

Financial Markets and Investments

Raquel M. Gaspar

COMPUTER ASSIGNEMENT 4

Consider the assumptions of a single factor model (SFM), where for the common factor we have $\bar{R}_m = 15\%$, $\sigma_m = 20\%$. Furthermore, there is exists NO riskless asset, and we know the following information about 6 risky assets.

	\bar{R}_i	β_i	σ_{ei}^2
1	$25,\!1\%$	2	0,002
2	19,8%	1,5	$0,\!003$
3	$17,\!0\%$	1,2	0,004
4	$14,\!8\%$	1	0,005
5	$12,\!8\%$	0,8	0,006
6	12,0%	0,7	0,007

- 1. Using the SFM parameters, find out the mean-variance theory (MVT) inputs vector of expected returns and the variance-covariance matrix.
- 2. Consider shortselling is allowed without bounds.
 - (a) Represent in the mean-variance space (σ, \bar{R}) the efficient frontier.
 - (b) What can you conclude about the efficient of the 6 original risky assets?
- 3. Assume stock returns are approximately Gaussian.
 - (a) Estimate the probability that the minimum variance portfolio has negative returns.
 - (b) Determine the combination of the 6 risky assets, that has the lowest possible probability of negative returns.
 - (c) Identify all efficient portfolios that have at most 25% probability of negative returns. Represent it graphically.
- 4. Consider the factor used for the SFM model is a good proxy to the *market portfolio*, and that we believe in a two-factor CAPM. Assume, furthermore, that we consider asset 1 is in *equilibrium*.
 - (a) Verify which of the other basic risky assets are in equilibrium, underpriced or overpriced.
 - (b) Suppose Mr. Capm would like to invest in a portfolio:
 - * That uses only risky assets that are in equilibrium or underpriced.
 - $\ast\,$ That is efficient.
 - * That has a $\beta_p \leq 1.5$.
 - * That verifies $\Pr[R_{Mr.Capm} \leq 0\%] \leq 25\%$.

What is your recommendation? Represent it in mean-variance space (σ, \bar{R}) .

- 5. Suppose now that short-selling is forbidden.
 - (a) Find the maximum and minimum risk combination of the 6 basic risky assets. Explain.
 - (b) Determine the efficient frontier in this setup and graphically compare it with the unrestricted envelop hyperbola in Question 2.
- 6. Suppose shortselling of risky assets is allowed again, but consider now that there exists also a riskless asset with $R_f = 5\%$ that can be used for deposits (but not for borrowing).
 - (a) Find out the new efficient frontier. Compare it with that of Q.2.
 - (b) Check if the so-called tangent portfolio, T, verifies the Telser restriction in Q.3(c).
 - (c) What would you recommend to Mr. Capm if you could to use all 6 risky assets and the riskless deposit (i.e., if you could ignore his first restriction in Q.4)?