Master in Actuarial Science

Models in Finance

06-01-2020
Time allowed: Two hours (120 minutes)

Solutions and hints for the solutions

1. .
(a) By Itô's lemma (or Itô's formula) applied to $g(t, x)$ (it is a $C^{1,2}$ function), after some calculations, we obtain

$$
d g\left(t, S_{t}\right)=0+h\left(t, S_{t}\right) \frac{\partial g}{\partial x}\left(t, S_{t}\right) d B_{t}
$$

Therefore,

$$
Y_{t}=Y_{0}+\int_{0}^{t} h\left(u, S_{u}\right) \frac{\partial g}{\partial x}\left(u, S_{u}\right) d B_{u}
$$

and since h and $\frac{\partial g}{\partial x}$ are continuous and bounded, $h\left(u, S_{u}\right) \frac{\partial g}{\partial x}\left(u, S_{u}\right)$ is adapted and the integral of the expected value of the squared process is finite. Hence, the process belongs to the space $L_{a, T}^{2}$ and therefore Y_{t} is a martingale (it is a well defined stochastic integral).
(b) We have

$$
d S_{t}=0.1 S_{t} d t+0.25 S_{t} d B_{t}
$$

which is the SDE of a geometric Brownian motion with $\mu=0.1$ and $\sigma=0.25$. The solution is (it can be obtained by applying the Itô formula to $f(x)=\log (x)$)

$$
S_{t}=S_{0} \exp \left[\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}\right]
$$

Therefore

$$
\begin{aligned}
& S_{t}=S_{0} \exp \left[0.06875 t+0.25 B_{t}\right] \\
& P\left(\frac{S_{2}}{S_{0}} \leq 1.15\right)= \\
&=P(Z \leq \ln (1.15))
\end{aligned}
$$

where $Z=0.1375+0.25 B_{2} \sim N(0.1375 ; 0,125)$.
Therefore: $P\left(\frac{S_{2}}{S_{0}} \leq 1.15\right)=0.5026$.
2. .
(a) $1+i$ has lognormal distribution with parameters $\left(\mu, \sigma^{2}\right)$. We also know that $E[1+i]=1.05$ and $\operatorname{Var}[1+i]=0.004$. Therefore

$$
1.05=\exp \left(\mu+\sigma^{2} / 2\right)
$$

and

$$
0.004=\exp \left(2 \mu+\sigma^{2}\right)\left(\exp \left(\sigma^{2}\right)-1\right)
$$

From these equations, we get $\sigma^{2}=0.003622$ and $\mu=0.04698$.
(b) We know that in this case we have $\ln \left(S_{10}\right)$ has a normal distribution with mean $10 \times \mu=0.4698$ and variance $10 \times \sigma^{2}=0.03622$. Therefore, the $P\left[S_{10}>2\right]=P\left[\ln \left(S_{10}\right)>\ln (2)\right]$ and this can be calculated as

$$
1-P\left[Z \leq \frac{\ln (2)-0.4698}{\sqrt{0.03622}}\right]=1-P[Z \leq 1.17356]=0.12
$$

The probability that $\ln (1+i)<\ln (1.04)$ can be calculated using the normal distribution of $\ln (1+i)$ and therefore

$$
P[\ln (1+i)<\ln (1.04)]=P\left[Z<\frac{\ln (1.04)-0.04698}{\sqrt{0.003622}}\right]=0.4487
$$

Since the rates of return are independent, the probability that $1+i<1.04$ in all the 10 years is simply

$$
(0.4487)^{10}=0.00033
$$

3. .
(a) Let us consider two portfolios. Portfolio A : one European call option $+\operatorname{cash} D_{1} e^{-r\left(T_{1}-t\right)}+D_{2} e^{-r\left(T_{2}-t\right)}+K e^{-r(T-t)}$
Portfolio B : one European put option + one dividend paying share.
At time T, the value of portfolio A is $S_{T}-K+D_{1} e^{r\left(T-T_{1}\right)}+$ $D_{2} e^{r\left(T-T_{2}\right)}+K=S_{T}+D_{1} e^{r\left(T-T_{1}\right)}+D_{2} e^{r\left(T-T_{2}\right)}$ if $S_{T}>K$ and $D_{1} e^{r\left(T-T_{1}\right)}+D_{2} e^{r\left(T-T_{2}\right)}+K$ if $S_{T} \leq K$.
At time T, the value of portfolio B is $0+S_{T}+D_{1} e^{r\left(T-T_{1}\right)}+$ $D_{2} e^{r\left(T-T_{2}\right)}$ if $S_{T}>K$ and $K-S_{T}+S_{T}+D_{1} e^{r\left(T-T_{1}\right)}+D_{2} e^{r\left(T-T_{2}\right)}=$ $D_{1} e^{r\left(T-T_{1}\right)}+D_{2} e^{r\left(T-T_{2}\right)}+K$ if $S_{T} \leq K$.
Therefore, the portfolios have the same value at maturity. Then, by the no-arbitrage principle, the porfolios have the same value for any time $t<T$, i.e.,

$$
c_{t}+D_{1} e^{-r\left(T_{1}-t\right)}+D_{2} e^{-r\left(T_{2}-t\right)}+K e^{-r(T-t)}=p_{t}+S_{t}
$$

(b) For the price of the put option we use the Black-Scholes formula with dividend yield

$$
\begin{equation*}
f\left(t, S_{t}\right)=K e^{-r(T-t)} \Phi\left(-d_{2}\right)-S_{t} e^{-q(T-t)} \Phi\left(-d_{1}\right) . \tag{1}
\end{equation*}
$$

and use the data given in the problem with $q=0.2, r=0.05, T-$ $t=1.5, \sigma=0.2$ and $S_{t}=18, K=20, d_{1}=-0.124$ and $d_{2}=$ -0.369 . Using the formula and these values, we obtain

$$
\text { price }=2.352 .
$$

4. .If $r=5 \%$, then the risk-neutral probability for an up-movement is

$$
q=\frac{e^{r}-d}{u-d}=0.6975
$$

Binomial tree values: $10 ; 11.2,8.928 ; 12.544,10,7.9709 ; 14.0493,11.2$, 8.928, 7.116436

Payoff function of the derivative (call + put):

$$
\text { Payoff }=\left\{\begin{array}{c}
8.5-S_{T} \quad \text { if } S_{T}<8.5 \\
0 \quad \text { if } 8.5 \leq S_{T} \leq 12 \\
S_{T}-12 \text { if } S_{T}>12
\end{array} .\right.
$$

Payoff of the derivative: $C_{3}\left(u^{3}\right)=14.0493-12=2.0493, C_{3}\left(u^{2} d\right)=$ $0, C_{3}\left(u d^{2}\right)=0, C_{3}\left(d^{3}\right)=8.5-7.116436=1.383564$
Using the usual backward procedure with $r=0.05$ and $q=0.6975$:
At time 2: $C_{2}\left(u^{2}\right)=\exp (-r)\left[q C_{3}\left(u^{3}\right)+(1-q) C_{3}\left(u^{2} d\right)\right]=1.3597$,
$C_{2}(u d)=\exp (-r)\left[q C_{3}(u d u)+(1-q) C_{3}\left(u d^{2}\right)\right]=0$,
$C_{2}\left(d^{2}\right)=\exp (-r)\left[q C_{3}\left(d^{2} u\right)+(1-q) C_{3}\left(d^{3}\right)\right]=0.3981$.
At time 1: $C_{1}(u)=\exp (-r)\left[q C_{2}\left(u^{2}\right)+(1-q) C_{2}(u d)\right]=0.9021$, $C_{1}(d)=\exp (-r)\left[q C_{2}(d u)+(1-q) C_{2}\left(d^{2}\right)\right]=0.1146$.
The Final price (at time 0) is $C_{0}=\exp (-r)\left[q C_{1}(u)+(1-q) C_{1}(d)\right]=$ 0.6315 .
5. .
(a)

In order to have a porfolio with zero delta, $\Delta_{p} \times N+\Delta_{S} \times$ number of shares $=0$. Therefore

$$
N=\frac{50000}{0.25}=200000 .
$$

(b) We have $\Delta_{X}=0.3, \Delta_{Y}=0.4, \Gamma_{X}=0.15, \Gamma_{Y}=0.25$. In order to have a zero delta and a zero gamma portfolio:

$$
\left\{\begin{array}{c}
0.3 N_{X}+0.4 N_{Y}=0 \\
200000 \times 0.1+0.15 N_{X}+0.25 N_{Y}=0
\end{array}\right.
$$

The solution is

$$
\left\{\begin{array}{c}
N_{X}=533333 \\
N_{Y}=-400000
\end{array}\right.
$$

6. .
(a) Answer in the slides. Check it out.
(b) Answer in the slides. Check it out.
