## UNIVERSITY OF LISBON

### ISEG- LISBON SCHOOL OF ECONOMICS AND MANAGEMENT

EXAM - JANUARY 2019

Advanced Econometrics

Module Convenor: Paulo M.D.C. Parente

Use an answer booklet of ISEG (folha de teste do ISEG)

**Instructions** (<u>please read before starting</u>): Write in a clear legible manner in ink/ballpoint. Do not use pencils or erasable pens. Calculators are permitted. If you are asked to derive something, give all intermediate steps also. Do not answer questions with a "yes" or "no" only, but carefully justify your answer.

Advanced Econometrics

Please turn over

## Section A - Topics in Microeconometrics

#### Question 1

Consider a random sample  $\{(Y_i, X'_i)'\}_{i=1}^n$  and the following binary choice model:

$$p_i \equiv P[Y_i = 1 | X_i] = G(X'_i \beta) \qquad i = 1, \dots, n,$$

where  $Y_i$  is a binary random variable that can take values 0 or 1,  $X_i$  is a k-vector of explanatory variables, and  $\beta$  is a k-vector of parameters.

- (a) (2 marks) Suppose that the function  $G(\cdot)$  is such that  $G(X'_i\beta) = X'_i\beta$ . Address the problems that would arise by estimating the above model by Ordinary Least Squares. Discuss how you could overcome these problems by imposing suitable restrictions on the function  $G(\cdot)$ .
- (b) (2 marks) Discuss the Latent Variable Threshold Model, including any identification issue that might arise. Show how this framework allows to model  $P[Y_i = 1|X_i]$ .
- (c) Consider now the Logit model and k = 1:
  - (i) (2 marks) Show that the expected value of the score vector evaluated at the true value of the parameter is zero.
  - (ii) (2 marks) Obtain the marginal effect for the Logit model  $\partial E(Y_i|X_i)/\partial X_i$ , and discuss how it is related to the parameter  $\beta$ .

# Section B - Topics in Time Series

#### Question 2

Consider the stationary MA(2) process  $Y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$ , where  $\varepsilon_t$  is a white noise process with variance  $\sigma_{\varepsilon}^2$  and c is a constant.

- (a) (2 marks) Derive an expression for  $\mu = E(Y_t)$ .
- (b) (2 marks) Derive an expression for  $\gamma_0 = var(Y_t)$  and for  $\rho_j = \gamma_j/\gamma_0$ , where  $\gamma_j = E[(Y_t \mu)(Y_{t-j} \mu)], (j = 1, 2, ...).$
- (c) (2 marks) Write down the  $AR(\infty)$  representation of  $Y_t^* = Y_t E(Y_t)$  assuming that it is invertible.

#### Question 3

Consider the VAR(1) model  $z_t = \Phi_1 z_{t-1} + \varepsilon_t$  where  $z_t = (z_{1t}, z_{2t})'$  and  $\varepsilon_t$  is a 2 × 1 vector of white noise processes with

$$var(\varepsilon_t) = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$$

(a) (2 marks) Let

$$\Phi_1 = \left[ \begin{array}{cc} 0.4 & 0.2 \\ -0.2 & 0.8 \end{array} \right].$$

Obtain the roots of the characteristic equation and show that the process is stationary.

(b) (2 marks) Obtain the values of the elements of the matrices  $\Psi_{\ell}$ , for  $\ell = 0, 1, 2$  in the infinite moving average representation

$$z_t = \sum_{\ell=0}^{\infty} \Psi_\ell \varepsilon_{t-\ell}$$

(c) (2 marks) Obtain the impulse response function for  $z_{1t}$  to a shock to the variable  $z_{2t}$  of size  $\sigma_2$ , for horizons  $\ell = 0, 1, 2$ .

Advanced Econometrics