi

�
�P

�
ui < �X0i β0jXi

�
= F

�
µ1 � X0i β0

�
� F

�
�X0i β0

�
...
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Ordered data

...
pj(Xi, β0) = P (Yi = jjXi) = P

�
µj�1 < X0i β0 + ui � µjjXi

�
= P

�
ui � µj � X0i β0jXi

�
�P

�
ui < µj�1 � X0i β0jXi

�
= F

�
µj � X0i β0

�
� F

�
µj�1 � X0i β0

�
...

pJ(Xi, β0) = P (Yi = JjXi) = P
�

µJ�1 < ui + X0i β0jXi

�
= P

�
ui > µJ�1 � X0i β0jXi

�
= 1�P

�
ui � µJ�1 � X0i β0jXi

�
= 1� F

�
µJ�1 � X0i β0

�
.
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Ordered data

Therefore, the log-likelihood function is simply

log L(θ) =
n

∑
i=1

J

∑
j=0

1 (Yi = j) log
�
pj(Xi, β)

�

As in all discrete choice models, the variance of ui is not identified.
The ordered-probit and ordered-logit are the most used special cases
of this model.
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Ordered data

For the ordered-probit

F
�

µj � X0i β0jXi

�
= Φ

�
µj � X0i β0

�
For the ordered-logit

F
�

µj � X0i β0jXi

�
=

exp
�

µj � X0i β0

�
1+ exp

�
µj � X0i β0

�
Interpreting coefficients requires some care. For instance in the
ordered probit model we have

∂p0(Xi, β0)

∂xk
= �β0kφ(�X0i β0),

∂pJ(Xi, β0)

∂xk
= β0kφ(µJ�1 � X0i β0)

∂pj(Xi, β0)

∂xk
= β0k[φ(µj�1 � X0i β0)� φ(µj � X0i β0)], j = 1, ..., J� 1

For 1 < j < J, the sign of ∂pj(Xi, β0)∂xk is ambiguous. It depends
on jµj�1 � X0i β0j versus jµj � X0i β0j (remember, φ(�) is symmetric
about zero).
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Ordered data

The OP and OL models allow us to obtain the sign of the partial
effects on P(Y > jjXi): for a continuous variable xh. For the OP
model

∂P(Yi > jjXi)

∂xh
= βhφ(µj � X0i β),

If βh > 0, an increase in xh increases the probability that Yi is
greater than any value j.
Of course the we can interpret the sign of the parameters in the
latent variable model.
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Ordered data

A closely related model can be used for grouped data.
Example: Income reported in non-overlapping intervals
In this case, the threshold parameters are the limits of the
intervals.
The main difference is that, for J > 0, the variance of ui is
identified because the thresholds give information on the scale of
ui.
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The Poisson Regression Model

In many relevant applications, the variate of interest is the count
of the number of occurrences of some event in a given period of time
(rare events).
Examples include: number of accidents, number of patents,
number of takeovers, number of purchases, number of doctor
visits, number of jobs and number of trips.
These data have some very specific characteristics:

Discreteness;
non-negative;
Many zeros and a long right-hand tail.

In this context, standard linear models are not appealing because:
The conditional expectation is necessarily non-negative;
The data is intrinsically heteroskedastic;
Do not allow the computation of the probability of events of
interest.
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The Poisson Regression Model

The basic model for count data is the Poisson regression, defined
by

P (Yi = jjXi) =
exp (�λ(Xi, β0)) λ(Xi, β0)

j

j!
, j = 0, 1, 2, . . .

E(YijXi) = Var(YijXi) = λ(Xi, β0)

Notice, however, that

Var(Yi) = Ex [λ(Xi, β0)]+Varx [λ(Xi, β0)] � Ex [λ(Xi, β0)] = E(Yi).

where in general, the following specification is adopted:
λ(Xi, β0) = exp

�
X0i β0

�
.

Therefore,
∂E(YijXi)

∂Xi
= exp

�
X0i β0

�
β0

ML estimation of β0 is straightforward.
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The Poisson Regression Model

The log-likelihood function, likelihood equations and the
Hessian are given by

log L (β) = ∑n
i=1

�
� exp

�
X0i β

�
+
�
X0i β

�
Yi � log (Yi!)

�
∂ log L

�bβ�
∂β

= ∑n
i=1

h
Yi � exp(X0ibβ)iXi = 0

∂2 log L (β)
∂β∂β0

= �∑n
i=1 exp(X0i β)XiX0i

Notice that the Hessian is negative definite for all X and β, which
facilitates the estimation and ensures the uniqueness of the
maximum, if it exists.
The MLE has the usual properties. In particular

p
n
�

β̂ML � β0
� d! N

�
0, E

�
exp(X0i β0)XiX

0
i
��1
�

As usual, inference can be performed using the LR, W and LM
tests.
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Overdispersion

The Poisson model imposes (conditional) equidispersion, which is
very restrictive.
There are many possible causes for overdispersion:

Measurement error;
Misspecification of the conditional mean;
Neglected heterogeneity (random parameter variation).

Applied economists tend to focus on the neglected heterogeneity
issue, assuming

E(YijXi, εi) = exp(X0i β0 + εi)

E (exp (εi) jXi) = 1, Var (exp (εi) jXi) = σ2

Author: Paulo M.D.C. Parente 13 / 36



Overdispersion

In this particular case

E(YijXi) = E(λ(Xi, β0)jXi) = Eε

�
exp(X0i β0 + εi)jXi

�
= exp(X0i β0)

Therefore, this sort of neglected heterogeneity does not change
the form of the conditional expectation of Yi.
Gourieroux, Monfort and Trognon (1984) proved the following
powerful result: If E(YijXi) = exp(X0i β0) is correctly specified and
the Likelihood function is constructed using a probability
distribution which does not necessarily correspond to the true
distribution of the data, but belongs to the family of linear
exponencial distributions, then the Quasi-Maximum Likelihood
estimator is consistent for β0.
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Overdispersion

The family of linear exponencial distributions includes the
Poisson Distribution, the Normal Distribution (with fixed variance).
the binomial (with fixed number of trials), the gamma distribution
(with fixed shape parameter)
In this particular context the Quasi-Maximum Likelihood estimator
is sometimes called Pseudo-Maximum Likelihood Estimator by
some authors.
Inference is done using the results presented previously for the
Quasi-Maximum Likelihood estimator. In particular since the
Poisson pseudo-MLE is consistent in presence of this sort of
misspecification, valid inference can be based on

p
n
�bβ� β0

�
d! N

�
0, A�1BA�1

�
A = E

�
exp(X0i β0)XiX

0
i
�

B = E
h�

yi � exp(X0i β0)
�2 XiX

0
i

i
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Overdispersion

Note that

Var(YijXi) = Eε

�
exp(X0i β0 + εi)

�
+Varε

�
exp(X0i β0 + εi)

�
= exp(X0i β0) + σ2 exp(2X0i β0).

The presence of overdispersion can be tested by testing
H0 : σ2 = 0.
This can be done using the following LM (IM) test statistic (Cox,
1983, and Chesher, 1984)

T =
n

∑
i=1

�
Yi � exp(X0ibβ)�2

� Yiq
2 ∑n

i=1 exp(2X0i
bβ) d! N (0, 1)
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Overdispersion

Alternatively, we can regress��
Yi � exp(X0ibβ)�2

� Yi

�
exp(�X0ibβ) on exp(X0ibβ) (or on a

constant or other functions of exp(X0ibβ)) and test the significance
of the regressor (Cameron & Trivedi, 1986).
All these tests can also detect underdispersion.
Overdispersion tests are overplayed in the literature:

1 in practice, the null is almost always rejected;
2 if this is the only source of misspecification, the Poisson

pseudo-MLE is still consistent.

Other specification tests are available, like the RESET test that
checks the moment condition

E
h�

Yi � exp(X0i β0)
� �

X0i β0
�2
i
= 0

In practice, the test can be performed by checking the

significance of the additional regressor
�

X0ibβ�2
.
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Heterogeneity and the Negative Binomial Regression
Model

The assumption that Yi has a Poisson distribution conditional of
Xi and εi with mean λi = exp(X0i β0 + εi), leads to the compound
Poisson regression model

P(Yi = jjXi, εi) =
exp[� exp(X0i β0 + εi)] exp(X0i β0 + εi)

j

j!

P(Yi = jjXi) =

+∞Z
�∞

exp[� exp(X0i β0 + εi)] exp(X0i β0 + εi)
j

j!
g(εi)dεi

where g(εi) is the density function of εi and we assumed that Xi
and εi are independent.
This model can be made operational in different ways:

1 Pseudo maximum likelihood estimation (discussed previously);
2 Parametric estimation for specified g(εi);
3 Semiparametric estimation of β0 and g(εi).
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Heterogeneity and the Negative Binomial Regression
Model

If g(εi) is specified, the MLE can be obtained, but the estimator
may not be robust to departures from the additional distributional
assumptions.
Assuming that exp (εi) � Γ

�
σ�2, σ2�, P(Yi = jjXi) is given by

the negative-binomial (Cameron and Trivedi (1986).denote it as
NegBin II) model:

P(Yi = jjXi) =
Γ
�
j+ σ�2� �1+ σ�2 exp(�X0i β0)

��j

Γ (σ�2) Γ (j+ 1)
�
1+ σ2 exp(X0i β0)

�σ�2 . (1)

The Poisson model is obtained as a limiting case when σ2 ! 0,
but H0 : σ2 = 0 cannot be tested with a standard LR or W test.
If the model (1) is misspecified but E(YijXi) = exp(X0i β0) is
correct and σ�2 is fixed, the negative-binomial Psedo-MLE
estimator is consistent for β0 This follows from the results of
Gourieroux, Monfort and Trognon (1984) and the fact that the
negative-binomial distribution with σ�2 fixed is a member of the
family of linear exponencial distributions
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Heterogeneity and the Negative Binomial Regression
Model

The score test for H0 : σ2 = 0 is the overdispersion test studied
before.
Other parametric alternatives to the Poisson regression are
available.
A semiparametric alternative is to assume that ε has a discrete
distribution with Q support points α1, . . . , αQ and corresponding
probabilities π1, . . . , πQ, leading to

P(Yi = jjXi) =
Q

∑
q=1

exp[� exp(X0i β+ αq)] exp(X0i β0 + αq)j

j!
πq,
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Heterogeneity and the Negative Binomial Regression
Model

For a given Q, estimation of β, α1, . . . , αQ and π1, . . . , πQ�1 can
be performed by ML.
This model can be interpreted as semiparametric approximation to
a compound Poisson model with unspecified distribution.
This leads to a consistent estimator if Q is allowed to increase at an
appropriate rate;
In practice, the value of Q has to be chosen (for example using an
information criterion);
Inference is complicated by the fact that the number of
parameters is not fixed;
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Hurdle and Zero-Inflated Poisson Models

In some cases, the population may be contaminated by
individuals for which Yi � 0.
There are two ways to model this type of data. The Zero-Inflated
Poisson Model and the Hurdle Model
The Zero-Inflated Poisson Model: The zero outcome can arise from
one of two regimes.In one regime, the outcome is always zero. In
the other, the usual Poisson process is at work
Let Zi be a bernoulli random variable such that

Zi =

8<: 0 with P (Zi = 0jXi) = pi

1 with P (Zi = 1jXi) = 1� pi

where pi can be a function of the regressors.
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Hurdle and Zero-Inflated Poisson Models

Let P (Yi = jjXi, Zi = 1) = πi
�
j; β0

�
, j = 0, 1, ... be the Poisson

probability function.
Let P (Yi = 0jXi, Zi = 0) = 1.
Note that

P(Yi = 0jXi) = P(Zi = 0jXi)P (Yi = 0jXi, Zi = 0)
+ P(Zi = 1jXi)P (Yi = 0jXi, Zi = 1)

= P(Zi = 0jXi) + P(Zi = 1jXi)P (Yi = 0jXi, Zi = 1)

= pi + (1� pi)πi
�
0; β0

�
Additionally for j > 0 :

P(Yi = jjXi) = P(Zi = 1jXi)P (Yi = jjXi, Zi = 1)
= (1� pi)πi

�
j; β0

�
Notice that

E (YijXi) =
∞

∑
j=0

jP(Yi = jjXi) =
∞

∑
j=1

jP(Yi = jjXi)

= (1� pi)E (YijXi, Zi = 1)
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Hurdle and Zero-Inflated Poisson Models

Therefore the standard pseudo maximum likelihood result does
not hold here if pi depends on Xi.
Then, the log-likelihood function for this zero-inflated (Mullahy,
1986) model can bewritten as

log L (β) =
n

∑
i=1

logf[pi + (1� pi)πi (0; β)]1(Yi=0)

� [(1� pi)πi (Yi; β)]1(Yi>0)g
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Hurdle and Zero-Inflated Poisson Model

The Hurdle Model (Mullahy, 1986): A different extension of the
basic count data model is obtained by letting the zero and
positive observations be generated by different mechanisms.
In his formulation, a binary probability model determines
whether a zero or a nonzero outcome occurs, then, in the latter
case we observe always a positive integer 1, 2, 3, ...
Consider the Bernoulli random variable

Wi =

�
1 with P (Wi = 1jXi) = 1� qi
0 with P (Wi = 0jXi) = qi

where qi may depend on Xi.
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Hurdle and Zero-Inflated Poisson Model

P(Yi = 0jXi, Wi = 0) = 1.
P(Yi = 0jXi, Wi = 1) = 0, and P (Yi = jjXi, Wi = 1) = π?i

�
j; β0

�
,

j = 1, 2, 3, ...
In this case

P(Yi = 0jXi) = P(Wi = 0jXi)P(Yi = 0jXi, Wi = 0)
+P(Wi = 1jXi)P(Yi = 0jXi, Wi = 1) = qi

Additionally for j = 1, 2, ...

P(Yi = jjXi) = P(Wi = 0jXi)P(Yi = jjXi, Wi = 0)
+P(Wi = 1jXi)P(Yi = jjXi, Wi = 1)

= P(Wi = 1jXi)P(Yi = jjXi, Wi = 0)
= (1� qi)π?i

�
j; β0

�
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Hurdle and Zero-Inflated Poisson Model

In this case we have

E (YijXi) =
∞

∑
j=0

jP(Yi = jjXi) =
∞

∑
j=1

jP(Yi = jjXi)

= (1� qi)
∞

∑
j=1

jπ?i
�
j; β0

�
= (1� qi)E [YijXi, Wi = 1]

Again the standard pseudo maximum likelihood result does not
hold here.
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Hurdle and Zero-Inflated Poisson Model

Then, the likelihood function has the form

log L (β) =
n

∑
i=1
f1 (Yi = 0) (log qi) + 1 (Yi > 0) log (1� qi)

+1 (Yi > 0) log [π?i (Yi; β)]g

Notice that this function is separable.
Correlated unobserved heterogeneity can be allowed for and
integrated-out numerically.
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Hurdle and Zero-Inflated Poisson Model

Usually, π?i
�
j; β0

�
is specified as a truncated Poisson of the form

π?i
�
j; β0

�
=

exp (�λi) λ
j
i

(1� exp (�λi)) j!
, j > 0,

with λi = exp
�
X0i β0

�
.

However, in this model there is no real truncation and therefore
an equally valid specification would be

π?i
�
j; β0

�
=

exp (�λi) λ
j�1
i

(j� 1)!
, j > 0.

When the truncated Poisson specification is used and qi is
specified as

qi = exp
�
� exp

�
X0iγ0

��
,

the null of no hurdle can be tested by testing H0 : β0 = γ0.
In any case, consistency depends on the distributional
assumptions.
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Models for Panel Data

Define Yi = (Yi1, . . . , YiT)
0 and ji = (ji1, . . . , jiT)

0, and let

P(Yit = jitjXit, εi) =
exp (�λit) λ

jit
it

jit!
λit = exp(X0itβ0 + εi)

= exp(X0itβ0)αi, i = 1, ..., n, t = 1, ..., T

where εi is a random variable and αi = exp (εi) .

Author: Paulo M.D.C. Parente 30 / 36



Models for Panel Data
The Pooled Poisson regression model

We must assume that E(αijXit) is a constant (normalized to 1)
Based on this assumption we have E(yitjXit) = exp(X0itβ0)

The Poisson Quasi-logLikelhood is given by (up to additive
constants):

log L(β) =
n

∑
i=1

T

∑
i=1

�
YitX0itβ� exp(X0itβ)

�
The Poisson Quasi-logLikelhood estimator is consistent under
mild assumptions.
Inference must be based on a robust (to heteroskedasticity and
dependence) covariance estimator.
Inclusion of time dummies in the model is generally
recommended.
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Models for Panel Data
A more efficient estimator

We require additional assumptions:
1 independence of the elements of Yi = (Yi1, . . . , YiT), conditional on εi

and Xi = (Xi1, ...., XiT)
0;

2 the following distributional assumptions:

1 P(Yit = jitjXi, εi) = exp (�λit) λ
jit
it /jit!, where λit = exp(X0itβ0 + εi)

(the Poisson model);
2 distribution of εi is known and independent of Xi.

Remark: Assumption 2(a) implies that
P(Yit = jitjXi, εi) = P(Yit = jitjXit, εi) and, consequently
strict-exogeneity of the regressors: E (YitjXi1, ...., XiT, εi) = E (YitjXit, εi)
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Models for Panel Data
A more efficient estimator

In this case, L (β) =
n

∏
i=1

Li (β) , where

Li (β) =

+∞Z
�∞

"
T

∏
t=1

exp
�
� exp(X0itβ)αi

� �
exp(X0itβ)αi

�jit

jit!

#
g (αi) dα

If αi = exp (εi) is assumed to have a gamma distribution, the
model has a closed form based on the negative-binomial
distribution.
Often, it is assumed that αi has a log-normal distribution (no closed
form).
Consistency depends, of course, on the validity of the
distributional assumptions.
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Models for Panel Data
The fixed effects estimator

There is a consistent fixed-effects estimator for the Poisson model,
that does not require independence between αi and the
regressors.
Now it is assumed that for i = 1, ..., n, t = 1, ..., T we have:

P(Yit = jitjXi, εi) =
exp (�λit) λ

jit
it

jit!
λit = exp(X0itβ0 + εi) = exp(X0itβ0)αi,

where εi is a random variable and αi = exp (εi) . Recall that this
assumption implies that P(Yit = jitjXi, εi) = P(Yit = jitjXit, εi)
and, consequently strict-exogeneity of the regressors:
E (YitjXi1, ...., XiT, εi) = E (YitjXit, εi) = λit
This estimator requires independence of the elements of
Yi = (Yi1, . . . , YiT)

0, conditional on εi and Xi;
By the additivity property of the Poisson distribution, we have
that

∑T
t=1 Yitjεi, Xi � Poisson

�
∑T

t=1 λit

�
.
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Models for Panel Data
The fixed effects estimator

It turns out that the distribution of Yi conditional on Xi, αi and
∑T

t=1 Yit does not depend on αi.

Indeed, we have (for ji = (ji1, ..., jiT)
0):

P
 

Yi = ji

�����Xi, εi,
T

∑
t=1

Yit =
T

∑
t=1

jit

!

=

�
∑T

t=1 jit
�

!

∏T
t=1 jit!

T

∏
t=1

 
exp(X0itβ0)

∑T
t=1 exp(X0itβ0)

!jit

.

Write

pt(Xi, β0) =
exp(X0itβ0)

∑T
t=1 exp(X0itβ0)

.
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Models for Panel Data
The fixed effects estimator

Estimation is simple due to the the fact that the log-likelihood
function (up to additive constants) is similar to that of the
Conditional Logit model:

log (L (β)) =
n

∑
i=1

T

∑
t=1

Yit log(pt(Xi, β))

Wooldridge (1999) shows that the estimator is consistent
provided that E (YitjXi1, ...., XiT, εi) is correctly specified even if:

1 Yit is not Poisson.
2 the elements of Yi = (Yi1, . . . , YiT) are not independent, conditional

on αi and Xi.

Naturally, if these assumptions do not hold, inference must be
based on a robust (to heteroskedasticity and dependence)
covariance matrix.

Author: Paulo M.D.C. Parente 36 / 36


